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Materials and Methods 
Supplementary materials section 1 
Singing behavior and sample collection. A total of 54 adult male zebra finches that were 
observed spontaneously singing at least 20 minutes in the morning were individually isolated 
overnight in sound attenuation chambers. On one of the subsequent mornings for no more than 
one week, after the lights came on, we collected the brains of males that sang continuously for 
different amounts of time: 0.5 hour, 1 hour, and every hour up to 7 hours after singing began (n = 
6 animals per time point). We only used birds that sang at least >25 bouts per 0.5 hour. We 
purposely analyzed continuous singing behavior as opposed to acute, as this was the bird’s 
normal behavior, we wanted to maximize gene induction, and if we found differences between 
time points (as we did), we could still relate them to the start of singing. Silent males (0-hr.) were 
taken as birds that did not sing within 1-3 hr. for a given morning. We staggered the collection of 
silent animals, to normalize detecting possible circadian changes in gene expression in song 
nuclei in the absence of singing. Singing behavior from each bird was digitally recorded for the 
entire observation time using Avisoft-Recorder (http://www.avisoft.com/). Background cage 
noises were filtered out using Sound Analysis Pro 
(http://ofer.sci.ccny.cuny.edu/sound_analysis_pro). After the singing session was complete, 
whole brains were excised, cut sagittally along the midline, and the separated hemispheres were 
quickly frozen in a block mold containing tissue-tek (Sakura Finetek, Torrance, CA, USA) and 
stored at -80° C. Brain sections were cut sagittally at 10 μm and mounted onto PEN membrane 
glass slides (Molecular Devices, Sunnyvale, CA, USA) for laser capture microdissection (LCM) 
or Fisherbrand Superfrost Plus slides (FisherScientific, Waltham, MA, USA) for LCM and in 
situ hybridization.  
 
Supplementary materials section 2 
LCM, RNA isolation and cDNA synthesis. We established a protocol for preparation of tissue for 
LCM as reported previously in (29) and (67). Slides of tissue sections were fixed and 
sequentially dehydrated in graded alcohols (70%, 95%, 100%, 1 minute each), delipidized in 
xylenes for 10 minutes, and air-dried for 10 minutes. Under these conditions the fiber density 
within song nuclei (i.e., Area X, HVC, LMAN, and RA) appears darker than the surrounding 
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brain tissue (see Fig. 1B) when viewed under brightfield on the Arcturus XT Microdissection 
Microscope (Molecular Devices, Sunnyvale, CA, USA). HVC, Area X, RA, and LMAN were 
separately microdissected from 7-9 brain sections per bird onto CapSure Macro LCM Caps 
(Molecular Devices, Sunnyvale, CA, USA). From the captured song nuclei we isolated total 
RNA using the Picopure RNA Isolation kit according to the manufacturers instructions 
(Molecular Devices, Sunnyvale, CA, USA), except that the song nuclei on the LCM Cap 
membranes were carefully removed with RNase free forceps. To stabilize the RNA, the 
membranes were immediately submerged in 50 μl of RNA Extraction Buffer in a GeneAmp 0.5 
mL thin-walled reaction tube (Applied BioSystems, Carlsbad, CA, USA), vortexed briefly, snap 
frozen in a dry ice ethanol bath, and stored at –80° C.  

We evaluated RNA integrity and purity on a Bioanalyzer RNA 6000 PicoChip (Agilent, 
Santa Clara, CA, USA; 0.5–2.0 ng of RNA from each region depending on its volume). High 
quality RNA samples were then reverse transcribed and cDNA linearly amplified using the WT 
Ovation Pico kit (Nugen, San Carlos, CA, USA) or the μMACS SuperAmp Kit (Miltenyi Biotec, 
Auburn, CA, USA) according to the manufacturer’s instructions. With this approach, 
amplification is initiated at the 3′ end as well as randomly throughout the whole transcriptome. 
Just before amplification, 10 control transcripts not present in vertebrate genomes from the 
Agilent One Color Spike-in kit were added to the isolated RNA at multiple concentrations 
(1:50,000 dilution). These 10 control transcripts vary 6 logs in concentrations, in one log or half 
log increments and anneal to complementary control oligonucleotides on Agilent microarrays. 
The spike-ins served as a quality control metric of the amplification and subsequent labeling and 
hybridization steps. The quality and amount (typically 7–10 μg) of the amplified single-stranded 
antisense cDNA products were assessed on a Bioanalyzer NanoChip (Agilent, Santa Clara, CA, 
USA) and a Nanodrop 2000 spectrophotometer (Wilmington, DE, USA). Size of cDNA products 
ranged between ~50 bases and ~1.5 kb. Amplifications containing artifact peaks in 
electrophoretic trace were omitted from further processing. 
 
Supplementary materials section 3 
Oligonucleotide microarray hybridization. Microarray hybridizations were performed at the 
Duke Center for Genome Technology Microarray Center. For all amplified samples, 2.2 μg of 
cDNA were labeled with Cy3 and purified using the Nugen FL-Ovation Cy3 labeling and 
fragmentation kit (Nugen, San Carlos, CA, USA) according to the manufacturers instructions. 
After calculation of the degree of labeling (~3%), the Cy3 labeled cDNA was fragmented and 
hybridized overnight to our custom-designed Agilent zebra finch 4 x 44K oligonucleotide 
microarray (Agilent catalog# AMADID 022706), as follows. First labeled cDNA was vacuum 
centrifuged and the pellet resuspended in 25 μl of hybridization solution containing formamide 
(16%), Nugen F4 Blocking Reagent (31%), Agilent blocking reagent (1X), and Agilent Hyb 
Buffer (1X). The sample was then denatured at 95o C for 3 minutes and kept at 55° C until each 
microarray was loaded in a MAUI A4 hybridization chamber (BioMicro Systems, Salt Lake 
City, UT, USA). A BioMicro Systems A4 clamp was used to secure the microarray slides in the 
MAUI chambers. Each labeled cDNA sample was then loaded onto a microarray slide and 
hybridized at 55° C for at least 20 hr. with the humidity chamber positioned over the 
microarrays. The following day, slides were removed from the MAUI chamber, placed in a slide 
rack and submerged in Agilent WASH 1 containing 10% TritonX-102 at RT for 1 minute, 
followed by Agilent WASH 2 at 37° C for 1 minute on a shaker. The microarray slides where 
then slowly removed from the rack to minimize formation of droplets on the slides and air-dried. 
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After hybridization and washes, slides were scanned at 5-micron resolution, with a 532PMT=520 
setting, on a GenePix 4000B microarray scanner (Molecular Devices, Sunnyvale, CA, USA) and 
images were saved in TIFF format. The signal intensities of all spots on each image were 
quantified using the Agilent Feature Extraction Software v.9.5.1 and data saved as .txt files for 
further analysis. 
 
Supplementary materials section 4 
Oligonucleotide microarray design. The zebra finch brain-specific microarrays were designed 
using transcript sequences from our hierarchically organized brain transcriptome database 
(www.songbirdtranscriptome.net). At the time of the v.2.1 design (1/23/2009), the database 
contained sequences of 91,586 transcripts isolated from the zebra finch brain from three sources 
(24, 35, 68). We also included on the microarrays several hundred additional transcripts in the 
NCBI database from various avian species. The cDNAs were from regular, normalized, and 
subtracted libraries enriched for transcripts from diverse developmental, pathological, and 
behavioral states. The 91,586 transcripts were sub-clustered into 43,386 relatively unique 
transcripts, including splice variants. From these clusters, we selected individual transcripts to 
design oligonucleotides, based on the quality (required average phred sequence score > 15) and 
read length (>550 bps). Clones with just 3′ sequence reads were chosen over clones with just 5′ 
reads, since the 3′ end is often preferentially detected from tissue RNA samples in microarray 
hybridizations. Some sequences were duplicated as technical replicates to verify microarray 
quality, yielding a total of 43,838 transcripts. We then filtered out transcripts containing short 
reads (<150 bps), and put an upper limit of 5 unique transcript variants per gene. This reduced 
the number of transcripts to 42,304. An additional 1,133 control oligonucleotides or sites were 
added consisting of multiple concentrations of the 10 Agilent spike in controls described above, 
GFP, YFP, and dark and bright corner spots placed at strategic locations on the microarray to 
detect and normalize occasional hybridization artifacts. This resulted in a total of 44,969 
oligonucleotide sequences. To these sequences, oligonucleotides (60-mers) were then designed 
using Agilent’s e-array v.5.4 oligonucleotide selection algorithm. 
 
