# Lipidomic-based investigation into the regulatory effect of Schisandrin B on palmitic acid level in non-alcoholic steatotic livers

Hiu Yee Kwan<sup>1,2</sup>, Xuyan Niu<sup>3</sup>, Wenlin Dai<sup>4</sup>, Tiejun Tong<sup>4</sup>, Xiaojuan Chao<sup>1,2</sup>, Tao Su<sup>1,2</sup>, Chi Leung Chan<sup>1</sup>, Kim Chung Lee<sup>5,6</sup>, Xiuqiong Fu<sup>1,2</sup>, Yi Hua<sup>7</sup>, Yu Hua<sup>1,2</sup>, Li Ting<sup>1,2</sup>, Anfernee Kai Wing Tse<sup>1,2</sup>, Wang Fun Fong<sup>1,2</sup>, Si-Yuan Pan<sup>8</sup>, Aiping Lu<sup>1,2</sup>, Zhi-Ling Yu<sup>1,2</sup>

## Supplementary Figure S1



**Supplementary Figure S1.** Body weights of mice in (A) non-fasting group (nf), (B) fasting group (f) and (C) HFD-fed group (HFD). (D) Liver weights of HFD -fed mice. *nf-veh*: non-fasting vehicle control group; *nf-SchB*: non-fasting SchB-treated group; *f-veh*: fasting vehicle control group; *f-SchB*: fasting SchB-treated group; *HFD-veh*: HFD-fed vehicle control group; *HFD-SchB*: HFD-fed SchB-treated group. Shown is the mean  $\pm$  SE (n=10 mice).

## Supplementary Figure S2



**Supplementary Figure S2.** Molecular network built based on the lipid species in **(A)** liver and **(B)** plasma samples in fasting mice; and **(C)** liver and **(D)** plasma samples in HFD-fed mice. Lipid entities are represented as nodes, and the biological relationship between two nodes is represented as a line. Colored symbols represents the lipid entities occurred in our analysis, transparent entries are the entities from Ingenuity Knowledge Database. Red symb ols represent up -regulated entities, green symbols represents down-regulated entities. Solid lines between the lipid entities indicate a direct physical relationship between the entities, dotted lines indicate indirect functional relationship. *f-veh*: fasting vehicle control group; *f-SchB*: fasting SchB-treated group; *HFD-veh*: HFD-fed vehicle control group; *HFD-SchB*: HFD-fed SchB-treated group



**Supplementary Figure S3.** The relative mRNA expressions of **(A)** acetyl CoA carboxylase (ACC), **(B)** stearoyl-CoA desaturase-1(SCD) and **(C)** elongation of long chain fatty acids family member 6 (ELOV6) in FFA-treated MIHA cells. Shown is the mean  $\pm$  SE (n=3 independent experiments), \**p*<0.05.



**Supplementary Figure S4.** Hepatic protein expressions of fatty acid synthase (FAS) in fasting, non-fasting and HFD-fed mice. *nf-veh*: non-fasting vehicle control group; *f-veh*: fasting vehicle control group; *HFD-veh*: HFD-fed vehicle control group



**Supplementary Figure S5.** Relative mRNA expression of carnitine palmitoyltransferase -1 (CPT-1) and very-long-chain acyl CoA dehydrogenase (LCAH) in fasting mice. *f-veh*: fasting vehicle control group; *f-SchB*: SchB-treated fasting group. Shown is the mean  $\pm$  SE (n=4 mice), \*p<0.05.



**Supplementary S6** SchB treatment affects lipogenic gene expressions in long-term HFD-fed mice Western blotting showing the expressions of acetyl CoA carboxylase (ACC), phospho-ACC (ser-563) and fatty acid synthase (FAS) in (A) HFD-fed mouse livers, (B) fasting mouse livers and (C) nonfasting mouse livers.. nf-veh: non-fasting vehicle control group; nf-SchB: non-fasting SchB-treated group; f-veh: fasting vehicle control group; f-SchB: fasting SchB-treated group; HFD-veh: HFD-fed vehicle control group; HFD-SchB: HFD-fed SchB-treated group. (G) expressions of ACC, phospho-ACC (ser-563) and FAS in FFA-treated MIHA cells. FFA: FFA-treated vehicle control MIHA cells; FFA+SchB: FFA-treated SchB-treated MIHA cells.



