THE EFFECTS ON THE COMPOSITION OF THE BLOOD OF THE SUBCUTANEOUS INJECTION OF NORMAL SALT SOLUTION INTO NORMAL DOGS AND INTO DOGS SUBJECTED TO INTESTINAL TRAUMA, GRADED HEMORRHAGES AND HISTAMINE INJECTION

BY ALFRED BLALOCK AND J. W. BEARD (From the Department of Surgery, Vanderbilt University, Nashville)

(Received for publication September 3, 1931)

In previous studies (1, 2, 3), the effects on the composition of the blood of the introduction of fluids intravenously have been determined on normal animals and on animals in which a decline in blood pressure had been produced by a variety of means. Another method frequently employed by which fluids may be introduced consists of injection into the subcutaneous tissues. For this purpose, normal salt solution is used most often. The present studies were undertaken in order to determine the effects on the composition of the blood of the subcutaneous injection of normal salt solution into normal dogs and into dogs in which a decline in blood pressure was produced by several different methods. Also we were interested in determining how much of the fluid that was placed in the tissues was absorbed into the general circulation. For this reason all of the fluid was injected into the tissues of one posterior extremity, groin and flank. At the completion of the experiments, the difference in the weights of the two posterior portions of the body was determined.

METHODS

Dogs were used in all experiments. Morphine sulphate was employed as an anesthetic in all experiments except those in which the intestines were traumatized. Sodium barbital was used in these. The animals gave no evidence of pain during the course of the experiments. The blood pressure was determined by placing a cannula that was connected to a mercury manometer into the carotid artery. Specimens of blood for the various analyses were obtained from the femoral vein of the extremity into which no fluid was injected and this blood was replaced by an equal amount obtained from a normal dog.

Four different types of experiments were performed. In all of these, following the replacement of the blood which was removed in order to determine the blood volume, hemoglobin, hematocrit, total protein, albumin and globulin, normal salt solution was injected continuously into the tissues of one of the posterior extremities, groin and flank. It was given at body temperature at the rate of 10 cc. per kilogram of body weight per hour for four hours. Samples of blood for the various analyses were obtained one and two and one-half hours following the beginning of the injection and at its completion. Further samples were obtained after intervals of one and one-half and three hours. The animals were then killed and the difference in the weights of the two posterior portions of the body was determined. In the first group of experiments, the effects on the composition of the blood of the introduction of fluids into the subcutaneous tissues of normal animals were studied. In the second group, after making a midline abdominal incision, the intestines were traumatized during the four hours while fluid was being injected by gently passing them between the fingers. At the end of this time, the incision was closed, and two further series of determinations were performed during the following three hours. In the third group of experiments, the effects of graded hemorrhages at the same time that fluid was being introduced subcutaneously were studied. As in all experiments normal salt solution was injected at the rate of 10 cc. per kilogram of body weight per hour for four hours and samples of blood were obtained at the usual times. After performing the control determinations, whole blood which equalled one per cent of the body weight was removed from the femoral artery. Blood equalling approximately one and one-half per cent of the body weight was withdrawn one hour later and two and one-half hours later. The volume of the blood that was removed was slightly less than the volume of salt solution that was introduced. The observations were continued for three hours after the completion of the injection of salt solution. In the fourth group of experiments, histamine was injected intermittently into the subcutaneous tissues during the four hours that salt solution was being introduced. It was given in amounts sufficiently large to produce a definite decline in the blood pressure. The usual determinations were performed during the three hours following the termination of the injections.

Van Allen tubes were used in the hematocrit determinations. Hemoglobin estimations were performed by the method of Cohen and Smith (4). The control blood volume was determined by the dye method as employed by Rowntree, Brown and Roth (5). These figures are placed in brackets in the tables. During the course of the experiments, excepting those on hemorrhage, the alterations in the total blood volume were assumed to vary in an inverse ratio to the changes in the percentage of hemoglobin. The volumes of red blood cells and of plasma were calculated from the hematocrit readings. In the experiments in which graded hemorrhages were performed, the calculations were different in that after determining the volume by the method described above, subtraction was made for the amount removed. The determinations of the nitrogen were performed on blood serum. Albumin and globulin were separated by the use of 22.2 per cent sodium sulphate as recommended by Howe (6). The Gunning (7) modification of the Kjeldahl method was employed for determining the albumin and total protein nitrogen of the serum. The total nitrogen of the urine was also determined by this method. In all the tables the nitrogen is expressed as protein. The figures for the entire or absolute amounts of protein were obtained by multiplying the percentage of protein per unit volume of serum by the total amount of plasma in the blood stream. In the experiments on hemorrhage, the figures in brackets represent the addition of the total protein, albumin and globulin that were removed at the time of the bleedings to the calculated absolute amounts of each that remained in the blood stream. Analyses were performed on the blood that was injected in order to replace that removed for the various determinations. The differences between the blood removed and that injected were ignored in the calculations. This introduced very little error.