Supplementary materials section 5 
Microarray annotation. Oligonucleotides on the microarrays were annotated using both the 
sequence of the oligonucleotide and the entire transcript sequence from which it was designed, 
from four sources of evidence: 1) manually curated annotations of ~21,000 transcripts cloned at 
Duke University by Wada et al. (24); 2) PASA software (69) to map entire transcripts to the 
zebra finch genome and test for their overlap with annotated ENSEMBL gene models or for their 
incorporation into transcript models from other avian and mammalian species (31, 70); 3) 
mapping of the 60-mer oligonucleotide sequences to the zebra finch genome using NCBI 
BLAST and checking for overlap with annotated ENSEMBL genes using BEDtools (71); and 4) 
applying cDNA transcript sequences from which the oligonucleotides were designed to the 
human collection of mRNAs in NCBI using BLASTN and the human collection of proteins 
using BLASTX (72, 73). BioMart tools were used to map the human information back to zebra 
finch genome. A simple evidence-based approach was used to annotate the oligonucleotide based 
on consensus of this information. After these four procedures, a large portion of the 
transcriptome still remained unannotated (~40%). Many of these unannotated transcripts had 
only the 3′ UTR sequenced (24), which are known to have poor homology across species, and 
thus more difficult to annotate than the coding sequence. Therefore, we further examined 
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transcripts mapping close to ENSEMBL gene models, which often do not have the 3′ UTR 
annotated. We found that if a cDNA transcript sequence appeared within 3 kb downstream or a 
60-mer oligonucleotide sequence appeared within 5 kb downstream of an ENSEMBL gene 
model, then the consensus annotation (based on other sources) confirmed the mapping of that 
transcript or oligonucleotide to the upstream ENSEMBL gene more than 70% of the time. A 
similar relationship existed between ENSEMBL genes and oligonucleotides that mapped to 
nearby introns within a gene, but not to transcripts that mapped 5′ upstream of ENSEMBL 
annotated transcription starts. This additional method of annotating oligonucleotides based on 
mapping near ENSEMBL gene models was included in our evidenced based approach. When the 
simple majority rule was used, the annotation with the most pieces of evidence was chosen. We 
manually verified ~100 annotations for each iteration of the above process to determine that they 
were accurate. 

After the annotation, a subset (33,049) of the 43,552 avian oligonucleotides matched 
10,092 of the 18,581 predicted gene models by ENSEMBL (v60). The redundancy within the 
33,049 transcripts was due to either different oligonucleotides generated against the same 
transcript, or non-optimal EST clustering, or to different oligonucleotides generated for mRNA 
variants of the same gene. The remaining 10,503 transcripts on the microarray do not map to 
ENSEMBL predicted genes. Of these, 44% were found to be potential non-coding RNAs based 
on an analysis of the ESTIMA zebra finch database (29). The annotation information for each 
oligonucleotide can be found in Table S1. 
 
Supplementary materials section 6 
Microarray Normalization, Filtering, and Differential Expression. The quality of each 
microarray hybridization was determined by analyzing the signal distribution with the 
Bioconductor array quality metrics package (74) and outlier microarrays detected using a 
principle component analysis (PCA) (75) and removed usually due to poor RNA sample 
preparation or microarray quality. The resultant numbers of high quality biological replicates 
were between 5 and 6 for each time point and song nucleus for all but one time point. The 7 hr. 
time point of LMAN, which had only three replicates, had to be removed from the analysis due 
to poor quality. The median intensity of each microarray spot was normalized with variance 
stabilization (76). The data were then log2-fold transformed to better handle some of the large 
changes in gene expression seen across orders of magnitude. We then filtered out oligonucleotide 
signals that were not significantly 2.5 standard deviations above the average of the negative 
spike-in control levels in at least 12 (5%) of the microarrays across song nuclei and birds. This 
filtering helped reduce the number of variables (transcripts) to compare and ensured we analyzed 
transcripts that were expressed in multiple animals of a group. To determine if different 
oligonucleotides measured expression of different splice variants of the same gene, we applied a 
clustering algorithm to each group of oligonucleotides that mapped to the same symbol or for 
unannotated transcripts to the same location in the genome. If the correlation of two 
oligonucleotide measurements across all experiments was > 0.525 (> 2 SDs from the mean of all 
oligonucleotide correlations on the microarray, estimated p < 0.02), the oligonucleotide 
measurements were merged into one subgroup based on the median. These filtering and merging 
processing steps resulted in 24,498 oligonucleotide subgroups that represent 9,060 ENSEMBL 
IDs, and 10,256 unique symbols, which were used for subsequent analysis (Table S1). The 
number of symbols is less than the number of genes, because of multiple splice variants sharing 
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the same symbol, or because not all transcripts have a symbol due to not being annotated by 
ENSEMBL. Further, not all symbols have ENSEMBL IDs.  

To detect differentially expressed transcripts across song nuclei at baseline, a linear 
model was created using limma (66) to compare every combination of song nuclei against each 
other in the 0-hr samples. Subgroups with an FDR q-value < 0.1 in any one comparison were 
determined to be significantly differentially expressed, for a total of 5,167 subgroups. Using a 
less stringent cutoff, FDR q < 0.2 as used for the behaviorally regulated gene expression 
analyses, resulted in obtaining more differentially expressed transcripts (7,078), but with similar 
expression profiles (Figs. 2A vs. S10); thus, we believe we captured most of the baseline song 
nuclei gene expression variability at a more conservative FDR p < 0.1.  

To detect differential expression in response to song production, a linear model, similar 
to the one described in greater detail in Warren et al. (29), was applied to each region 
independently with two modifications: 1) the behavioral variable, the amount of singing (number 
of song bouts, number of motifs, number of notes, sum of duration of the vocalizations), was 
eliminated, as this could bias against finding transcripts regulated by other singing behavioral 
variables; and 2) an additional indicator variable was included to account for batch effects as 
well as the time of day the bird was sacrificed, to reduce detection of expression patterns 
associated with circadian rhythms and experimental variability. In the final model, for each gene 
we defined the normalized array expression of gene X as: 

 
Xn = M + XtTt + XcCn + XaAn+ en 

 
where M is the mean expression of the gene across all microarrays, XtTt are factors that represent 
the time spent singing, XcCn represents the time lag of when the bird began singing as well as 
which batch the experiment was conducted in, XaAn are technical RNA amplification factors, 
and en is the residual error of the given microarray. 
 
Supplementary materials section 7 
Determining true positive rates for baseline and singing-regulated experiments. We performed 
an initial verification of the accuracy and reliability of our microarray hybridization and analyses 
using the well-studied behaviorally regulated gene EGR1 (17). In all brain regions EGR1 
expression measured by our microarray analyses correlated well with the EGR1 expression 
measured by in situ hybridization on adjacent brain sections from the same animals (Fig. S2A). 
To determine the FDR q-value necessary for an acceptable true positive rate of 80% or higher, 
we performed in situ hybridizations and RT-PCR with 43 and 37 genes, respectively, across each 
song nucleus ((24, 33-36, 77); Tables S2, S3). The true positive in situ hybridization test for the 
singing-regulated transcripts included 2 well known positive controls, EGR1 and BDNF (17, 25), 
15 singing-regulated genes that overlapped with our previous cDNA microarray study (24), and 
26 new genes identified in this study. The RT-PCR values were calculated relative to a group of 
13 negative control genes that did not show regulation on the microarrays.  

