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1. Methods 

 

Chemicals. Lead(II) acetate trihydrate (Pb(COOCH3) x 3 H2O), 1-octadecene (technical 

grade 90 %), oleic acid (≥ 99.0 %), bis(trimethylsilyl) sulfide (TMS), octane (anhydrous, 

≥  99%), 3-marcaptopropionic acid (MPA; ≥  99%), poly(vinylidene fluoride-co-

hexafluoropropylene) (P(VDF-HFP), Mw ~ 400 kg mol-1, Mn ~ 130 kg mol-1), hexane, acetone, 

methanol, and toluene were purchased from Sigma Aldrich, ethanol from Carl Roth GmbH, 

ionic liquid 1-ethyl-3-methyl-imidazolium-tris(pentafluoroethyl)-trifluorophosphate 

([EMIM][FAP], high purity grade, dried in vacuum) from Merck.  

 

Synthesis of PbS. Synthesis of PbS was performed in argon atmosphere using a standard air-

free Schlenk-line technique and hot-injection. For a typical synthesis a stock solution of 

Pb(oleate)2 was prepared by dissolving Pb(COOCH3) x 3 H2O (758.6 mg) and oleic acid (6 - 

10 mL, depending on QD size) in 1-octadecene (12 ml). The reaction mixture was dried in 

vacuum at 100 °C for 2 h. It was then heated to 145 °C under moderate argon flow. The sulfur 

precursor solution (210 µL of TMS in 6 - 10 mL 1-octadecene, prepared in a glove box) was 

rapidly injected into the Pb(oleate)2 stock solution and the temperature was decreased to 120 

°C. The reaction mixture was kept at 120 °C for 10 min and then quenched. The PbS QDs 

were washed two to three times with hexane/ethanol/acetone by centrifugation at 6000 rpm 

for 3 min to remove all contaminants. Subsequently, the PbS QDs were transferred into a dry 

nitrogen glovebox, re-dispersed in 4 mL octane and centrifuged to remove agglomerated and 

undissolved QDs. The supernatant was kept and used for device fabrication. 

 

Fabrication of PbS LEFETs. Interdigitated source/drain electrodes (channel length L = 

5 µm; channel width W = 20 mm) and gold side-electrodes (1.5 × 1.5 mm) were defined 
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photolithographically using a standard double-layer photoresist (LOR5B/S1813), electron-

beam evaporation (2 nm Ti, 30 nm Au) and lift-off process on thin glass substrates (Schott 

AF32 Eco, thickness 0.3 mm). Before PbS QD deposition the substrates were cleaned with 

acetone and isopropanol in an ultrasonic bath and subsequently rinsed with deionized water. 

PbS film formation was carried out in a nitrogen filled glove box. A solution of PbS QDs in 

octane was passed through a 0.2 µm filter onto the pre-patterned electrodes and spin-coated at 

2500 rpm for 10 s. A 1 % v/v solution of MPA in methanol was dropped onto the PbS QD 

layer to exchange oleic acid ligands. The MPA solution was allowed to remain on the QD 

layer for 30 s before spinning at 2500 rpm for 10 s. Each layer was then washed with 

methanol twice to remove any organic residue and then dried for ~ 10 s at 80 °C. The final 

film was formed by repeating this process several times (layer-by-layer, LBL). Excess PbS 

QDs outside the interdigitated electrodes were removed with toluene. P(VDF-HFP) was co-

dissolved with [EMIM][FAP] in acetone (1:4:14 by mass) and spin-coated on top of the PbS 

film at 2000 rpm. Excess iongel around the device was removed with acetone. Annealing in 

nitrogen overnight at ~ 50 °C removed any residual solvent. All devices were encapsulated 

with a piece of glass and a UV hardening epoxy (Delo Katiobond, LP655 resin) to allow for 

measurements in air.  