The method (8) by which the posterior part of the body was divided into two parts was as follows. An abdominal incision was made in the midline line. The symphysis pubis was divided with a saw. The bladder and rectum were removed. The abdominal aorta and vena cava were doubly ligated and divided. The iliac vessels were clamped. A transverse abdominal incision was made at approximately the level of the umbilicus. This was extended through the vertebral column and the front part of the body was discarded. Using a knife and a saw, the structures on either side of the vertebral column of the posterior part were divided in a longitudinal direction. This resulted in a separation of the spinal column and tail from the two posterior portions of the body. The difference in the weight of the part into which fluid had been injected and the opposite part was determined.

RESULTS

1. The effects of the subcutaneous injection of normal salt solution

Three experiments were performed in which the effects on the composition of the blood of the subcutaneous injection of normal salt solution were determined. The blood pressure remained at approximately the control level in all of the experiments. There was usually a slight diminution in the concentration of red blood cells, and in the percentage of hemoglobin. There was a slight but definite increase in the volume of plasma in all experiments. The alterations in the percentages of total protein, albumin and globulin in the blood serum were very minor. There was an increase in the absolute amounts of total protein, albumin and globulin in the blood plasma in all experiments. Determinations of the difference in the weights of the two posterior extremities in the three experiments indicated that 29 per cent of the fluid that was injected was absorbed into the general circulation. The results of these experiments are given in Table I.

2. The effects of continuous trauma to the intestines and of the subcutaneous injection of normal salt solution

Continuous trauma to the intestines and the subcutaneous injection of normal salt solution were associated with varying degrees of decline in the blood pressure. There was an increase in the concentration of the red blood cells and an increase in the percentage of hemoglobin. The volume of blood plasma decreased in all experiments. The percentages of total protein, albumin and globulin in the blood serum remained at approximately the control levels throughout the experiments. There were rather marked decreases in the absolute amounts of the protein constituents in all experiments. Comparison of the weights of the posterior extremities indicated that 17 per cent of the fluid that was injected in the three experiments was absorbed. The results of these experiments are enumerated in Table II.

	o- blood pressure		5 116							 		7 129				
	Hemo- globin	þer ce	90.5	88.	88.	81.1	81.4	79.8	65.1	86.	84.	86.7	82.	81.	85.	76.9
	Hema- tocrit	per cent	35.8	36.6	35.0	33.8	34.8	34.8	26.1	38.1	35.9	36.5	35.9	34.8	36.7	33.6
ę	Whole	.99	[1760]*	1820	1820	1960	1960	2000		[1965]*	2020	1965	2060	2100	2000	
Blood volume	Plasma	cc.	[1130]*	1160	1180	1290	1270	1300		[1215]*	1296	1260	1320	1370	1285	
Ä	Red blood cells	<i>cc.</i>	[630]*	660	640	670	690	200		[750]*	724	705	740	730	715	
Globulin	For total serum volume	grams	28.8	28.8	29.5	31.0	30.9	30.8		32.3	33.9	35.0	37.0	34.9	34.8	
Glot	Serum	per cent	2.55	2.48	2.41	2.40	2.42	2.36	3.11	2.65	2.62	2.78	2.80	2.47	2.69	2.41
Albumin	For total serum volume	grams	30.2	31.8	33.2	35.2	33.2	33.6		42.9	46.7	47.3	46.2	53.1	44.0	
Albı	Serum	per cent	2.67	2.74	2.81	2.73	2.62	2.59	2.56	3.53	3.60	3.75	3.50	3.87	3.43	3.56
Total protein	For total serum volume	grams	59.0	60.6	62.7	66.2	64.1	64.4		75.2	80.6	82.3	83.2	87.0	78.8	
Total	Serum	per cent	5.22	5.22	5.32	5.13	5.04	4.95	5.67	6.18	6.22	6.53	6.30	6.34	6.12	4.97
	Fluid given	ż	0	169	422	676				0	187	467	748			
	Time from beginning		Control	1°	2° 30′	4°	5° 30′	7°	Injected blood	Control	1°	2° 30′	4°	5° 30′	70	Injected blood
Experi-	number and weight		T 79	16.9	kgm.	-				T 80	18.7	kgm.				