After applying the linear model described above to each brain region, we observed high 
true positive rates >87% using a relatively relaxed threshold of FDR q-value < 0.1 for the 
baseline samples and <0.2 for the singing-regulated samples for all regions but LMAN, where 
we used <0.1 for the singing-regulated samples (Fig. S2C,D; TP in Tables S2, S3). The need to 
use a different cutoff for LMAN was due to the lower number of samples per time point (3 
instead of 6). We believe the higher q-value for the singing animals was found because 
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individual birds sang different amounts, which resulted in higher variable expression for some of 
the singing-regulated genes compared to the baseline-expressed genes. Our cutoff actually 
represents a conservative under-estimate of the singing-regulated genes, as there were some false 
negatives (FN in Tables S2, S3). These adjusted p-values, for singing-regulated genes, 
correspond to stringent non-adjusted p-values of 0.009 for Area X, 0.006 for HVC, 0.006 for RA 
and 0.002 for LMAN. There was a strong correlation between the microarray and RT-PCR 
measured expression, with the log-fold change by RT-PCR being ~4 times that of the microarray 
(Fig. S2B). 

Consistent with our cutoffs representing a conservative estimate, EGR1 which is known 
to be regulated in all four song nuclei, but with weakest up-regulated expression in RA as 
determined by in situ hybridization was identified as regulated in RA on the microarrays with an 
q = 0.226, slightly below the 0.2 cutoff (Table S8). With this stricter analysis (q  < 0.2 in one 
nucleus but close to threshold between 0.2 and 0.5 in any other song nucleus), we still found 
1,144 regulated transcripts that showed region-specific enrichment (37% of the transcripts 
regulated in Area X, 29% in HVC, 41% in LMAN, and 32% in RA; Fig. S12A, B). 

We also compared the expression of the 1,162 identified transcripts in Area X with prior 
findings in this nucleus (24, 29, 30). Wada et al (24) identified 31 singing-regulated genes in 
Area X at the 1 hr. time point using a cDNA microarray, of which we have 14 probes on our 
array and identified 8 of these using our criteria and FDR cutoff. In Warren et al (29), we 
reported 807 singing-regulated transcripts in Area X between 0.5–7 hr. of singing, which we 
determine here was represented by 474 genes. Of these, 378 genes (80%) were found among our 
1162 singing-regulated genes in Area X. Hilliard et al (30) used our microarrays, and found 1364 
genes correlated with the act of singing in Area X and 1825 correlated with amount of singing 
(overlapped by 1132 genes) at the 2 hr. time point. The 1162 genes we report here overlapped 
the 1364 reported in Hilliard et al. (30) only by 230 genes and the 1825 only by 299 genes. These 
differences are likely due to differences in analytical approaches. Wada et al (24) manually 
identified genes without statistical analyses. Warren et al. (29) and Hilliard et al. (30) did not 
experimentally determine a true positive rate of the microarray results, and therefore included 
regulated transcripts in Area X that likely have weaker associations with singing behavior. The 
actual number is likely somewhere between our conservative estimate here and the more liberal 
estimates of these two other studies. Overall, our findings show that determining the true positive 
rate may be important for obtaining a more accurate assessment of behaviorally regulated genes.  
 
Supplementary materials section 8 
Microarray Clustering, Overlap, and Gene Ontology Analysis. We clustered the baseline and 
singing-regulated genes using several unsupervised approaches: single linkage hierarchical 
clustering, average linkage hierarchical clustering, and complete linkage hierarchical clustering. 
The single linkage hierarchical clustering, resulted in a several clusters of very few genes (1–5) 
and two large clusters containing every other gene. The average and complete linkage clustering 
yielded similar results, such as the creation of a gene cluster that contains an over-representation 
of the immediate early genes with a transient expression profile. We chose the average linkage 
hierarchical clustering to report in the paper since it partitioned the gene expression into coherent 
and reasonably sized groups after specifying an increasing number of clusters until no new 
patterns of expression emerged. Using this approach, baseline expression was grouped into k=12 
clusters (Fig. 2A; Table S4). Adding clusters beyond k=12 did not result in any additional 
regionally specific profiles, only very similar partitions. The regional and temporal clustering of 
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singing-regulated transcripts was performed across all regions simultaneously. Every bird was 
considered a sample and every significant gene-region combination was considered as an item to 
be clustered. For each pair wise comparison of transcripts x and y, the distance was calculated as 
1 – correlation(x,y) where missing data due to comparison across regions was ignored. For the 
regional patterns, we group the singing-regulated transcripts into clusters of enriched expression 
in each song nucleus or song nucleus combination. For the temporal patterns in each song 
nucleus, we grouped the singing-regulated transcripts into k=20 clusters, as is done in Warren et 
al. 2010. Adding clusters greater than k=20 did not result in any additional regionally 
behaviorally regulated profiles, only very similar partitions. For determining the minimum 
number of clusters of singing-regulated genes across all brain regions in one plot (Fig. 4B), we 
used Ward’s minimum variance hierarchical cluster method (78) to account for missing variables 
since not all genes were regulated in each song nucleus. Ward’s method determines a distance 
measure between clusters, and merges them based on an optimal value of an objective function. 

The expression data shown in the heatmaps of baseline and behaviorally regulated genes 
represent normalized, log2-fold changes. For each map, each row (across animal samples) was 
normalized so that the maximum increase was darkest red for an up-regulated gene and the 
maximum decreases was darkest blue for a down-regulated gene. By normalizing gene 
expression in this way, we focus on the shape of the gene expression profile, not the log-fold 
change. Experimental support for this analysis derives from our analysis of EGR1 expression, 
where we designed multiple oligonucleotides to measure its expression. The correlation of these 
different oligonucleotides across experiments (samples) was high, on average 0.97. However, the 
estimated maximum log-fold change varied between 2 and 4 for different oligos, indicating bias 
in oligo hybridization. The more 3′ oligos gave stronger signals and fold changes than the more 
5′ oligos. This is a typical result in microarray experiments, particularly using laser captured 
material, where cDNA probe synthesis from the 3′ end is not all full-length up to the 5′ end. 
Thus, the normalized signal profile of gene expression across samples more accurately reflected 
how gene expression changes. 

To compare baseline expression, region-enriched behaviorally regulated expression, 
temporal behaviorally regulated clusters, and gene ontology categories to each other, we used a 
hypergeometric p-value of the overlap. Groups with the number of transcripts overlapping < 5 
were removed from the analysis so that small coincidental gene ontology categories would not 
dominate the results. We ran two comparisons of transcripts to each other:  1) behaviorally-
regulated temporal clusters (Fig. S3A–D) to behaviorally-regulated regional clusters (Fig. 4A, B) 
using all behaviorally regulated transcripts as the background (Table S12C); and 2) temporal 
clusters (Fig. S3A–D) to region-enriched baseline clusters (Fig. 2A) using all detected transcripts 
as the background (Table S12B). In addition, we compared gene ontology sets for the region-
enriched baseline expression (Table S6), region-enriched behaviorally regulated expression 
(Table S10A), and temporal clusters of behaviorally-regulated transcripts (Table S10B). 

For the gene ontology analysis, we used as background, the genes corresponding to the 
set of all transcripts detected using the zebra finch brain microarrays, rather than a whole genome 
set. This is appropriate since these transcripts represent all of the genes we detected in the brain, 
and the whole genome set predicted by ENSEMBL does not contain all genes representing all 
transcripts on the microarray. When we use the whole genome as the background set, logically 
brain-expressed genes dominated the enrichment. The values were corrected for multiple 
hypotheses by the multtest R package (79) because of the large number of ontology sets. The 
bulk of our gene ontology categories consist of the ontology and pathway categories of the gene 
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signatures database (53). Based on behaviorally regulated hypotheses about what pathways and 
mechanisms were involved, we added several other functional gene sets to the list outlined in 
Table S7.  
 