**Supplementary S6** SchB treatment affects lipogenic gene expressions in long-term HFD-fed mice Western blotting showing the expressions of acetyl CoA carboxylase (ACC), phospho-ACC (ser-563) and fatty acid synthase (FAS) in (A) HFD-fed mouse livers, (B) fasting mouse livers and (C) non-fasting mouse livers.. nf-veh: non-fasting vehicle control group; nf-SchB: non-fasting SchB-treated group; f-veh: fasting vehicle control group; f-SchB: fasting SchB-treated group; HFD-veh: HFD-fed vehicle control group; HFD-SchB: HFD-fed SchB-treated group. (G) expressions of ACC, phospho-ACC (ser-563) and FAS in FFAtreated MIHA cells. FFA: FFA-treated vehicle control MIHA cells; FFA+SchB: FFA-treated SchB-treated MIHA cells.



Supplementary S7 SchB treatment affects SREBP-1 expressions in long-term HFD-fed mice

Western blotting showing (A) expression of mature sterol regulatory element binding protein-1 (mSREBP-1), (B) ratio of precursor to mature SREBP-1 and (I) tumor necrosis factor (TNF- $\alpha$ ) in HFD-fed mouse livers. (C) Protein expression of mature SREBP-1 (mSREBP-1) in FFA-treated MIHA cells. FFA: FFA-treated vehicle control MIHA cells; FFA+SchB: FFA-treated SchB-treated MIHA cells. Protein expressions of (E, G) mSREBP-1 and (F) FAS upon TNF- $\alpha$  challenges, and (H) protein expressions of TNF- $\alpha$  in FFA-treated MIHA cells. FFA: FFA-treated MIHA cells. FFA: FFA-treated MIHA cells. FFA: and FFA-treated MIHA cells. FFA: FFA-treated MIHA cells. FFA: mature SREBP-1 and (F) FAS upon TNF- $\alpha$  challenges, and (H) protein expressions of TNF- $\alpha$  in FFA-treated MIHA cells. FFA: FFA-treated SchB-treated MIHA cells. FFA: mature SREBP-1 and (F) FAS upon TNF- $\alpha$  challenges, and (H) protein expressions of TNF- $\alpha$  in FFA-treated MIHA cells. FFA: FFA-treated SchB-treated SchB-treated SchB-treated SchB-treated SchB-treated SchB-treated SchB-treated MIHA cells. FFA: FFA-treated vehicle control MIHA cells; FFA+SchB: FFA-treated SchB-treated SchB-treated MIHA cells.





**Supplementary S7** SchB treatment affects SREBP-1 expressions in long-term HFD-fed mice

Western blotting showing (A) expression of mature sterol regulatory element binding protein-1 (mSREBP-1), (B) ratio of precursor to mature SREBP-1 and (I) tumor necrosis factor (TNF- $\alpha$ ) in HFD-fed mouse livers. (C) Protein expression of mature SREBP-1 (mSREBP-1) in FFA-treated MIHA cells. FFA: FFA-treated vehicle control MIHA cells; FFA+SchB: FFA-treated SchB-treated MIHA cells. Protein expressions of (E, G) mSREBP-1 and (F) FAS upon TNF- $\alpha$  challenges, and (H) protein expressions of TNF- $\alpha$  in FFA-treated MIHA cells. FFA: FFA-treated vehicle control MIHA cells. FFA-treated MIHA cells. FFA: FFA-treated MIHA cells. FFA: SchB-treated MIHA cells. FFA: SchB-treated MIHA cells. FFA: FFA-treated SchB-treated Vehicle control MIHA cells. FFA: FFA-treated SchB-treated MIHA cells.

## Supplementary Figure S8



#### Supplementary S8 SchB treatment induces transient lipolysis in fasting mice

Western blotting showing the expressions of adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), phospho-HSL (Ser-563) in adipocytes isolated from the bilateral superficial subcutaneous adipose tissue (SA), prominent bilateral intra-abdominal visceral depots attached to the epididymides (EA) and the perirenal fat (RA) (D-E) 24 h after fasting, (F) 2 h after fasting, (G) 6 h after fasting and (H) 12 h after fasting. nf-veh: non-fasting vehicle control group; nf-SchB: non-fasting SchB-treated group; f-veh: fasting vehicle control group; HFD-veh: HFD-fed vehicle control group; HFD-SchB: HFD-fed SchB-treated group.

# (Cont'd) Supplementary Figure S8



#### Supplementary S8 SchB treatment induces transient lipolysis in fasting mice

Western blotting showing the expressions of adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), phospho-HSL (Ser-563) in adipocytes isolated from the bilateral superficial subcutaneous adipose tissue (SA), prominent bilateral intra-abdominal visceral depots attached to the epididymides (EA) and the perirenal fat (RA) (D-E) 24 h after fasting, (F) 2 h after fasting, (G) 6 h after fasting and (H) 12 h after fasting. nf-veh: non-fasting vehicle control group; nf-SchB: non-fasting SchB-treated group; f-veh: fasting vehicle control group; HFD-veh: HFD-fed vehicle control group; HFD-SchB: HFD-fed SchB-treated group.



Fasting 12 h

Supplementary S8 SchB treatment induces transient lipolysis in fasting mice

Western blotting showing the expressions of adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), phospho-HSL (Ser-563) in adipocytes isolated from the bilateral superficial subcutaneous adipose tissue (SA), prominent bilateral intra-abdominal visceral depots attached to the epididymides (EA) and the perirenal fat (RA) (D-E) 24 h after fasting, (F) 2 h after fasting, (G) 6 h after fasting and (H) 12 h after fasting. nf-veh: non-fasting vehicle control group; nf-SchB: non-fasting SchB-treated group; f-veh: fasting vehicle control group; HFD-veh: HFD-fed vehicle control group; HFD-SchB: HFD-fed SchB-treated group.

# Supplementary Figure S9



**Supplementary S9** SchB treatment affects the plasma cholesterol levels in fasting mice Expressions of LDL receptor in (D) and in (E) FFA-treated MIHA cells. f-veh: fasting vehicle control group; f-SchB: fasting SchB-treated group.

| Supplementary | Table S1 | The chromatog | raphic and | mass spect | rometric p | oarameters f | or the |
|---------------|----------|---------------|------------|------------|------------|--------------|--------|
| LOAIC         |          |               |            |            |            |              |        |

| г | C | A | AC. |  |
|---|---|---|-----|--|
| L |   |   | 45  |  |

| Chromatographic parameters      |                                                     |
|---------------------------------|-----------------------------------------------------|
| Column                          | Waters Acquity UPLC BEH C18, 2.1x100mm, 1.7µM       |
| Column temperature              | 45°C                                                |
| Autosampler temperature         | 10°C                                                |
| Mobile phase                    | A= Water with 10mM Ammonium formate pH4 adjusted by |
|                                 | formic acid                                         |
|                                 | B=Acetonitrile                                      |
| Gradient                        | 0% B (0-0.25min)                                    |
|                                 | 5%B (0.25-1min)                                     |
|                                 | 20%B (1-10min)                                      |
|                                 | 60%B (10-22min)                                     |
|                                 | 99%B (22-26min)                                     |
| Flow rate                       | 0.45 mL/min                                         |
| Injection volume                | 12µ1                                                |
| MS parameters                   |                                                     |
| Polarity                        | Negative                                            |
| Capillary voltage               | 4.0kV                                               |
| Sheath gas flow rate            | 10 L/min                                            |
| Sheath gas temperature          | 350°C                                               |
| Drying gas flow rate (nitrogen) | 7 L/min                                             |
| Drying gas temperature          | 300°C                                               |
| Nebuilizer gas (nitrogen)       | 45 psi                                              |
| Fragmentor voltage              | 140V                                                |
| Nozzle voltage                  | 0V                                                  |
| Scanning range                  | 50-1700 m/z                                         |

An Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS mass spectrometer (Agilent Technologies) was connected to an Agilent 1290 Infinity UHPLC via an ESI ion source for the lipids analysis.

