
eTOXlab, an open source... Pau Carrió et al. 1

Annex I. Building and using a QSAR model in eTOXlab using the command line

interface

Here we describe a workflow for building and using a QSAR model in eTOXlab based on a data

set of CACO-2 provided by Hou et al. in J. Chem. Inf. Comput. Sci., 2004, 44 (5): 1585–1600 (

http://dx.doi.org/10.1021/ci049884m). The aim is to illustrate some eTOXlab functionalities

using the command line interface.

First we download and unzip the datasets into the virtual machine.

wget http://pubs.acs.org/doi/suppl/10.1021/ci049884m/suppl_file/ci049884msi20040403_083100.zip

unzip ci049884msi20040403_083100.zip

Archive: ci049884msi20040403_083100.zip

 inflating: test_set.sdf

 inflating: training_set.sdf

Files training_set.sdf and test_set.sdf are available.

We create a new endpoint called “ABCD” with description “/abcd/1”

manage --new -e ABCD -t "/abcd/1"

version created OK

In order to define the properties of the model we request the default model with:

manage -e ABCD --get=model -v 0

File retrieved OK

A file named "imodel.py" is available in the current folder. This file contains the "imodel" class

that is a child of the "model" class, so methods defined here will override corresponding

method of the parent "model" class. For the CACO2 model we will just edit the "init" method.

In particular, we will define that the activity value is coded in the field “caco2” of the input

SDFile, no normalization should be performed, PaDel descriptors should be used, and a PLS

model with 3LV should be used. The changes are done with the idle editor.

idle imodel.py

After changing imodel.py the result is:

-*- coding: utf-8 -*-

Description eTOXlab model template

Authors: Manuel Pastor (manuel.pastor@upf.edu)

Copyright 2015 Manuel Pastor

This file is part of eTOXlab.

eTOXlab is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation version 3.

eTOXlab is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with eTOXlab. If not, see <http://www.gnu.org/licenses/>.

http://dx.doi.org/10.1021/ci049884m

eTOXlab, an open source... Pau Carrió et al. 2

from model import model

class imodel(model):

 def __init__ (self, vpath):

 model.__init__(self, vpath)

 ##

 ## General settings

 ##

 self.buildable = True

 self.quantitative = True

 self.confidential = False

 self.identity = False

 self.SDFileName = 'name'

 self.SDFileActivity = 'caco2' ##<= changed

 ##

 ## Normalization settings

 ##

 self.norm = False ##<= changed

 self.normStand = True

 self.normNeutr = True

 self.normNeutrMethod = 'moka'

 self.normNeutr_pH = 7.4

 self.norm3D = False

 ##

 ## Molecular descriptor settings

 ##

 self.MD = 'padel' ##<= changed # 'padel'|'pentacle'|'adriana'

 self.padelMD = ['-2d'] # '-2d'|'-3d'

 self.padelMaxRuntime = None

 self.padelDescriptor = None

 ##

 ## Modeling settings

 ##

 self.model = 'pls'

 self.modelLV = 3 ##<= changed

 self.modelAutoscaling = True

 self.modelCutoff = 'auto'

 self.selVar = False

 #self.selVarMethod = GOLPE

 self.selVarLV = 2

 #self.selVarCV = 'LOO'

 self.selVarRun = 2

 self.selVarMask = None

 ##

 ## View settings

 ##

 self.viewType = 'property' # 'pca' | 'property' | 'project'

 self.viewBackground = False

 self.viewReferenceEndpoint = None

 self.viewReferenceVersion = 0

 ##

 ## Path to external programs

 ##

 self.mokaPath = '/opt/blabber/blabber110/'

 self.padelPath = '/opt/padel/padel218ws/'

 self.padelURL = 'http://localhost:9000/computedescriptors?params='

 self.pentaclePath = '/opt/pentacle/pentacle106/'

 self.adrianaPath = '/opt/AdrianaCode/AdrianaCode226/'

 self.corinaPath = '/opt/corina/corina24/'

 self.javaPath = '/usr/java/jdk1.7.0_51/'

 self.RPath = '/opt/R/R-3.0.2/'

 self.standardiserPath = '/opt/standardise/standardise20140206/'

Now we build the model with the training data set with

build -e ABCD -f training_set.sdf -m imodel.py

('training_set.sdf', 77)

Progress: [####################] 100.00% Done...

cross-validating...