Supplementary materials section 9 
In situ hybridization. Brain tissue hybridizations were performed as previously described (24). In 
brief, 35S-labeled riboprobes were made from T7 (sense) and T3 (antisense) promoter sites of 
cDNA clones from two sources used for the microarrays (24, 68), using T7 and T3 RNA 
polymerases (Roche); cDNAs from the third source (35) were not available. Frozen sections 
were fixed in 3% paraformaldehyde in PBS (pH7.4), acetylated, dehydrated in graded alcohols 
(70%, 95%, 100%), and air-dried. 120 μl of hybridization solution containing 50% formamide, 
10% dextran sulfate, 1X Denhardt’s, 12 mM EDTA (pH 8.0), 10 mM Tris/HCl (pH=8.0), 30 mM 
NaCl, 0.5 μg/μl yeast tRNA, 1 μg/μl polyA, 10 mM DTT, and 1 x 106 cpm of 35S-labeled 
riboprobe was applied to each slide, cover slipped and hybridized in mineral oil overnight at 65° 
C. Mineral oil and coverslips were removed with rinses in chloroform and then 2X SSPE and 
0.1% β-mercaptoethanol at room temp. Slides were then stringently washed in 2X SSPE and 
0.1% β-mercaptoethanol for 1 hr. at room temp, 2X SSPE, 50% formamide, 0.1% β- 
mercaptoethanol for 1 hr. at 65° C, and 0.1X SSPE twice for 30 minutes each at 65° C. Next, 
slides were dehydrated in graded alcohols (70%, 95%, 100%), dried, and then exposed to 
BioMax MR film (Kodak) for 2-3 days. The film was processed with D-19 developer and fixer 
(Kodak). Film images were quantified similarly as previously described (24). Briefly, 
autoradiographic images of brain sections exposed to films were digitally captured using a Dell 
PC running Olympus DP software to control an Olympus DP71 camera mounted to an Olympus 
MVX10 microscope. Adobe Photoshop CS3 was used to measure mean pixel intensities on areas 
of interest after saving the digital image in a tiff format, which allows 16 bits per sampled pixel 
or 65,535 different shades of gray to be analyzed. Verifications were done with n=2-3 animals 
per group. 
 
Supplementary materials section 10 
Zebra finch RT-PCR. We used real-time polymerase chain reactions (RT-PCR) to verify 
differential expression of 37 behaviorally regulated transcripts (Table S3). The template for RT-
PCR was the synthesized cDNA from the LCM dissected song nuclei used in the microarray 
experiments. RT-PCR was performed using the CFX96 real-time PCR detection system and the 
SsoFast EvaGreen Supermix kit (BioRad, Hercules, CA, USA). RT-PCR primers for the 
transcripts of interest were designed from zebra finch exonic sequence using the Roche 
Universal Probe Library algorithm found online at https://www.roche-applied-
science.com/sis/rtpcr/upl/ezhome.html. The 150–400 nucleotide exonic sequence chosen for 
each RT-PCR target gene overlapped with the oligonucleotide sequence. The primers were 
designed to have a Tm of ~60° C, and their sizes ranged between 19–25 nucleotides. 
Corresponding amplicon lengths ranged from 66–76 nucleotides. Reactions for each target 
amplicon were performed in triplicates. PCR cycling conditions consisted of an initial 30 sec 
incubation step at 95° C for template denaturation and enzyme activation, followed by 39 cycles 
of 5 sec at 95° C for denaturation and then 5 sec at 60° C for annealing and extension. This two-
step reaction was followed by a melt curve reaction of 65° C to 95° C in 0.05° C increments, to 
ensure that the desired amplicon was detected. Negative (no template) controls were also 
performed to verify the reaction was free of contamination. The reaction efficiency for each 
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target gene was maximized so that cycle thresholds ranged between 20-30. Relative 
quantification of the RT-PCR amplicons was based on internal reference genes (B5FY49, CLK4, 
COX4, DDX50, FAM36A, FAM96B, G3BP2, MRPS14, PSMB1, RPL21, TIM22, TM2D3) that 
were not detected as behaviorally regulated by our microarray analysis and fold-differences in 
expression were based on comparing silent and singing animals using the CFX manager software 
version 1.6 (BioRad). These negative controls constituted a null distribution that was used to 
calculate a z-score and significance of each behaviorally regulated gene tested. Besides 
regulation, the direction of regulation (up or down) was verified before labeling a gene as true or 
false positive based on this measure. 
 
Supplementary materials section 11 
Cis-regulatory motif analysis. The approach to our cis-regulatory motif analysis can be divided 
into three separate steps: 1) score the zebra finch genome using known TF-DNA binding motifs 
to find 500 bp sequences (motif target windows) likely to be bound by a TF, 2) identify sets of 
genes that contain high-scoring motif target windows in their non-coding regulatory regions, and 
3) find significant enrichments between these “motif target gene sets” and the gene sets defined 
from analysis of the expression data. We have used this approach in studies of other genomes 
including human (80, 81), honeybees (82, 83), wasps, and other insects (46). 

We began by selecting the set of curated TF-DNA binding motifs to use in this study. We 
started with a collection of 101 non-redundant vertebrate motifs from the JASPAR (84). To it we 
added 118 vertebrate motifs from the TRANSFAC database (85) that corresponded to genes that 
showed differential expression at baseline (93 motifs) and during singing (63 motifs). These 
motifs were found by performing a manual search of the TRANSFAC database for every 
differentially expressed gene that was labeled as a transcription factor by Gene Ontology 
database. We also included 19 TRANSFAC motifs of transcription factors that have known 
neural activity-dependent functions, but were not identified in the previous set. From the 
combined collection was 231 motifs (Table S14) we removed redundant motifs (defined as 
>80% similarity in their motif target gene sets). 

For each motif, the genome was scanned in 500 bp windows with shifts of 250 bps. Each 
window was given an HMM-based score for motif clustering using two methods, STUBB and 
SWAN (45, 46). These programs score a window by integrating over all binding sites in the 
window, both strong and weak matches to the motif, thereby creating a more rigorous 
quantification of motif presence than a simple count of sites above a threshold or sum of site 
strengths, as discussed previously (45, 46).  For each method, we defined the “target windows” 
of the given motif as the top scoring 1% of windows in the genome.  

The motif target windows were then assigned to genes (called the motif’s “target gene 
set”) using two different definitions of a gene’s regulatory region. The local “promoter” 
regulatory region definition includes any window within 5 kb upstream or 2 kb downstream of 
the annotated start site of a gene model (to allow for annotation errors of the start site and 
binding sites in the 5′ UTR). The broader “territory” regulatory region definition includes 
windows contained within (i) the gene body, (ii) upstream of the gene at least 5 kb until half the 
distance to the next non-overlapping gene, and (iii) downstream of the gene until half the 
distance to the next non-overlapping gene. To create the motif target gene set, we traversed the 
list of target windows sorted by motif score, assigning windows to their respective genes based 
on our regulatory region definitions until 500 distinct genes had been designated as targets. 
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We identified associations between our motif target sets and gene expression clusters 
from five analyses; 1) all baseline clusters (Fig. 2A); 2) the core set of 97 singing-regulated 
transcripts (Table S8, green and yellow highlights); 3) each section of the Venn diagram for 
differential singing-regulated expression among song nuclei (Fig. 4A); 4) the more strict group 
of region-enriched singing regulated transcripts (Fig. S12); and 5) the temporal patterns of 
singing-regulated transcripts (Fig. S3A–D). The enrichment of the motif target genes in the 
above clusters was determined relative to the background of all 9,060 ENSEMBL IDs that 
matched the 18,478 transcripts from the total of the 24,498 transcripts detected in the song 
nuclei. Before enrichment analysis, the transcripts of these clusters were translated to their 
corresponding ENSEMBL gene ID based on our annotations (Table S1).  

To quantify the enrichment of the gene expression clusters with a motif target gene set, 
we used four different statistics: 1) The first was the one-sided p-value from a hypergeometric 
test. For each gene expression cluster, 231 statistical tests (one for each non-redundant motifs 
from JASPAR and TRANSFAC; Table S14) were performed and equally many p-values were 
obtained. 2) Our second statistical measure was the set of q-values (86) obtained from these 231 
p-values using an R package, which are corrected for multiple hypotheses testing. However, the 
hypergeometric test used to produce the p-values assumes that all genes in the universe are 
equally likely to be motif targets. This assumption is violated when using the “territory” method 
because a gene with a larger territory has a greater chance of being a motif target. 3) Our third 
approach avoided this assumption by computing a “sampling-based p-value” for each cluster-
motif pair. We created a random set of 500 genes by using our motif target set procedure from 
window with shuffled motif scores, and recorded the size of its overlap with the given gene 
expression cluster. We repeated this process 1,000 times and report the percentage of times the 
overlap with random gene sets was greater than the overlap with the actual motif target set as the 
“sampling-based p-value”, our third statistic. 4) Our fourth measure test for motif-gene set 
associations while accounting for territory length heterogeneity, by computing the “locus length 
aware Hypergeometric test” (LLHT) p-value described in (87).  