The effects of the subcutaneous injection of normal salt solution on the composition of the blood

314

BLOOD CHANGES WITH COMBINED CONDITIONS

	mean blood pressure	<i>mm. Hg</i> 127 130 135 135 128 118 118 120
	Hemo- globin	per cent 96.1 97.4 95.2 90.9 86.2 80.2
	Hema- tocrit	per cent 44.0 41.7 43.0 41.8 41.8 40.6 38.5 38.5 37.0
le	Whole	د. [[1650]* 1715 1715 1695 1732 1815 1915
Blood volume	Plasma	66. [926]* 966 1008 1008 1175
BI	Red blood cells	66. [724]* 715 729 724 735 735 740
ulin	For total serum volume	grams 22.0 24.2 22.7 23.1 23.1 23.4 23.4
Globulin	Serum	per cent 2.42 2.42 2.34 2.33 2.33 2.30 2.62 2.62
min	For total serum volume	grams 44.6 44.3 44.3 45.3 45.6 50.0 50.0
Albumin	Serum	per cent 4.73 4.59 4.49 4.49 4.32 4.25 3.46
Total protein	For total serum volume	grams 66.6 67.0 68.4 72.4 73.4
Total _I	Serum	<i>per cent</i> 7.20 7.15 6.93 6.79 6.70 6.25 6.08
	Fluid given	66. 0 540 864
	Time from beginning	Control 1° 2° 30′ 4° 5° 30′ 7° Injected blood
Experi-	ment number and weight	T 81 21.6 kgm.

TABLE I (continued)

* Determined directly by the dye method.

Protocols. Morphine as anesthetic in all experiments. T 79. Weight of extremity into which flu

- Weight of extremity into which fluid was injected was 2540 grams. Weight of opposite extremity was 2020 grams. Difference in weight 520 grams. Total fluid injected was 676 cc. Amount of fluid absorbed was approximately 156 cc. Total urine 105 cc. with a total protein equivalent of 4.7 grams.
- Différence in weight 555 grams. Total fluid injected was 748 grams. Amount of fluid absorbed was approximately 193 cc. Total urine 112 cc. with a total protein equivalent of 17 grams. Weight of extremity into which fluid was injected was 2880 grams. Weight of opposite extremity was 2325 grams. T 80.
 - Weight of opposite extremity was 2840 grams. Difference in weight 565 grams. Total fluid injected was 864 cc. Amount of fluid absorbed was approximately 299 cc. Total urine 85 cc. with a total protein equivalent of 12.3 grams. Weight of extremity into which fluid was injected was 3405 grams. T 81.

Maria	blood pres- sure	mm. Hg	154	128	117	117	38		130	87	76	6 6	8 8	54	
	Hemo- globin	ber cent per cent	112.7	127.0	131.5	156.2	164.8	91.5	108.7	115.4	119.0	119.0	120.0	111.9	71.8
	Hema- tocrit	per cent	44.3	49.2	52.0	59.4	60.4	36.2	44.0	48.0	50.5	49.2	51.2	49.0	29.9
ų	Whole	.52	[1965]*	1744	1684	1416	1345		[1556]*	1466	1430	1430	1410	1523	
Blood volume	Plasma	<i>cc.</i>	[1094]*	886	808	576	532		[872]*	733	708	727	688	776	
Ē	Red blood cells	.93	[871]*	858	876	840	813		[694]*	733	722	703	722	747	
	Fluid	per cent		2.05	1.89	1.75	1.89	•		3.23	2.95	2.79	2.86	2.52	
Globulin	For total serum volume	grams	30.1	24.6	23.5	17.1	15.8		37.7	32.6	31.1	31.5	29.9	29.1	
	Serum	per cent	2.75	2.78	2.91	2.96	2.96	2.38	4.33	4.26	4.39	4.33	4.35	3.75	2.49
	Fluid	per cent per cen		4.75	4.01	3.73	3.59			4.75	4.03	3.87	3.60	3.50	
Albumin	For total serum volume	grams	47.3	38.4	34.7	25.9	23.9		31.7	24.4	24.7	26.7	24.3	23.5	
	Serum	per cent	4.33	4.33	4.29	4.50	4.50	4.34	3.63	3.20	3.49	3.67	3.53	3.03	3.63
i	Fluid	per cent per cent		6.80	5.90	5.48	5.48			7.98	6.98	6.66	6.46	6.02	
Total protein	For total serum volume	grams	77.4	63.0	58.2	43.0	39.7		69.4	57.0	55.8	58.2	54.2	52.6	
Ŭ,	Serum	per cent	7.08	7.11	7.20	7.46	7.46	6.72	7.96	7.46	7.88	8.00	7.88	6.78	6.12
	Fluid given	. . .	0	203	507	812		pool	0	213	533	852			lood
	Time from beginning		Control	10	2° 30′	4°	5° 30'	Injected bl	Control	1°	2° 30′	4°	5° 30′	70	Injected bl
Frantmant	number and weight		T 85	20.3	kgm.				T 86	21.3	kgm.				