LV 1 R2:0.439 Q2:0.291 SDEP: 0.628

LV 2 R2:0.538 Q2:0.305 SDEP: 0.623

LV 3 R2:0.718 Q2:0.218 SDEP: 0.660

Model OK

eTOXlab, an open source... Pau Carrió et al. 3

The next step is to use the model to predict the test dataset. The output is the predicted

CACO2 value, an applicability domain index and the 95% CI for the predicted value.

predict -e ABCD -f test_set.sdf -v 0

-5.83198 0 1.29419

-6.45577 2 2.58838

-4.05182 4 0.00000

-4.83560 0 1.29419

-5.53917 1 1.29419

-6.73768 2 2.58838

-6.42743 1 1.29419

-4.65175 0 1.29419

-5.06969 0 1.29419

-4.83893 0 1.29419

-6.17705 3 2.58838

-4.23142 0 1.29419

-5.19872 0 1.29419

-4.29936 0 1.29419

-5.09670 1 1.29419

-5.39153 0 1.29419

-5.13877 0 1.29419

-5.96280 2 2.58838

-4.67481 0 1.29419

-6.06141 3 2.58838

-5.58145 0 1.29419

-5.72423 2 2.58838

-4.30183 4 0.00000

Once the model is ready to use we can publish it to create a copy of this version on the model

repository

manage -e ABCD --publish

/home/modeler/soft/eTOXlab/src/ABCD/version0001

Stored versions can be exposed as web services and then be used from outside of the virtual

machine. This only requires to type

manage -e ABCD -v 1 --expose

version exposed OK

eTOXlab, an open source... Pau Carrió et al. 4

Annex II. Building and using a QSAR model in eTOXlab using the GUI interface

Here we describe a workflow for building and using a QSAR model in eTOXlab based on a data

set of CACO-2 provided by Hou et al. in J. Chem. Inf. Comput. Sci., 2004, 44 (5): 1585–1600 (

http://dx.doi.org/10.1021/ci049884m). The aim is to illustrate some eTOXlab functionalities

using the graphic user interface (GUI).

First we download and unzip the datasets into the virtual machine.

wget http://pubs.acs.org/doi/suppl/10.1021/ci049884m/suppl_file/ci049884msi20040403_083100.zip

unzip ci049884msi20040403_083100.zip

Archive: ci049884msi20040403_083100.zip

 inflating: test_set.sdf

 inflating: training_set.sdf

Files training_set.sdf and test_set.sdf are available.

We start the graphical interface by clicking on the "etoxlab" icon in the desktop.

For creating a new endpoint called ABCD with description "/abcd/1" we simply type these

values in the "name" and "tag" input fields on the upper right corner and press the "new"

button

The new endpoint is created and shown in the list of existing endpoints and models

http://dx.doi.org/10.1021/ci049884m

eTOXlab, an open source... Pau Carrió et al. 5

We build the model by selecting the "build" tab. Select the training series "training_set.sdf".

Regarding the model, we must configure that the activity value is coded in the field “caco2” of

the input SDFile, no normalization should be performed, PaDel descriptors should be used, and

a PLS model with 3LV should be used. Pressing the "..." button besides the model will open an

idle editor where we can introduce the changes mentioned in Annex I, that basically consist in:

 Setting "self.SDFileActivity" to "caco2"

 Setting "self.norm" to "False"

 Setting "self.MD" to "padel"

 Setting "self.modelLV" to 3

Then we press OK and wait for a few minutes.

eTOXlab, an open source... Pau Carrió et al. 6

When the model building is finished, the values of R2 and Q2 are shown in the model tree.

Additionally, the GUI generates and displays scatter-plots with the experimental vs

recalculated and experimental vs predicted values for all model dimensionalities, which are

useful for diagnosing the model quality.

The new model can be used for prediction immediately. Select the "predict" tab, enter the

name of the query series and press the OK button.

eTOXlab, an open source... Pau Carrió et al. 7

The prediction results are shown in a separate window from where the results can be exported

in CSV format or as an annotated SDFile.

Once the model is ready to use we publish it to create a copy of this version on the model

repository. This can be done from the manage tab simply selecting the version and pressing

the "publish" button.

Stored versions can be exposed as web services and used from outside of the virtual machine

simply selecting the model version and pressing the "expose" button. Exposed versions are

highlighted in red with the "@" symbol in front

eTOXlab, an open source... Pau Carrió et al. 8

Annex III. Example of method overriding in eTOXlab

In order to illustrate the method overriding technique we present here how to implement in

eTOXlab a very simple rule-base prediction method. This method was extracted from

Tomizawa K. et al. Physicochemical and cell-based approach for early screening of

phospholipidosis-inducing potential. J Toxicol Sci. 2006, 31 (4):315-24.

(http://www.ncbi.nlm.nih.gov/pubmed/17077586)

A rule-based method does not require building a model. Therefore, we only need to override

methods of the prediction workflow in the model class.