There are four ways to define a motif’s target gene set: two options for window scoring 
methods (STUBB and SWAN), and two options for assigning target windows to genes 
(“promoter” and “territory”). For each association between a gene expression cluster and motif to 
be considered significant, our three p-value statistics (hypergeometric, sampling-based, and 
LLHT) were required to be at most 0.02, and our hypergeometric test q-value must be at most 
0.2 for at least two of the four ways to define the motif target gene set. We note that (i) by using 
multiple methods for motif scanning, we aimed at improving the sensitivity of our approach, and 
(ii) by requiring the results of different hypothesis testing procedures to be significant (as well as 
explicitly imposing a q-value threshold), we hoped to control false positives. Using these criteria, 
we were able to selectively identify many activated transcription factors that we expected to find 
enriched in our tan IEG temporal cluster. These results relative to a preliminary Area X study 
(29) where only CREB was found in an IEG temporal cluster, highlights our improvements for 
identifying regulated transcripts and predicting transcription factor binding motifs. 

 
Supplementary materials section 12 
Transcription factor motif-gene cluster networks. We used the above enrichment analyses to 
generate the transcriptional networks that link particular transcription factors to their target genes 
in clusters of behaviorally regulated genes. One transcription factor or complex can have 
multiple distinct sequence specificities and conversely different members of the same 
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transcription factor family can have very similar binding specificities. Thus, to simplify our 
model, we grouped transcription factor binding motifs together based on their family and the set 
of proteins that they can bind. For example, the AP-1 transcription factor complex can consist of 
Fos and Jun proteins as a heterodimer, so we grouped them into several distinct annotated AP-1 
class of PWMs. To focus on the highest quality interactions of the network, we restricted our 
output to cases where at least 3 different transcription factor binding site versions, motif scoring 
procedures (STUBB or SWAN), or regulatory region definition (territory or promoter) support 
the interaction. We realize that this biased results towards factors that bind more broadly and 
have more data available. In the case of AP-1 and EGR1, we found that transcripts on the 
microarray corresponded to a member of a transcription factor complex that was enriched in a 
temporal cluster. To look for these examples more systematically, we looked for overlap 
between the TRANSFAC resource of binding site motifs and all genes on the microarray that 
were annotated as transcription factors. 

To annotate whether a particular edge (transcription factor-cluster relationship) was 
enriched in a particular brain region, we counted the number of enriched transcripts that came 
from each brain region (Area X, HVC, LMAN, and RA). That vector was normalized so that the 
sum of all elements was 1. We then compared that vector to different sets of artificial vectors 
representing different region specificities. For example, if a transcription factor motif was found 
upstream of 14 transcripts in a cluster and 7 of those temporal profiles come from Area X and 7 
come from HVC, then the artificial vector (Area X = 0.5, HVC = 0.5, LMAN = 0, RA=0) would 
generated. This vector would indicate the motif-temporal cluster relationship is enriched for the 
Area X and HVC song nuclei. We labeled a region as enriched for a specific transcription factor 
motif-gene cluster relationship based on which artificial vector it has the least Euclidean distance 
to. We then combined all the Euclidean distance results for each region, the network of 
individual transcripts, and motif gene target predictions, and used them to graphically display the 
network with cytoscape software v3 (Fig. S4; http://www.cytoscape.org/). A simplified 
collapsed version the network is shown in Fig. 6C. The final transcription factor motif-gene 
cluster network is a visualization of every class of transcription factor binding motifs that are 
enriched in region (edge) and temporal (node) clusters. 

To identify specific binding site locations for identified motif target genes of a cluster, we 
used PATSER (http://rsat.ulb.ac.be/patser_form.cgi). This program scans a given DNA sequence 
with a position weight matrix (motif), reporting sites whose log-likelihood ratio score meets a 
certain threshold. 
 
Supplementary materials section 13 
CaRF RNAi knockdown. We cloned a shRNA targeting mouse CaRF (5′-
GAAGACAGCACCAGCAATTAC-3′) and a control scrambled version of this shRNA sequence 
(5′-AAACAAGCCCATTCGCGGATT-3′) into the lentiviral vector pLLx3.8 (88). Both shRNA 
constructs were packaged as lentiviral particles in HEK 293T cells (ATCC). The lentiviral RNAi 
constructs where then transfected into cortical neurons that were dissociated from brains of 
embryonic day 16 (E16) pups (Charles River Laboratories, Raleigh, NC) and cultured in 
Neurobasal medium plus B27 supplements. To do this, 5 μM AraC was added on day in vitro 
(DIV) 1 to block glial proliferation. shRNA-expressing lentiviruses were added to the culture 
medium on DIV1, and by DIV4 infection was estimated at > 80% as judged by GFP expression. 
Knockdown of CaRF was confirmed by quantitative RT-PCR for CaRF mRNA. On DIV6, 
neurons were treated overnight with 1 μm TTX to block neural activity. The next day neurons 
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were left untreated or they were depolarized for 3.5 hours with 55 mM extracellular KCl, 
resulting in four groups: 1) a control group expressing scrambled RNAi and depolarized (3 
samples); 2) a control non-depolarized group (3 samples); 3) a CaRF RNAi knockdown 
depolarized group; and 4) a CaRF RNAi non-depolarized group (3 samples). Total RNA was 
then purified using RNeasy mini kits (Qiagen, Valencia, CA, USA) and biotin-labeled cRNA 
was generated following Affymetrix standard protocols. Ten micrograms of the labeled cRNA 
was hybridized to Affymetrix mouse MOE430 arrays. 

All raw CEL from files obtained from the array were processed and normalized on a log 
scale using RMA Express (89). They were then processed to conform to the .gct matrix format 
with 18 different experiments as columns and 45,101 probes as rows. Gene Set Enrichment 
Analysis (GSEA) was used to analyze the data with respect to the entire annotated set of genes 
that represent biologically relevant clusters (53). One group of gene sets represented known 
biological pathways compiled by various online databases. A second gene set was compiled 
based on having a particular sequence motif representing a transcription factor binding site in the 
promoter. The default, a signal to noise metric defined as the difference of the means divided by 
the sum of the standard deviations of the two different groups (CaRF control and CaRF RNAi) 
(53), was used by GSEA to rank the genes based on differing expression values between the 
control and CaRF-disrupted group. Using other metrics, including t-statistic, available in the 
program yielded similar results. Genes that ranked in the top 250 in terms of signal to noise 
metric were studied for further analyses. To calculate the significance of a gene set, such as a 
pathway or motif, GSEA uses random walk statistics on the ranked list of genes (53). For gene 
ontology analysis we used GOstat (90) to look for overrepresented functions on the top 250 and 
then the bottom 250 genes in this ranking versus the set of entire genes that were ranked in the 
program. This set is limited to genes that have a corresponding probe on the MOE430_2 
microarray and also excludes probes in the microarray dataset that do not have a corresponding 
gene. In total 14,723 genes were available for this search.  

To analyze the microarray data for the creation of the heatmaps (Fig. 7A,C and Tables 
S16, S18), we computed a ranked list of CaRF knockdown versus scrambled control using a 
linear model, where the gene expression Y was explained by: 

 
Y =  ASCR ISCR + AKD IKD 

 
where I is an indicator variables with ISCR = 1 when the neurons were infected with a scrambled 
control and IKD = 1 in the CaRF knockdown samples. A_condition are the estimated coefficients of 
these variables. To create the heatmap of genes affected by CaRF knockdown, the contrast was 
performed on the ASCR - AKD. The ranked set of activity-regulated gene expression most 
influenced by CaRF knockdown was obtained by creating the design matrix to uncover 
interactions between knockdown and stimulation in a factorial experiment explained by: 

 
Y =  AKCL IKCL + AKD IKD + AKCL+KD IKCL IKD + N 

 
where I are indicator variables as above, except IKCL = 1 when the neurons were stimulated and 
N is the intercept present in all samples. The variable AKCL+KD is the interaction and used to rank 
the genes. After the ranked lists were generated, a Wilcox rank sum test (91) was used to 
compare the ranks of transcripts that belong to certain group of singing-regulated genes versus 
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transcripts that do not. The significance of these values was confirmed by an alternative method 
(92). 
 