 

Characterization of PbS QDs and LEFETs. UV-Vis absorption spectra of PbS QDs in 

octane were acquired with a Varian Cary 6000i absorption spectrometer. Transmission 

electron microscope (TEM) images were recorded with a Philips CM 300 UT operated at 300 

kV. Scanning electron microscope (SEM) images of a 5 LBL film on a Si/SiO2 substrate were 

acquired with a Zeiss AURIGA microscope at 1 kV. Current-voltage characteristics of the 

electrolyte-gated transistors were recorded with an Agilent 4155C semiconductor parameter 

analyzer or a Keithley 2612A source meter. All measurements were performed at room 

temperature. Electroluminescence (EL) images were recorded with a thermoelectrically 
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cooled 256 x 360 pixel InGaAs camera (Xenics XEVA-CL-TE3, sensitivity range: 800 - 1600 

nm). Photoluminescence (PL) of the LEFETs and EL spectra were obtained with an Acton 

SpectraPro SP2358 spectrometer (grating 150 lines/mm) and a liquid nitrogen cooled InGaAs 

line camera (PI Acton OMA V:1024 1.7). For PL measurements a 640 nm laser diode (OBIS, 

Coherent Europe B.V.) was used. The laser beam was focused onto the substrate through the 

collecting near-infrared objective (Olympus LCPLN50XIR ×50, NA 0.65 with correction 

collar for glass thickness). A cold mirror (transmission > 875 nm) and an additional long-pass 

filter (715 nm) were used to reject visible and scattered laser light. For current-voltage-

luminance measurements a calibrated InGaAs photodiode (Thorlabs FGA21-CAL, active area 

3.1 mm2) was placed directly underneath the device (active area ~ 0.1 mm2) to collect as 

much of the emitted light as possible. The photocurrent was recorded at 0 V bias. Calculations 

of the external quantum efficiency took the observed electroluminescence spectrum and 

wavelength dependent sensitivity of the photodiode into account. Given the expected losses 

due to absorption, waveguiding and emission in all directions (not just toward the 

photodiode), the obtained EQE is a lower boundary for the overall efficiency.  

 

PL lifetime measurements. Samples were illuminated through the substrate glass with a 

pulsed (< 60 ps, 1 MHz or 10 MHz) diode laser at 785 nm (Alphalas GmbH) focused with a 

×100 near-IR 0.8 N.A. objective. Emitted photons were collected with the same objective and 

directly detected with an InGaAs/InP single-photon avalanche diode (Micro Photon Devices, 

Italy). Statistics of the arrival times of the photons were acquired with time-correlated single-

photon counting module (Picoharp 300, Picoquant GmbH) at time bin 32 ps. The instrument 

response function FWHM ∼ 100 ps was estimated from the fast photoluminescence decay of 

a low bandgap diketopyrrolopyrrole copolymer (DPPT-BT). Excitation photon fluxes per 

pulse were 0.088 x 1015 cm-2 and 2.096 x 1015 cm-2. 
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Obtained PL decay curves were fitted to a mono-exponential function or reconvoluted to a tri-

exponential function with Symphotime 64 (Picoquant) taking into account the measured IRF. 

 

PL Quantum Yield. For PL quantum yield (QY) measurements a 785 nm laser beam was 

directed through the entrance port of an integrating sphere (LabSphere, Spectralon coating). 

Quantum dot solutions enclosed in quartz cuvettes and thin film samples, respectively, were 

mounted on a PTFE sample holder in the center of the sphere. Quantum yield measurements 

were performed according to DeMello et al.1 The laser beam was directed either onto the 

sample (direct excitation) or on the wall of the integrating sphere (indirect excitation). The 

scattered laser light and PL signal were fiber-coupled to the Acton SpectraPro SP2358 

spectrometer. Emission spectra were compared to PL spectra measured outside the sphere to 

account for re-absorption/re-emission effects in the integrating sphere.2 All spectra were 

corrected for the spectral response of the systems with a calibrated tungsten halogen lamp. 
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I. Calculation of excitation density for lifetime measurements 

The excitation density can be defined as the number of absorbed photons per quantum dot per 

pulse: 

ܰ = ௣ܰ௛(1)           ߪ 

, where ௣ܰ௛	is the photon flux per pulse and ߪ is the absorption cross section of a quantum 

dot. 