The effects of trauma to the intestines and the subcutaneous injection of normal salt solution on the composition of the blood TABLE II

316

BLOOD CHANGES WITH COMBINED CONDITIONS

Mean	blood pres- sure	t mm. Hg	164	148	134	153	139	125	
	Hemo- globin	ber cent per cent	78.5	93.8	103.0	102.7	102.7	98.7	78.5
	Hema- tocrit	per cent	33.3	40.8	42.5	42.2	43.5	41.6	33.4
ē	Whole	<i>.2</i>	[936]*	784	714	716	716	744	
Blood volume	Plasma	.20	[624]*	464	410	414	404	435	
BI	Red blood cells	. <i>20</i>	[312]*	320	304	302	312	309	
	Fluid	per cent		1.61	1.83		1.59	1.04	
Globulin	For total serum volume	grams							
-	Serum	per cent	2.35	2.20	2.43	2.40	2.30	2.18	2.76
	Fluid	per cent		4.26	3.73		3.59	3.87	
Albumin	For total serum volume	grams	24.3	19.5	17.1	16.6	15.1	16.0	
	Serum	-	3.90	4.20	4.16	4.00	3.73	3.69	3.54
ein	Fluid	per cent		5.87	5.56	5.56	5.18	4.91	
Total protein	For total serum volume	grams	39.0	29.7	27.0	26.5	24.4	25.5	
Tc	Serum	þer cent	6.25	6.40	6.59	6.40	6.03	5.87	6.30
	Fluid given		0	125	313	200			lood
	Time from beginning		Control	1,	2° 30′	4°	5° 30′	10	Injected b
Experiment number and weight			T 87	12.5	kgm.				

TABLE II (continued)

* Determined directly by the dye method.

Protocols. Sodium barbital as anesthetic in all experiments. T 85. Weight of extremity into which fluid was i

- Difference in weight 595 grams. Total fluid injected 812 cc. Amount of fluid absorbed approximately 217 cc. Total urine 97 cc. with a total protein equivalent of 13.8 grams. The loss of fluid from the peritoneum was probably greater after the trauma was stopped than before. The intestines were very black in color at end of experiment. Weight of extremity into which fluid was injected 3230 grams. Weight of opposite extremity 2635 grams.
- Weight of extremity into which fluid was injected 3800 grams. Weight of opposite extremity 3050 grams. Difference in weight 750 grams. Total fluid injected 852 cc. Amount of fluid absorbed approximately 102 cc. Total urine T 86.
- 14 cc. with a total protein equivalent of 0.7 gram. Weight of extremity into which fluid was injected 2105 grams. Weight of opposite extremity 1645 grams. Difference in weight 460 grams. Total fluid injected 500 cc. Amount of fluid absorbed approximately 40 cc. Total urine 32 cc. T 87.