Supplementary materials section 14 
Collection of H3K27ac ChIP-Seq data. 
Adult male zebra finches were isolated in sound attenuated chambers, and their brains were 
excised after light onset and 1-2 hr. of either silence (n=18) or singing (n=18). Because we 
needed higher amounts of DNA for this procedure than RNA for the microarray experiments, we 
dissected whole song nuclei using a different approach. A razor was used to cut off part of the 
brainstem to create a flat surface with the forebrain, and the back of the brain (cerebellum 
region) was mounted against a thin plexiglass wall with Vetbond 3M tissue adhesive, placed on 
the surface of a Stoelting tissue slicer (Cat# 51415). Then 400 µm coronal thick sections were 
cut, and the sections placed in cold (4o C, on ice) PBS with a proteinase inhibitor cocktail (Roche 
USA Cat #11697498001, Indianapolis, IN) in a petri dish. The Petri dish with the sections was 
then placed under a dissecting microscope (Olympus MVX10), and song nuclei quickly 
dissected (within 5-15 min) with fine scissors and forceps (Fine Science Tools USA, Foster City, 
CA). The dissected song nuclei were placed in separate eppendorf tubes, frozen on dry ice, and 
stored at -80oC until further use.  

Punched samples from Area X and RA were each pooled from six birds, resulting in 3 
biological replicate groups for each behavioral condition. These pooled brain samples were 
dounced in 1% formaldehyde PBS buffer and kept at room temperature for 15 minutes, washed 
twice with cold PBS, then lysed in 200 μL lysis buffer (1% SDS, 10 mM EDTA, and 50 mM 
Tris pH 8.1). The crosslinked material was sonicated with a Bioruptor (Diagenode, Denville, NJ, 
USA) with 30 seconds on/off cycles to an average size range of 200-400 bp as visualized by 
agarose gel electrophoresis. Sonicated supernatants were diluted 10-fold in dilution buffer 
(0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCL, pH 8.1, 167 mM NaCl) 
before immunoprecipitation. 6 μL of antibody (anti histone H3K27ac, Abcam Cat #Ab4729, 
Cambridge, MA, USA) was first incubated with 100 μL of Dynabeads Protein G (Invitrogen Cat. 
#10004D, Grand Island, NY, USA) for 4 hours at 4° C, then the antibody conjugate was added to 
2 mL of lysate for overnight IP. Standard TruSeq adapters were ligated for library preparation 
using the NEB Library Preparation Kit (NEB 6240S and NEB E7335s, Ipswich, MA, USA) and 
50 bp single-end sequencing was performed at the Duke Sequencing and Analysis Core 
Resource on a Hi-Seq 2000 machine at 30 million reads per sample. 
 
Supplementary materials section 15 
Analysis of H3K27ac ChIP-Seq data. The reads from the sequencing experiment were 
transformed into BFQ format and then aligned to the zebra finch genome 
(Taeniopygia_guttata.taeGut3.2.4, ENSEMBL version 74, http://www.ensembl.org/) using MAQ 
v0.7.1 with default parameters (http://maq.sourceforge.net/). The files were then transformed 
into SAM format, reads that did not uniquely map to the genome were removed, and read 
number statistics was calculated using SAMTools v1.1 (Table S20; (93)). We decided not to 
remove duplicate reads, which are likely to represent H3K27ac signal (94). Quality metrics were 
calculated for each sample relative to input using the phantom tools in the SPP ChIP-Seq 
package (95). Based on the quality metrics of the correlation at the phantom peak and the 
minimum correlation between phantom peaks, we removed two of the replicates obtained from 
the RA singing group (Table S20). In addition, a 4th sample from Area X singing birds was 
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removed due to poor signal at true positive enhancers present in all others samples near EGR1, 
FOS, and other genes (Table S20). 
 Peak calling was performed using both Area X and RA data. We first attempted to call 
peaks jointly on signal from all Area X and RA samples, as this could improve false discovery 
rate analysis (96). However, using the IDR framework 
(https://sites.google.com/site/anshulkundaje/projects/idr; (97)), we found that these peaks were 
much more consistent with Area X data than with RA, with 21,367 reliable peaks, at a threshold 
IDR=0.01, of 21,367 reliable peaks discovered in RA and 47,092 in Area X. These values are 
consistent with data showing quality metrics were consistently lower for RA samples than Area 
X (Table S20), likely due to the smaller amount of tissue available for this smaller song nucleus. 
To minimize the Area X bias, peaks were called independently for pooled Area X and pooled 
RA samples. BEDTools (71) was used to take the union of these peaks, at 500 bp resolution. 
Peaks were called using MACS v2.1 (https://github.com/taoliu/MACS/) with parameters “-g 1e9 
-p 1e-2 --nomodel --shiftsize 73 -B –SPMR --keep-dup all”. To only keep the highest quality 
peaks, where quantitative differences could be measured, we used a stringent p-value threshold 
of 1E-5. MACS2 was also used to build log-likelihood files of signal compared to noise for 
pooled Area X samples and pooled RA samples with parameter “-m logLR -p 0.0001”. 
 In total, 35,958 peaks were identified. BEDTools was used to map peaks to the nearest 
transcription start site based on ENSEMBL gene models (v74). 15,471 peaks were found within 
10kb of the transcription start and likely represent promoter and promoter flanking regions (98). 
The rest of the peaks most likely correspond to enhancers or promoters of unannotated genes. 
Reads overlapped 12,245 unique ENSEMBL gene models (v74), with 6,575 peaks overlapping 
exons and 7,574 peaks overlapping introns only. 
 Once peaks were called, we used the read counts within peaks to determine differential 
H3K27ac activity between Area X and RA. HT-Seq v0.6.1 (http://www-
huber.embl.de/users/anders/HTSeq/) was used to count the number of reads that overlapped each 
peak (parameter “-m union”). To minimize noise from the lowest quality samples and lowest 
read number samples, we merged several samples together to create 1-2 groups per brain 
region/behavior category (Table S20). Analysis of Area X – RA differences based on read count 
at each H3K27ac peak was performed using DESeq2 (99). A negative binomial model 
comparing all Area X groups to all RA groups revealed large scale differences between brain 
regions with 10,749 peaks enriched in Area X and 7,673 peaks enriched in RA (FDR < 0.01). 
Surprisingly, at the same threshold, a model that compared singing to non-singing groups yielded 
0 significant peaks. Although previous groups have reported a change in H3K27ac in response to 
neural activity (58), the changes were relatively modest and in response to a stimulus many times 
stronger than one would expect in vivo. 
 To relate the set of transcripts differentially expressed across brain regions at baseline to 
the difference in nearby H3K27ac peaks at baseline, we compiled a set of scores for each 
transcripts based on its annotated ENSEMBL gene. We collapsed multiple peaks into one value 
per transcript by taking the mean of the difference between Area X and RA H3K27ac signal for 
every peak that mapped to the ENSEMBL gene (Tables S21, S22, “Peak Mean LFC” column). 
We also used an alternative approach of assigning each transcript to the most significantly 
different peak between regions that mapped to its ENSEMBL ID (Tables S21, S22, “Best Peak 
LFC” column). For each transcript differentially expressed at baseline, we also estimated its 
specificity for Area X and RA using a linear model. The model estimated the genes differentially 
expressed at baseline (SM6), and estimated coefficients for Area X expression and for RA 
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expression. We ran a contrast test using only these two brain regions to estimate the significance 
and log-fold difference for RA vs. Area X gene expression (Table S21, "Expression logFC” 
column). Once the log-fold change and significance of histone acetylation and expression had 
been compiled, we used three methods to compare differences in gene expression to differences 
in H3K27ac signal. First, was the correlation between expression log-fold change and H3K27ac 
log-fold change, which were strong (R=0.57, p << 0.00001). Second, we examined the 
distribution in H3K27ac signal for Area X-specific, RA-specific, and non-specific transcripts 
(Fig. 8A). Third, we computed the significance in the overlap between region-enriched genes 
and region-enriched peaks using a hypergeometric test, where each gene was mapped to the most 
significant nearby peak. 
 To determine genes that were significantly differentially induced between Area X and 
RA, we developed a more detailed statistical model for these two regions alone. The 
normalization procedures used were the same as above, except batch effects were subtracted 
based on a linear model built from all regions, as opposed to each region independently as above 
(SM6). Using this normalized data matrix, we compared the probability of a gene following a 
late-response profile in RA vs. Area X with the methods described below. To develop an 
unbiased model of late/slow response genes, we used the set of behaviorally regulated genes in 
each region (Table S8) for a principal component analysis. Consistent with our previous findings 
(24), we found the first two principal components corresponded to an IEG profile and to a 
late/slow response profile (Fig. S8A, B). The principal component representing the late/slow 
response was used as the basis for a linear model, which estimated a coefficient and a probability 
for a transcript that it followed the late/slow profile: 
 