The average photon flux is calculated according to the following equation: 

௣ܰ௛ = ௉ೌ ೡ௙ ఒ௛௖ ଵగ௥మ          (2) 

, where ௔ܲ௩ is the average laser power, ݂ is the laser repetition rate, ߣ is the excitation 

wavelength, ℎ is the Planck´s constant, ܿ is the speed of light and ݎ is the radius of the 

diffraction limited focal spot (accounting for objective NA = 0.8). 

For the two average laser powers we used in this work (630 nW and 15 µW), the photon 

fluxes per pulse are equal to: 

௣ܰ௛ଵ = 0.088 × 10ଵହܿ݉ିଶ and ௣ܰ௛ଶ = 2.096 × 10ଵହܿ݉ିଶ 

The absorption cross section can be calculated using the following formula:5 

ଵߪ = ସగ௡ఒ ห ௟݂௙หଶ݊௉௕ௌ݇௉௕ௌ(ସଷ ொ஽ଷݎߨ )         (3) 

, where ߣ is the photon wavelength in vacuum, ݊ is the refractive index of the environment 

(~1.5 accounting for the glass substrate and the iongel), ݊௉௕ௌ and ݇௉௕ௌ	are the refractive index 

and the extinction coefficient of bulk lead sulfide at ݎ ,ߣொ஽ is the radius of the quantum dot. 

The local field correction factor is calculated according to: 
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 ห ௟݂௙หଶ = ଽ௡ర(௡ು್ೄమ ି௞ು್ೄమ ାଶ௡మ)మାସ௡ು್ೄమ ௞ು್ೄమ ≈ 0.066 

This yields the following absorption cross sections of PbS 1, PbS 2, and PbS 3: 

ଵ_௉௕ௌଵߪ = 1.3 × 10ିଵହܿ݉ଶ, ߪଵ_௉௕ௌଶ = 1.59 × 10ିଵହܿ݉ଶ and ߪଵ_௉௕ௌଷ = 2.17 × 10ିଵହܿ݉ଶ 

This method (Equation 3) is usually used for diluted samples and single QD studies, and thus 

in our case of closed packed QD solid films the local field correction factor and the 

corresponding absorption cross section may deviate. 

Alternatively, the effective absorption cross section of the QDs in our thin solid films can be 

defined as:6 

ଶߪ = ଵି௘షഀಽ௖௅            (4) 

, where ܮ is the thickness of the QD film, ܿ is the concentration of the QDs and ߙ is the 

absorption coefficient: 

ߙ = ߣ௉௕ௌ݇ߨ4 ≈ 16 × 10ସ	ܿ݉ିଵ 

This yields following absorption cross sections of PbS 1, PbS 2, and PbS 3: 

ଶ_௉௕ௌଵߪ = 1.76 × 10ିଵହܿ݉ଶ, ߪଶ_௉௕ௌଶ = 2.15 × 10ିଵହܿ݉ଶ and ߪଶ_௉௕ௌଷ = 2.93 × 10ିଵହܿ݉ଶ 

Combining the obtained excitation photon fluxes per pulse per QD and the absorption cross 

section into Equation 1, we can verify that an average number of absorbed photons per QD 

per pulse is less than one (ܰ ≤ 1) for the laser power (630 nW) used in the main text. 
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Accounting for the IRF, PL curves can be reconvoluted to a tri-exponential function: 

(ݐ)௠௘௔௦௨௥௘ௗܮܲ = ܨܴܫ ⊗ ଵ݁ି௧ܣ) ఛభൗ + ଶ݁ି௧ܣ ఛమൗ + ଷ݁ି௧ܣ ఛయൗ )    (7) 

, where coefficients ܣଵ, ܣଶ, ܣଷ were renormalized:  

ଵܰ,ଶ,ଷ = ஺భ,మ,య஺భା஺మା஺య          (8) 

in order to extract relative contribution of the QDs emitting with different lifetimes                       

( ଵܰ + 	 ଶܰ + 	 ଷܰ = 1 (i.e. 100%)). 