	pressure	mm. Hg	138	100	100	113	110	:	98	136	126	120	114	108	100
	Hemo- globin	per cent	109.0	107.0	103.0	101.0	95.0		94.3	120.0	119.0	119.0	115.4	112.0	110.0
	Hema- tocrit	per cent	45.3	43.3	42.0	40.7	39.0		39.4	51.0	51.0	50.5	48.2	47.1	47.6
	Whole		[1580]*	1440	1350	1175	1175		1185	[1730]*	1566	1334	1108	1175	1196
Blood volume	Plasma		[856]*	832	783	697	718		718	[848]*	774	665	592	622	628
B	Red blood cells	<i>cc.</i>	[724]*	608	567	478	457		467	[882]*	792	699	516	553	568
ulin	For total serum protein	grams	22.7	25.9	(28.4)† 23.9	(29.0)† 19.8	(28.9)† 10.6	(28.9)	19.6	18.0		16.5	12.3	13.3	13.2
Globulin	Serum	per cent	2.65	3.11	3.05	2.83	2.7.2		2.72	2.12		2.47	2.07	1.20	2.10
Albumin	For total serum protein	grams	27.4	(21.9)T 25.5	(28.0)† 23.1	(28.3)† 19.8	(29.2)† 10.6	(29.2)	19.6	31.3		25.8	21.2	20.9	21.0
Albı	Serum	per cent	3.20	3.07	2.95	2.85	7 7 3		2.73	3.69		3.88	3.58	3.36	3.35
Total protein	For total serum protein	grams	50.1	51.4	(56.3)† 47.0	(57.3)† 39.6	(58.1)† 30.7	(58.1)	39.2	49.3	46.0	(54.1) 42.3	(52.5)T 33.5	34.0 34.0	(55.2)T 34.2
Total	Serum	per cent	5.85	6.18	6.00	5.68	5 45	5	5.45	5.81	5.94	6.35	5.65	5.46	5.45
	Blood removed	.32 CC.	0	140	350	420				0	164	410	636		
	Fluid given	.95	•	140	350	560				0	164	410	656		
į	l ime from beginning		Control	1°	2° 30′	4°	5° 30'	}	7°	Control	1°	2° 30′	4°	5° 30'	7°
Experi-	ment number and weight		T 82	14.0 kgm.	1					T 83	kgm.				

TABLE III

The effects of hemorrhage and of the subcutaneous injection of salt solution on the composition of the blood

BLOOD CHANGES WITH COMBINED CONDITIONS

Mean	blood	mm. Hg	143		124		8		120		120		123	
	Hemo- globin	per cent	93.1		89.3		83.3		78.1		79.4		77.3	
	Hema- tocrit	per cent	39.2		37.3		34.8		32.9		33.9		33.0	
ų	Whole	. <i>23</i>	[1575]*		1415		1235		1175		1155		1186	
Blood volume	Plasma	. . .	[958]*		925		864		788		764		196	-
Bl	Red blood cells	. . .	[617]*		490		371		387		391		390	
ulin	For total serum protein	grams	23.6	(24.9)	22.4	(25.3)†	19.3	(24.9)†	16.6	(24.7)	16.5	(24.6)†	16.4	
Globulin	Serum	per cent	2.46		2.43		2.23		2.10		2.17		2.05	_
Albumin	For total serum protein	grams	34.6	(36.6)†	33.1	(38.6)†	29.7	(38.7)†	26.5	(38.1)†	25.8	(40.5)	28.2	
Albu	Serum	þer cent	3.62		3.58		3.44		3.37		3.37		3.55	
Total protein	For total serum protein	grams	58.2	(61.5)	55.6	(63.9)†	49.0	(63.6)†	43.1	(62.8)†	42.3	(65.1)	44.6	
Total 1	Serum	per cent	6.08		6.01		5.67		5.47		5.54		5.60	-
	Blood removed	<i>cc.</i>	0		160		400		550					
	Fluid given	.99 CC.	•		160		400		640					
Ē	from beginning		Control		1°		2° 30′		4°		5° 30'		7°	
Experi-	number and weight		T 84	16.0	kgm.)								

TABLE III (continued)

Determined directly by the dye method.

† Indicates the entire amount that would have been present in the blood stream had protein not been present in the fluid that was injected.

Protocols.

- Weight of extremity into which fluid was injected 2335 grams. Weight of opposite extremity 1960 grams. Difference in weight 375 grams. Total fluid injected 560 cc. Fluid absorbed was approximately 185 cc. Total urine during Morphine as anesthetic in all experiments. T 82. Weight of extremity into which fluid experiment was 28 cc.
 - Weight of extremity into which fluid was injected 2750 grams. Weight of opposite extremity 2245 grams. Difference in weight 505 grams. Total fluid injected 656 cc. Fluid absorbed was approximately 151 cc. Total urine 80 cc. with a total protein equivalent of 7.2 grams. T 83.
- Weight of extremity into which fluid was injected 2490 grams. Weight of opposite extremity 1980 grams. Difference in weight 510 grams. Total fluid injected 640 cc. Fluid absorbed was approximately 130 cc. Total urine 110 cc. T 84.