The procedure starts exactly as described in Annex I and II, but the editing of the local

imodel.py requires inserting the definition of the new methods, as described below. Please

note that in no case we need to edit the original source code, just add the following text at the

bottom of the imodel.py file.

We begin by editing the method "predict", which has been simplified to execute only two

tasks: call "computeLogP" and use the results to call a new version of "computePrediction".

Then we write the code of "computePrediction". This latter method applies a simplified

version of the rules described in the original article; if the compound is neutral or negatively

charged, it is considered phospholipidosis negative. Compounds with charge +2 or compound

with charge +1 and logP higher than 1.61 are considered phospholipidosis positive.

Compounds with formal charges higher than +2 are considered out of the prediction range.

 def computePrediction (self, logP, charge):

 result = 'negative'

 if charge == 1:

 if logP[0] >= 1.61 :

 result = 'positive'

 elif charge == 2 :

 result = 'positive'

 elif charge > 2 :

 return (False, 'charge out of range')

 return (True, result)

 def predict (self, molFile, molName, molCharge, detail, clean=True):

 # default return values

 molPR=molCI=molAD=(False,0.0)

 success, molMD = computeLogP (molFile)

 if not success: return (molPR,molAD,molCI)

 success, pr = self.computePrediction (molMD,molCharge)

 molPR = (success, pr)

 if not success: return (molPR,molAD,molCI)

 if clean: removefile (molFile)

 return (molPR,molAD,molCI)

http://www.ncbi.nlm.nih.gov/pubmed/17077586

eTOXlab, an open source... Pau Carrió et al. 9

There are other two methods that must be overridden in this example: "setSeries" and "log".

These simply avoid storing information about the training series (non-existing in this case) and

provide information about the methods used to generate the prediction ("Decision tree").

 def setSeries (self, molecules, numMol):

 self.infoSeries = []

 def log (self):

 self.infoModel = []

 self.infoModel.append(('model','Decision tree'))

 result = model.log(self)

 return (result)

Once the editing has been completed, the model is ready for testing. In this particular case,

there is no need to build the model and it can be used for prediction directly.

eTOXlab, an open source... Pau Carrió et al. 10

Annex IV. Demo Application Programming Interface

In the demo VM, the web service is accessible at port 9001. From inside, it can be called by any

browser calling to http://localhost:9001, followed by a valid URL

URL HTTP
verb

Input data return data HTTP status codes

/info GET application/json: info_message
response

200

/available_services GET application/json:
available_services response

200

/predictform GET text/html: web form 200

/calculate POST multipart/form-data
encoding:
- model tag
- SDFile

application/json: calculate_call
response

200
500 (in case of malformed
POST message)

/info
Returns basic info about the provider of the models

Example of "info_message response" schema:

{"provider": "FIMIM",

"homepage": "http://phi.imim.es",

"admin": "Manuel Pastor",

"admin-email": "manuel.pastor@upf.edu" }

/available_services
Returns the list of all available prediction services.
The predictions field in will contain an array of the tags of the models available to make
predictions.

Example of "available_services response" schema:

{"predictions" : ["ABCD"] }

/predictform
Shows a form allowing the user to make predictions. The user is asked to select the model to
use and to upload the SDFile with the 2D structures of the query compounds

eTOXlab, an open source... Pau Carrió et al. 11

/calculate
Returns the prediction for a model and a SDFile provided by the user.
The model is specified by the tag provided by the "/available_services" call.
The model tag and the SDFile are encoded as multipart/form-data.
To encode the tag we use the “model” field and to encode the SDFile the “uploadfile” field.

Example of "calculate call response" schema:

[

{"cmp_id": "0",

 "success": "True",

 "value": "-6.0743503303",

 "AD": {

 "success": "True",

 "value": "0",

 "message": ""

 },

 "RI": {

 "success": "True",

 "value": "1.14595589767",

 "message": ""

 }

},

{"cmp_id": "1",

 "success": "True",

 "value": "-5.33778477437",

 "AD": {

 "success": "True",

 "value": "1",

 "message": ""

 },

 "RI": {

 "success": "True",

 "value": "1.14595589767",

 "message": ""

 }

}

]

Therefore, for every compound we obtain:
• "compound_id": index of the compound in the SDFile.
• "value": the value of the prediction
• "AD": applicability domain of the prediction (in ADAN method format, see manuscript)
• "RI": reliability index of the prediction (95%CI)

For every "value", "AD" and "RI" there is a "success" value that indicate if the computation was
correct ("True") or not ("False")

The aspect of the output in the web interface is as follows:

