
ADDITIONAL FILE 1: Model overview with analytical solution for the posterior 
distribution of latent variables 
 

 We assume that each microbiome sample is a mixture of OTUs from one or more 

communities.  We model the community mixture by using 𝐾 pre-specified factors as mixture 

components, where factors serve as proxies for putative communities and their relative importance 

is permitted to differ between samples.  The relative contribution of each factor to the 𝑛!! sample 

is modeled through the latent variable  𝜋!.  If a sample can be assumed, a priori, to reflect the 

contribution of as many as, say, 4 factors, then 𝜋! is a probability vector of 4 non-zero values 

summing to one. Because we only require that some subset of factors contribute to a given sample, 

the probabilities of other non-contributing factors are set to zero.   

Each putative community that is represented by a pre-specified factor is comprised of a 

fixed number of OTU assemblages (𝐿).  The contribution of each assemblage to the 𝑘!! factor, 𝜃!  , 

is modeled by a vector of 𝐿 mixing probabilities  that sum to one.  The element 𝜃!" in a 𝐾  ×

  𝐿  matrix  𝜃 represents the relative contribution of assemblage 𝑙 to factor 𝑘.  

Each assemblage is comprised of a mixture of 𝑇 different OTUs.  The contribution of each 

OTU to the 𝑙!! assemblage,   𝜙!  , is modeled by a vector of 𝑇 mixing probabilities that sum to one.  

The element 𝜙!" in 𝐿  ×  𝑇  matrix  𝜙 represents the relative contribution of OTU 𝑖 in assemblage  𝑙.  

We assume an independent and identical (iid) symmetric Dirichlet priors on  𝜋! and on the 

rows of 𝜃 and 𝜙: 

 

𝜋!~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼!  

𝜃!~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼!  

𝜙!~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼!  

 
 
 
 
 
 



The complete likelihood of the data given the hyper-parameters of the prior distributions is  

𝑃 𝑋,𝑍,𝑊,𝜋,𝜃,𝜙 𝛼! ,𝛼! ,𝛼! = 

𝑃 𝑋 𝜋 𝑃 𝑍 𝑋,𝜃 𝑃 𝑊 𝑍,𝜙   𝑃 𝜋 𝛼!   𝑃 𝜃 𝛼! 𝑃 𝜙 𝛼! =   
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where 𝑁 is the number of samples in a dataset and 𝑁! is the number of OTUs in sample 𝑛.   𝑍 and 

X represent the assemblage and factor assignments for each OTU in all samples, and 𝑋!"  and 𝑍!"  

represent the factor and assemblage assignments for OTU 𝑖 in sample 𝑛.  Note that 𝑍!"  is a value 

between 1 and L (number of assemblages) and 𝑋!"  is a value between 1 and K (number of factors).  

𝑊!" is the OTU 𝑖 in sample  𝑛, and has a value between 1 and 𝑇. 

  For posterior inference, we need to sample from the posterior distribution of latent 

variables given the data: 

𝑃(𝑋,𝑍,𝜋,𝜃,𝜙|𝑊,𝛼! ,𝛼!,𝛼!) 

where 𝑍,𝑌,𝜋,𝜃 and 𝜙 are the latent variables in the model.  We use collapsed Gibbs sampling, 

integrate out the variables 𝜋,𝜃  and 𝜙, and sample from the posterior distributions of assemblage 

(𝑍) and factor assignments (𝑋).  Employing Gibbs sampling, we sample the assemblage and factor 

assignments for OTU i in sample n (𝑍!" ,𝑋!") given all other assemblage and factor assignments for 

OTUs in all samples excluding the current OTU. Sampling of the assemblage and factor 

assignments is based on the following conditional probability: 

𝑃 𝑍!" ,𝑋!" 𝑊,𝑍!!" ,𝑋!!" = 
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Solutions to integrals in the above equation can be analytically derived: 
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where 𝐶!! the number of times that an OTU in the nth sample is assigned to the kth factor.  
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where 𝐶!!  is the number of times that an OTU in the kth factor is assigned to the lth assemblage.  
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where 𝐶!! is the number of times that OUT t in is assigned to the lth assemblage, with the value of 𝑡 

between 1 and 𝑇. 

Given the above conditional probability we use Gibbs sampling for drawing samples from 

the posterior distribution 𝑃 𝑋!" = 𝑘,𝑍!" = 𝑙 𝑋!!" ,𝑍!!" ,𝑊,𝛼! ,𝛼! ,𝛼!  where 𝑍!!" represents the 

assemblage assignment for all OTUs in all samples except only the ith OTU in nth microbiome 

sample, and 𝑋!!" represents the factor assignment for all OTUs in all samples except only the ith 

OTU in nth microbiome sample.  At each iteration of Gibbs sampling, we repeat the following in a 

random order.  For each OTU in each sample, we draw the assemblage and factor assignment (𝑍!" 

and 𝑋!") of an OTU given the current assemblage and factor assignments of all other OTUs in this 

and every other sample. From the following equation, a value is calculated for each possible 

combination of values for 𝑋!" and 𝑍!". 
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Note that 𝑋!" can take only factor assigments that are known to be contributing to sample n.  These 

values are then normalized and used to draw new assignment values for 𝑋!" and 𝑍!" which are 

immediately updated for use in the next iteration.  The hyper-parameters of our model (𝛼! ,𝛼! , 

and  𝛼!) can be fixed by the user, or MCMC sampling can be used to learn them from the training 



data.  In the latter case we can employ Metropolis-within-Gibbs sampling scheme where 

Metropolis-Hastings updates are used to resample new values for hyper-parameters once all the 

other parameters of the model have been sampled. 

  

	  