BLOOD CHANGES WITH COMBINED CONDITIONS

3. The effects of graded hemorrhages and of the subcutaneous injection of normal salt solution

In the three experiments in which the effects of graded hemorrhages and the subcutaneous injection of salt solution were studied, the removal of blood was sufficient to cause a definite decline in the blood pressure. There was a decrease in the hematocrit readings and in the percentage of hemoglobin in all experiments. The volumes of whole blood, plasma, and red blood cells decreased when the amount of blood that was removed is taken into consideration. There was a slight decrease in the percentages of total protein, albumin and globulin in the blood serum. The absolute amounts of the protein constituents that remained in the blood plasma decreased. However, if one adds to that remaining in the blood stream the amount corresponding to the protein removed by bleeding, it is to be noted that protein probably passed into the vessels during the course of the experiments. These figures are placed in brackets in the tables. Approximately 25 per cent of the fluid that was injected into the extremities was absorbed. The results of these experiments are given in Table III.

4. The effects of the subcutaneous injection of histamine and of normal salt solution

A marked decline in the blood pressure was produced in the three experiments in which the effects of the subcutaneous injection of histamine and salt solution were studied. The blood pressure rose after the injections were terminated. There were marked increases in the concentration of the red blood cells and in the percentage of hemoglobin. There was a rather large diminution in the volume of plasma in the blood stream. The content of the blood serum in total protein, albumin and globulin altered very little. However, due to the loss of plasma, there was a great decrease in the absolute amounts of total protein, albumin and globulin. The difference in weight of the posterior extremities in the three experiments indicated that approximately 22 per cent of the fluid that was injected was absorbed. The results of these experiments are given in Table IV.

DISCUSSION

The significant alterations that accompanied the subcutaneous injection of salt solution into normal dogs consisted of a slight increase in the volume of plasma and in the absolute amount of plasma protein. The findings differ in the main from those previously reported (2) in which the fluid was given intravenously to normal dogs in that an appreciable decrease in the percentage of protein in the blood serum was not encountered in the present experiments. Less than one-third of the fluid that

Ν	
TABLE	

The effects of the subcutaneous injection of histamine and of normal salt solution on the composition of the blood

	Mean	blood pressure	mm. Hg	118	110	74	80	95	95		150	124	110	8	135	134	
	;	globin	per cent	121.0	127.0	147.1	153.0	147.1	135.1		109.1	136.3	138.5	138.5	138.8	138.5	81.5
	:	Hema- tocrit	per cent	46.0	50.8	58.4	59.7	58.4	56.6	32.0	41.3	51.0	52.0	52.0	51.7	51.5	30.4
	e	Whole	<i>.20</i>	[1366]*	1300	1124	1080	1124	1224		[1312]*	1050	1035	1035	1035	1035	
·	Blood volume	Plasma		[738]*	640	467	436	467	531		[771]*	514	496	496	496	496	
	B1	Red blood cells	.93 CC.	[628]*	660	657	644	657	693		[541]*	536	539	539	539	539	
	Globulin	For total serum volume	grams	17.1		11.5	8.2	10.7	11.9		19.2	10.7	11.6	11.4	11.0	11.6	
	Glot	Serum	per cent	2.31		2.50	2.11	2.29	2.25	3.62	2.49	2.09	2.36	2.31	2.23	2.35	2.61
	Albumin	For total serum volume	grams	31.8	26.2	20.9	18.7	19.5	21.5		28.9	18.2	18.0	18.2	18.6	18.7	
	Albı	Serum	per cent	4.31	4.10	4.48	4.28	4.10	4.05	3.31	3.75	3.53	3.62	3.67	3.75	3.77	3.25
	Total protein	For total serum volume	grams	48.9		32.4	27.9	29.8	33.4		48.1	28.9	29.6	29.6	29.6	30.3	
	Total 1	Serum	per cent	6.62		6.94	6.39	6.39	6.30	6.93	6.24	5.62	5.98	5.98	5.98	6.12	5.86
	Ē	L Otal histamine	mgm.	0	30	40	55				0	20	45	95			
	1	given		0	133	332	532			pool	0	137	343	548			pool
	Time	from beginning		Control	1°	2° 30′	4°	5° 30′	7°	Injected blood	Control	1°	2° 30′	4°	5° 30'	7°	Injected bloc
	Experi- ment	number and weight				kgm.					T 93	13.7	kgm.				

ALFRED BLALOCK AND J. W. BEARD

Mean	blood	тт. <i>Н</i> 112 90 77 73 116 103	
	Hema- globin	per cent 100.0 115.4 117.1 117.1 117.1 120.0 120.0 66.1	
1	Hema- tocrit	<i>per cent</i> 45.8 53.4 53.0 53.0 54.4 54.2 30.0	
ų	Whole	сс. [[1245]* 1079 1063 1063 1037 1037	-
Blood volume	Plasma	دد. 512 491 500 473 473 473	
B	Red blood cells	دد. 567 563 563 563 564 562 562	
ulin	For total serum volume	grams 21.6 14.5 14.5 14.1 14.1 15.1 15.1	
Globulin	Serum	per cent 3.21 3.21 3.06 3.06 3.19 3.19 2.41	
Albumin	For total serum volume	grams 26.5 20.4 19.0 19.1 19.0 18.0	
Albu	Serum	per cent 3.92 3.87 3.87 3.87 4.00 3.78 3.78 3.53	
Total protein	For total serum volume	grams 48.1 34.9 34.0 33.1 34.1 33.1 33.1	
Total 1	Serum	<i>per cent</i> 7.13 6.93 6.93 6.62 7.20 6.97 5.94	
	1 otal histamine	тет. 0 25 60 100	
:	Fluid given	66. 0 320 512 512	
Time from beginning		Control 1. 1° 2° 30′ 33 4° 5° 30′ 5 5° 30′ 7° 7° 7°	
Experi- ment	number and weight	T 94 12.8 kgm.	

TABLE IV (continued)

* Determined directly by the dye method.

Protocols. Morphine as anesthetic in all experiments.

- Weight of opposite extremity 1680 grams. Total amount of urine was 68 cc. Weight of extremity into which fluid was injected was 2085 grams. Difference 405 grams. Total fluid injected was 532 cc. T 91.
- Weight of opposite extremity 1670 grams. Difference 430 grams. Total fluid injected was 548 cc. Total amount of fluid absorbed was approximately 118 cc. Total urine 63 cc. with a total protein equivalent of 4.2 grams. Stomach contained 370 cc. of fluid at completion Weight of extremity into which fluid was injected was 2100 grams. of experiment with a total protein equivalent of 1.6 grams. T 93.
 - Weight of extremity into which fluid was injected was 2020 grams. Weight of opposite extremity 1620 grams. Difference 400 grams. Total fluid injected was 512 cc. Total amount of fluid absorbed was approximately 112 cc. Total urine 26 cc. Stomach contained 335 cc. of darkly bile-stained fluid with a total protein equivalent of 9.9 grams. T 94.

BLOOD CHANGES WITH COMBINED CONDITIONS

was injected was absorbed and the greater part of this could be accounted for by the urine that was passed.

The findings in the experiments in which the intestines were traumatized and those in which histamine was injected were quite similar. In each there was an increase in the concentration of the red blood cells, an increase in the percentage of hemoglobin, a decrease in the volume of plasma, very little alteration in the percentage of the protein constituents in the blood serum and a marked decrease in the absolute amounts of each. The proportion of the fluid that was absorbed was approximately the same in the two types of experiments. The percentage of fluid that was absorbed was less with these animals than with the normal ones. Similar experiments (1, 3) previously performed in which fluids were introduced intravenously instead of subcutaneously showed a decrease in the concentration of the protein constituents in the blood serum but otherwise essentially the same findings. It seemed to require more trauma to produce a given decline in the blood pressure when fluids were administered subcutaneously than was necessary in similar experiments in which no fluid was introduced.

In the studies on the effects of graded hemorrhages and the subcutaneous injection of normal salt solution, there was a decrease in the concentration of the red blood cells. The decrease was not quite as great as was usually found when the intravenous introduction of salt solution accompanied hemorrhage. The decrease in the plasma volume was not as great as the quantity of plasma removed. The decrease in the percentage of protein in the serum was less than was found when the fluid was given intravenously. If the protein that was removed with the blood is included, there was a definite increase in the absolute amount of plasma protein. This increase varied from five to eight grams in the different experiments.

The fact that the plasma protein increased in the experiments in which salt solution was injected subcutaneously in normal dogs and in dogs that were bled is of interest from a physiological viewpoint. The question arises as to whether the increase can be explained on the basis of osmosis alone or whether it is necessary to include backward filtration as accounting for part of it. This question we fear cannot be answered from our experiments and no attempt will be made to do so. The recent experiments of Field and Drinker (9) give information on this point. They state, "1. The capillaries under normal conditions are not concerned with the absorption of protein from the subcutaneous tissues. 2. After plasmapheresis, with substantial reduction of total blood protein, foreign protein placed in the subcutaneous tissues can be detected serologically in the blood when entrance by lymphatic routes has been blocked."

Speculation as to the comparative values of administering fluids intravenously and subcutaneously is not without interest. The intravenous route presents a disadvantage in some instances in which there is a marked decline in the blood pressure in that a marked decrease in the percentage of plasma protein results which is not due to an increase in the plasma volume and hence the osmotic pressure in the blood vessels is lowered. This disadvantage apparently does not exist when the decline in pressure results from hemorrhage. The main objection to the subcutaneous introduction of fluids is that the absorption is slow and especially so when the blood pressure is at a low level. This latter method is not as apt to result in a reduction of the percentage of protein in the serum. It would seem in the absence of a favorable response in the blood pressure following the intravenous introduction of a moderate amount of a solution such as normal salt solution that the injection should be discontinued before a marked decline in the concentration of protein is produced. Possibly the subcutaneous injection of fluids would be of some assistance in maintaining the level in pressure until arrangements for a blood transfusion could be made. Certainly the subcutaneous injection of fluids will tend to prevent the drop in pressure following procedures that are frequently associated with a slow decline.

SUMMARY

The effects on the composition of the blood of the subcutaneous introduction of normal salt solution into dogs have been determined repeatedly under the following experimental conditions: (1) control studies on the injection alone, (2) trauma to the intestines, (3) the graded removal of blood and (4) the subcutaneous injection of histamine. The studies included determinations of the arterial pressure, the percentage of hemoglobin, the concentration of the red blood cells, the blood volume, the percentages of total protein, albumin and globulin in the blood serum and the volume of salt solution absorbed by the circulation.

The following are some of the results that were obtained.

1. In normal animals in which salt solution was injected under the skin, there was a slight increase in the volume of plasma, practically no alteration in the concentration and an increase in the absolute amounts of the protein constituents.

2. Trauma to the intestines and the subcutaneous injection of histamine were associated with a decrease in the volume of plasma, no definite change in the concentration of total protein, albumin and globulin and a marked decrease in the absolute amounts of the protein constituents. A smaller amount of the salt solution was absorbed by the circulation in these experiments than in the other ones.

3. The graded removal of blood was associated with a decrease in the concentration of the red blood cells, a slight diminution in the percentages of total protein, albumin and globulin in the blood serum, and an increase in the absolute amounts of the protein constituents if the amount of protein that was removed is included.

BIBLIOGRAPHY

- 1. Beard, J. W., and Blalock, Alfred, J. Clin. Invest., 1932, xi, 249. Intravenous Injections. A Study of the Composition of the Blood During Continuous Trauma to the Intestines When No Fluid is Injected and When Fluid is Injected Continuously.
- Blalock, Alfred, Beard, J. W., and Thuss, Charles, J. Clin. Invest., 1932, xi, 267. Intravenous Injections. A Study of the Effects on the Composition of the Blood of the Injection of Various Fluids Into Dogs with Normal and with Low Blood Pressures.
- Beard, J. W., Wilson, H., Weinstein, B. M., and Blalock, A., J. Clin. Invest., 1932, xi, 291. A Study of the Effects of Hemorrhage, Trauma, Histamine and Spinal Anesthesia on the Composition of the Blood When No Fluids are Injected and When Fluids Are Introduced Intravenously.
- 4. Cohen, B., and Smith, A. H., J. Biol. Chem., 1919, xxxix, 489. The Colorimetric Determination of Hemoglobin.
- Rowntree, L. G., Brown, G. E., and Roth, G. M. The Volume of the Blood and Plasma in Health and Disease, Mayo Clinic Monographs, 1929, W. B. Saunders Company, Philadelphia.
- 6. Howe, P. E., J. Biol. Chem., 1921, xlix, 109. The Determination of the Proteins in Blood—A Micro Method.
- 7. Gunning, J. W., Ztschr. f. Anal. Chem., 1889, xxviii, 188. Ueber eine Modification der Kjeldahl-Methode.
- 8. Blalock, Alfred, Arch. Surg., 1930, xx, 959. Experimental Shock. The Cause of the Low Blood Pressure Produced by Muscle Injury.
- 9. Field, M. E., and Drinker, C. K., Am. J. Physiol., 1931, xciii, 66. Conditions Governing the Removal of Protein Deposited in the Subcutaneous Tissues of the Dog.