We highlight that a tri-exponential fit can give arbitrary dependencies of the amplitudes and 

lifetimes representing QDs with different radiative and non-radiative decay rates and 

including charge transfer between them. Therefore, in order to numerically impose the 

dependence for QDs with different doping levels and taking into account our previous 

consideration, the following fitting restrictions were applied: a) lifetime of the two fast 

components remain constants (120 ps and 600 ps, preliminary fitted for VG = 0 V), while their 

coefficients (reflecting the fraction of QDs with a particular decay time constant) are fitted, 

and b) both amplitude and lifetime of the slow component are fitted. These restrictions 

resemble a nonlinear transient method used to extract lifetimes of the slow decay component, 

after subtraction of the fast decay components. 
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M. Estimation of PL transients for high electron and hole accumulation levels 

The three populations of QDs with electronic transitions illustrated in the middle column of 

Figure 5 (0 V < VG < 2 V), which are responsible for the observed intensity and lifetime 

changes, can be described by the following tri-exponential function: 

(ݐ)௏	௏ಸୀ଴ܮܲ = ( ଵܰ + ଷܰ)݁ି௧(ఊೝ೉బାఊ೙ೝ೉బାఊ೙ೝ) + ଶܰ݁ି௧(ఊೝ೉బାఊ೙ೝ೉బ)    (9) 

, where ଵܰ and ଷܰ correspond to the particles with mostly hole or electron traps, and ଶܰ 

represents QDs with almost none of them active. The lifetime of each component is a function 

of the radiative decay rate of excitons	ߛ௥௑଴, the intrinsic nonradiative decay rate of excitons ߛ௡௥௑଴, and the effective trapping rate of charge carriers ݊ߛ  previously fitted by two fast) ݎ

components in tri-exponential PL decay fits).  

In case of hole or electron injection at high gate voltages (see Figure 5, left (VG > 2 V) and 

right (VG < 0 V) columns), Equation 9 transforms into:  

௏ಸୀଶ.ହ௏ܮܲ = ( ଵܰ + ଷܰ − ∆ܰ)݁ି௧(ఊೝ೉షାఊ೙ೝ೉షାఊ೙ೝ) + ( ଶܰ + ∆ܰ)݁ି௧(ఊೝ೉షାఊ೙ೝ೉ష)          (10a) ܲ2.5ܸ−=ܩܸܮ = ( ଵܰ + ଷܰ − ∆ܰ)݁ି௧(ఊೝ೉శାఊ೙ೝ೉శାఊ೙ೝ) + ( ଶܰ + ∆ܰ)݁ି௧(ఊೝ೉శାఊ೙ೝ೉శ)           (10b) 

, with the radiative and nonradiative rate of excitons replaced with those for trions 

,௥௑ିݕ) ,௥௑ାݕ ,௡௥௑ିݕ  ௡௥௑ା). ∆ܰ corresponds to the increase of the fraction of QDs withݕ

recombination centers deactivated.   

By subtracting Equation 9 from the Equations 10a and 10b we obtain functions corresponding 

to the nonlinear PL (NPL) transient signal used to estimate the decay time of the slow 

decaying component associated with trion emission (Figure S10a-c): 

(ݐ)௏ಸୀଶ.ହ௏ܮܲܰ = ∆ܰ[݁ି௧(ఊೝ೉షାఊ೙ೝ೉ష) + ேమ∆ே (݁ି௧(ఊೝ೉షାఊ೙ೝ೉ష)−݁ି௧(ఊೝ೉బାఊ೙ೝ೉బ)) −݁ି௧(ఊೝ೉షାఊ೙ೝ೉షାఊ೙ೝ)]                    (11a) 
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