|    | ID Identified lipid species |                           | Formula      | Regulation directions |                   | Metabolism                                                                       |  |
|----|-----------------------------|---------------------------|--------------|-----------------------|-------------------|----------------------------------------------------------------------------------|--|
|    |                             |                           |              | f-schB<br>/f-ctl      | HFD-<br>SchB/HFD- | canonical pathways                                                               |  |
|    |                             |                           |              |                       | veh               |                                                                                  |  |
| 1  | C02737                      | Phosphatidylethanolserine | C13H24NO10P  | Ť                     | Ť                 | Phosphatidylethanola<br>mine Biosynthesis III                                    |  |
| 2  | C00344                      | Phosphatidylglycerol      | C8H13O10PR2  | Ţ                     | Ť                 | Cardiolipin<br>Biosynthesis Ⅲ;                                                   |  |
|    |                             |                           |              |                       |                   | Phosphatidylglycerol<br>Biosynthesis ∏                                           |  |
| 3  | C00157                      | Phosphatidylcholine       | C10H18NO8PR2 | Ť                     | Ť                 | Sphingomyelin<br>Metabolism; Choline<br>Biosynthesis II;<br>Phosphatyidylcholine |  |
|    |                             |                           |              |                       |                   | Biosynthesis I;<br>Triacylglycerol                                               |  |
|    | 0000010                     |                           |              |                       |                   | Biosynthesis                                                                     |  |
| 4  | C00219                      | Arachidonic acid          | C20H32O2     | Ţ                     | Ţ                 | Prostanoid                                                                       |  |
|    |                             |                           |              |                       |                   | Biosynmesis;                                                                     |  |
|    |                             |                           |              |                       |                   | Riceumbasis:                                                                     |  |
|    |                             |                           |              |                       |                   | Anandamide                                                                       |  |
|    |                             |                           |              |                       |                   | Degradation                                                                      |  |
| 5  | C00712                      | Oleic acid                | C18H34O2     | NS                    | 1                 | Oleate Biosynthesis                                                              |  |
| 6  | C00350                      | Phosphatidylethanolamine  | C7H12NO8PR2  | Ť                     | Ĩ                 | Phosphatidylethanola                                                             |  |
|    |                             |                           |              |                       |                   | mine Biosynthesis                                                                |  |
| 7  | C05356                      | 5(S)-HPETE                | C20H32O4     | Ť                     | NS                | Leukotriene<br>Biosynthesis                                                      |  |
| 8  | C02166                      | Leukoteiene C4            | C30H47N3O9S  | Ţ                     | NS                | Leukotriene<br>Biosynthesis                                                      |  |
| 9  | C01595                      | Linoleic acid             | C18H32O2     | Ť                     | Ť                 | γ-linolenate<br>Biosynthesis Π                                                   |  |
| 10 | C00165                      | Diacylglycerol            | C5H6O5R2     | Ť                     | Ţ                 | Triacylglycerol<br>Degradation                                                   |  |
| 11 | C00416                      | Phosphatidic acid         | C5H7O8PR2    | Ť                     | Ţ                 | Phosphatidylglycerol<br>Biosynthesis II;                                         |  |
|    |                             |                           |              |                       |                   | Choline Biosynthesis<br>∭;Triacylglycerol                                        |  |
|    |                             |                           |              |                       |                   | Biosynthesis; CDP-<br>diacylglycerol                                             |  |
|    |                             |                           |              |                       |                   | Biosynthesis I                                                                   |  |
| 12 | C01194                      | 1-phosphatidy1-D-         | C11H17O13PR2 | Ť                     | Ť                 | D-myo-inositol                                                                   |  |
|    |                             | myoinositol               |              |                       |                   | (1,4,5)-Trisphosphate                                                            |  |
| 13 | C01530                      | Stearic acid              | C18H36O2     | 1                     | 1                 | Biosynthesis<br>Stearate                                                         |  |
|    | 0000040                     | <b>D</b> -1-32            | 0100000      |                       |                   | Biosynunesisi                                                                    |  |
| 14 | C00249                      | Palmitic acid             | C16H32O2     | ţ                     | Ţ                 | Biosynthesis                                                                     |  |

## Supplementary Table S2A. The metabolism canonical pathways and identified metabolites in livers of fasting and HFD-fed mouse models

f-veh: fasting after regular diet-fed vehicle control group; f-schB: fasting after regular diet-fed SchB-treated group; HFD-veh: HFD-fed vehicle control group; HFD-schB: HFD-fed SchB-treated group

|    | ID      | Identified lipid species | Formula        | Regulation directions |           | Metabolism canonical             |
|----|---------|--------------------------|----------------|-----------------------|-----------|----------------------------------|
|    |         |                          |                | f-schB                | HFD-      | pathways                         |
|    |         |                          |                | /f-ctl                | SchB/HFD- | • •                              |
|    |         |                          |                |                       | veh       |                                  |
| 1  | C00350  | Phosphatidylethanolamine | C7H12NO8PR2    | Ļ                     | Ť         | Phosphatidyl-                    |
|    |         |                          |                |                       |           | ethanolamine                     |
|    |         |                          |                |                       |           | Biosynthesis                     |
| 2  | C02737  | PhosphatidyIserine       | C8H12NO10PR2   | Ļ                     | Ļ         | Phosphatidyl-                    |
|    |         |                          |                |                       |           | Piorunthasis                     |
| 3  | C00157  | Phosphatidylcholine      | C10H18NO8PR2   | t                     | Ť         | Choline Biosynthesis             |
| -  | Course  | r nospilatidy renome     | CIOINDIVOU N2  |                       |           | III 'Triacylelycerol             |
|    |         |                          |                |                       |           | Biosynthesis:                    |
|    |         |                          |                |                       |           | Sphingomyelin                    |
|    |         |                          |                |                       |           | Metabolism;                      |
|    |         |                          |                |                       |           | Phosphatidylcholine              |
|    |         |                          |                |                       |           | Biosynthesis I                   |
| 4  | C00416  | Phosphatidic acid        | C5H7O8PR2      | 1                     | NS        | Choline Biosynthesis             |
|    |         |                          |                |                       |           | Ⅲ;                               |
|    |         |                          |                |                       |           | Phosphatidylglycerol;            |
|    |         |                          |                |                       |           | Triacylglycerol                  |
|    |         |                          |                |                       |           | Biosynthesis; CDP-               |
|    |         |                          |                |                       |           | biocynglycerol                   |
| 5  | C00344  | Phoenhatidulalucaral     | C8U13O10PP2    | +                     | +         | Phoephatidylalwaral              |
| 2  | COUST   | ritospilaudyrgryceror    | Compositive K2 |                       |           | Biosynthesis II :                |
|    |         |                          |                |                       |           | Cardiolinin                      |
|    |         |                          |                |                       |           | Biosynthesis II                  |
| 6  | (C00187 | Cholesterol              | C27H46O        | t                     | NS        | Bile Acid Biosynthesis.          |
|    | (       |                          |                |                       |           | Neutral Pathway;                 |
|    |         |                          |                |                       |           | Cholesterol                      |
|    |         |                          |                |                       |           | Biosynthesis I ;                 |
|    |         |                          |                |                       |           | Cholesterol                      |
|    |         |                          |                |                       |           | Biosynthesis ∏(via               |
|    |         |                          |                |                       |           | 24,25-                           |
|    |         |                          |                |                       |           | dihydrolanosterol);              |
|    |         |                          |                |                       |           | Cholesterol<br>Discussion W(size |
|    |         |                          |                |                       |           | Biosynthesis III (via            |
| 7  | C00210  | A rachidonic acid        | C20H32O2       |                       | NS        | Anandamide                       |
| 1  | CA0/217 | Attachidonic aciu        | 0201152052     | +                     | 110       | Degradation                      |
| 8  | C00249  | Palmitic acid            | C16H32O2       | Ť                     | NS        | Palmitate Biosynthesis           |
| 9  | C01530  | Stearic acid             | C18H36O2       | t                     | NS        | Stearate Biosynthesis            |
|    |         |                          |                | -                     |           | -                                |
| 10 | C00165  | Diacylglycerol           | C5H6O5R2       | Ť                     | Ť         | Triacylglycerol                  |
|    |         |                          |                |                       |           | degradation                      |

#### Supplementary Table S2B. The metabolism canonical pathways and identified metabolites in plasma of fasting and HFD-fed mouse models

f-veh: fasting after regular diet-fed vehicle control group; f-schB: fasting after regular diet-fed SchB-treated group; HFD-veh: HFD-fed vehicle control group; HFD-schB: HFD-fed SchB-treated group