Xn = M + XLRG_AXALRG_AX + XLRG_HVCALRG_HVC  + XLRG_LMANALRG_LMAN + XLRG_RAALRG_RA + 
XIEG_AXAIEG_AX + XIEG_HVCAIEG_HVC  + XIEG_LMANAIEG_LMAN + XIEG_RAAIEG_RA + XaBn+ en 
 
where M is the mean expression of the gene across all microarrays, XaBn are technical RNA 
amplification factors, and en is the residual error of the given microarray. The A are subscripted 
by the brain region and by whether they represent the immediate early gene (IEG) or late/slow 
response profile (LRG). This model identified 702 transcripts that had a positive coefficient 
(meaning increasing) and also had the most significant match to a late/slow-response profile in 
any brain region. Next, using the limma package (100), we performed a contrast analysis, which 
compared the estimated Area X coefficient to the estimated RA coefficient to classify the late 
response gene as Area X enriched, RA enriched, or neither (Fig. S8C; Table S22). 

Once these statistics had been compiled, the same three methods that were used to 
examine H3K27ac to gene expression at baseline were used to compare H3K27ac levels to 
differences across brain regions during song production. The correlation between H3K27ac 
differences at baseline and relationship of the transcript to the LRG profile had a strong 
correlation (R=0.37, p=1.6E-12). The less significant p-value was due to the smaller number of 
late/slow response genes (Table S22) as well as the lower correlation. Second, we examined the 
distribution in H3K27ac signal for Area X specific, RA specific, and non-specific late-slow 
response transcripts (Fig. 8B). Finally, we computed the significance in the overlap between 
region-enriched genes and region-enriched peaks, where each gene was mapped to the most 
significant nearby peak (p=5.9E-22 Area X, p=0.0016 RA).  
 For the identified transcripts that had differences in H3K27ac nearby, but were not 
differentially expressed at baseline, and only differentially regulated during song production in 
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Area X (Table S22, blue highlight, 46 genes) we performed an ingenuity pathway analysis 
(Qiagen Ingenuity Systems, Redwood City, CA, USA). There were not enough RA genes present 
for the same analysis (Table S22, red highlight, 10 genes).  
 
Supplemental figures 
Fig. S1. Experimental design for capturing time series gene expression and behavior. (A) 
Schematic of experimental design of LCM samples isolated from the 4 brain regions (H: HVC, 
L: LMAN, R: RA, and A: Area X) and hybridized to microarrays in animal replicates of silent 
(0) or singing for different periods of time (0.5–7 hr.). As a result we analyzed over 200 total 
microarrays. (B) Amount of singing zebra finches performed in time windows of 20 minutes 
quantified by measuring the number of seconds the bird was in the act of producing song in that 
window. Rows correspond to birds while the 200 time periods measured are along the x axis. 
Every bird is normalized so that the maximum amount of singing performed in a window is dark 
red and the minimum is dark blue. Data organized based on time of day. (C) Same data as in (B), 
but organized based on when the bird was sacrificed. In most birds, there is an initial burst of 
high rates of singing followed by a steady state of bouts of singing throughout the day. The 
actual rates varied from 0 to ~100 bouts per 30 minutes, with a mean of 31 bouts per 20 min and 
standard deviation of 24. 
 
Fig. S2. Microarray gene expression verification. (A) In situ hybridization measures of EGR1 
(y-axis) relative to microarray measures from individual silent and singing animals from (x-axis) 
all 9 time points. Fold changes of EGR1 expression measured by in situ hybridization correlates 
well microarray expression levels (regression statistics in each graph). The two approaches 
differed in the relative relationships, with Area X having the highest dynamic range in the 
microarray signal and RA the lowest, which we believe is due to differential sensitivity of 
expression level differences among song nuclei by the two methods. (B) Real time PCR analysis 
of baseline and singing-regulated genes. These genes were all measured from the 0, 1, 2, or 3 hr. 
time points, at various microarray significance levels, from each song nucleus, with most from 
Area X (37 genes). Samples from the same time point were pooled. Despite confounding factors 
such as different microarray hybridization efficiencies for different genes and sample pooling 
that occurs for the RT-PCR data, but not the microarray, the quantitative analysis shows a strong 
correlation between RT-PCR and microarray-measured expression levels. The overall log-fold 
change is calculated as the difference between a gene’s log-fold change and a control group of 13 
non-regulated genes during singing (SM10). The log-fold change predicted by the RT-PCR is 
four times that of the microarray. (C) True positive analyses of microarrays for differential gene 
expression detected at baseline (in silent animals) evaluated by in situ hybridization. (D) True 
positive analyses of microarrays for singing-regulated genes evaluated by a combination of in 
situ hybridization and RT-PCR. The inset table summarizes genes tested for each region by true 
positives (TP), false positives (FP), and TP rate = 1 – #TP/(#TP + #FP). The information used 
for the calculation in panel (C) is found in columns F–I of Table S3. The results of the individual 
genes tested are in Table S2 for baseline and Table S3 for singing-regulate genes.  
 
Fig. S3. Temporal-regional singing-regulated gene expression across song nuclei. (A–D) 
Heatmaps of all 2,740 singing-regulated transcripts, hierarchically clustered first into 20 
temporal patterns (colored boxes on left), then separated out by song nucleus (each panel), then 
by first time point of increased or decreased expression, followed by level of significance from 
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highest to lowest in the linear model (local row separation). This means, for example, that the 
blue cluster (top color of each panel) is a group of transcripts with late sustained increased 
expression starting at 2–3 hr. after singing, with the majority of the transcripts with this temporal 
pattern belonging to Area X and HVC. Red: increases; blue: decreases; white: no change relative 
to 0-hr. samples. Average expression levels of genes in each of the 20 clusters across time is 
shown in Fig. 5. 
 
Fig. S4. Full network of singing-regulated transcription factors and predicted binding 
target relationships summarized in Fig. 6C. Directed edges represent the predicted binding of 
a transcription factor (diamond) to target genes (circles). Node color reflects membership in a 
temporal cluster of singing-regulated transcripts in Figs. 5 and S3. The edge color represents the 
brain regions specific for the temporal profile of the transcripts identified (blue, Area X; green, 
HVC; yellow, LMAN; red, RA; black, multiple brain regions). Singing-regulated transcription 
factors that are also targets of EATFs, such as EGR1 (EGR1-s1 transcript) and AP1 (FOSs 
transcript), are labeled by diamonds and colored by their corresponding temporal cluster. 
 
Fig. S5. Global properties of transcription factor binding sites. (A) Heatmap of binding site 
score and the associated genes containing the seven dominant transcription factor binding sites 
(x-axis) found in genes of the tan temporal cluster, compared to the genes with the same binding 
sites in other clusters (y-axis). Each row represents an ENSEMBL gene corresponding to a 
transcript in the cluster indicated (y-axis color on the left). Each column represents a 
transcription factor binding motif, including known alternative versions of it, that was used to 
scan the genome; the darker the shade of blue, the higher the motif score found for the gene. No 
bar means no binding site found. All motif scoring methods and regulatory region definitions are 
combined using the maximum value. Along the right of the heatmap is the smoothed averaged 
motif score found per ENSEMBL gene. A stronger enrichment in the tan immediate early gene 
cluster can be seen. (B) Relationship between transcription factors and gene clusters differ across 
brain regions. Rows represent the edges found (shown in Fig. 6C) between transcription factors 
and putative target genes in singing-regulated clusters based on temporal pattern. The intensity in 
a cell of the heatmap is proportional to the number of transcripts from a particular brain region 
(columns) that comprises the significant relationship between transcription factor and target. 
Average linkage hierarchical clustering was used to create the dendrogram of regions above the 
heatmap. The dendrograms shows that the transcription factor-motif relationships recapitulate 
the known relationships of brain anatomy, as do the baseline gene expression patterns (Fig. 2B) 
 
Fig. S6. Gene expression of the NFE2L1 and MAF transcription factors in song nuclei at 
baseline in the absence of singing. The two genes are known to bind their recognition site in a 
heteromer complex (52). The plot is extracted from the baseline values and clustering of Fig 2A, 
and ordered the same as Fig. 2A. The left dendrogram are the clusters (blue cluster, higher in 
pallial song nuclei relative to Area X; white cluster, no difference in Area X; turquoise, higher in 
Area X relative to pallial song nuclei). To the left of the dendrogram is the heatmap of the log-
fold change in expression of 6 different NFE2L1 and MAF transcript variants (rows: MAF-s1-4; 
NFE2L1-s1-2) of each animal (columns) normalized to the mean values of Area X (similar to 
Fig. 2A). Three variants are higher in HVC, LMAN, and RA, and one lower. The 6 transcripts 
are clustered using average linkage hierarchical clustering (dendrogram); red, increased 
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expression relative to the average of Area X; blue, decreased expression relative to the average 
of Area X. 
 
Fig. S7. Genes in specific molecular pathways of neurons affected by CaRF knockdown. (A) 
The “St WNT Ca2+ Cyclic GMP Pathway”. (B) The “GABA Pathway”. The affected pathway 
genes were detected by GSEA (53) as enriched genes decreased in the CaRF knockdown cells 
independent of membrane depolarization. The x-axis list the rank order of the gene transcripts 
detected by ~45,000 oligos. The y-axis show three plots: the rank metric for highest (>0) to 
lowest (<0), if a gene is part of the specific pathway highlighted (blue lines), and the contribution 
of those genes to a cumulative increase of the enrichment score (red line) that is used calculate 
the significance of the gene set. A bias towards increase or decrease can be found based on the 
maximum value of the red/blue lines. The strength of the increase or decrease of each gene at a 
particular ranking is shown in gray. 
 
Fig. S8. More stringent clustering of RA and Area X singing up-regulated genes. (A) First 
principal component of all singing-regulated genes for each song nucleus, which contains many 
immediate early genes. (B) Second principal component of all singing-regulated genes for each 
song nucleus, which corresponds to the late/slow response genes. Principal component scores for 
each region (bar colors) are averaged at each time point. The scores are normalized such that the 
maximum value is 1 and direction is consistent across brain regions. Error bars show standard 
deviation for each time point. (C) Heatmap profile of transcript levels that most significantly 
match the late response principle component, with red representing an increase and blue 
representing a decrease during song production. The gene expression values are normalized such 
that the maximum is 1 and non-singing birds at 0. Transcripts are organized based on whether 
they have a significantly (p < 0.05) better match to the Area X (blue row labels), RA (red column 
labels), or neither (black column labels) cluster. Boxes highlight the region-specific upregulated 
genes. 
 
Fig. S9. Plot of H3K27ac peaks of example genes in Area X vs RA before and after singing. 
(A) FOS has peaks in both RA and Area X, and known to be regulated at higher levels in Area X 
by singing, but neither nucleus shows a significant difference in peaks before and after singing. 
(B) PTPN5 regulated in Area X also shows no peak difference before and after singing. (C) A 
comparable result is seen for BDNF in RA before and after singing. (D) A late response gene 
IL1R1 in RA shows no large difference. (E) CALB1 a gene that marks Area X with higher levels 
early during development (101) and shows a further late-response singing increase in Area X 
also shows no detectable difference in peaks before and after singing. ENSEMBL gene models 
are at the bottom of each panel. Plots in (D) and (E) were displayed using different software. 
 
Fig. S10. Plot of H3K27ac peaks of behaviorally regulated genes in Area X vs RA before 
and after singing. (A) Density plot of immediate early genes (based on temporal profile) 
upregulated in response to singing in RA vs Area X and the difference in the level of nearby 
H3K27ac peaks in the genomes of the cells in RA X vs. Area X. Each H3K27ac peak is mapped 
to the nearest transcription start site of the gene. For each gene, the change in all mapped 
H3K27ac peaks are averaged. Genes are separated into three categories, no enrichment in RA vs. 
Area X (grey), enriched in Area X (blue) and enriched in RA (red). (B) Similar to A, but 
showing the density of H3K27ac peaks between RA vs. Area X for downreglated late-response 
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singing-regulated genes. Only Area X shows a weak relationship. (C) Similar to A, but showing 
the density of H3K27ac between singing and non-singing in Area X. Immediate early genes that 
increase in Area X are shown in green, while other genes regulated in Area X are shown in gray. 
 
Fig. S11. Region-enriched gene expression at baseline with a less stringent FDR q < 0.2. A 
total of 7,078 transcripts (rows) are detected as differentially expressed across regions at baseline 
in silent birds. Note the similarity of expression clusters found at FDR q < 0.1 (Fig. 2A). Red, 
increases; blue, decreases; white, no change relative to mean Area X expression. Each column is 
an animal replicate. Mean expression in each region was used to generate a small average 
linkage hierarchical tree, representing the molecular expression relationships of the brain regions 
to each other. 
 
Fig. S12. More stringent region-enriched expression in response to song production. (A) A 
4-way Venn diagram showing region specific enrichment of the more strict set of 1,144 
transcripts (FDR q < 0.2 in region of interest, FDR q > 0.5 in other regions). (B) Heatmap of all 
1,144 region-enriched transcripts from the stricter Venn diagram (FDR q < 0.2 in region of 
interest, FDR q > 0.5 in other regions). Each transcript is normalized so that the maximum 
increase relative to non-singing birds in any region is the darkest shade of red for increasing 
transcripts and the maximum decrease is the darkest shade of blue for decreasing transcripts. 
Detailed results are in Table S8.  
 
 
Supplemental table legends 
Table S1. Annotations of oligos and corresponding transcripts on the songbird 44K 
microarray. Listed items include oligo ID (column A), Duke cDNA ID (B), ESTIMA ID (C), 
NCBI Accession # (D), ENSEMBL ID when available (E), the source (F) of the original DNA 
sequence (0= Wada et al 2006(24); 1= Li et al 2007(35); 2 = Replogle et al 2008 (68)), whether 
the RNA is coding [0] or non-coding [1] (G), and the oligo nucleotide sequence synthesized on 
the array (H). Also shown are the final gene symbols (I) and gene description (J) used for 
analyses. The evidence that led to that final symbol and description is summarized (K). All 
symbols from the various methods of annotation are listed as well (L). Evidence for the 
annotations are in columns M through V. o, oligo; p, pasa defined annotations of clustered 
transcript sequence reads against the zebra finch genome. If a transcript representing a gene does 
not have a functionally identified name, then simply its pasa or clone ID was used as the gene 
name in columns I and J. The order of features (oligo and control spots on the array) is in the 
same order as listed adjacent to column A (available online). 
 
Table S2. List of genes used to validate baseline expression with in situ hybridizations. The 
expression values (columns G-J) are the normalized levels from the microarray experiment 
(SM6). The in situ hybridization results (columns K-N) are scored either as true positive (TP), 
false positive (FP), false negative (FN), or true negative (TN) The sources of in situ 
hybridizations (column E) are Li et al (35), Lovell et al (36), Velho et al (102), George et al 
(77), Wada et al (24), Kubikova et al (34) or this study, (available online).  
 
Table S3. List of genes used to validate singing-regulated expression by in situ 
hybridization and RT-PCR. The table has five sections: 1) Gene Information; 2) Verification 
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Summary; 3) Microarray Information; 4) In situ Hybridization Information; and 5) RT-PCR 
Information. Verifications are of three varieties: in situ hybridization only (39 transcripts, cyan 
colored), in situ hybridization and RT-PCR (4 transcripts, blue), and RT-PCR only (33 
transcripts). The gene information includes the specific cDNA clone ID that was tested (column 
C) and the corresponding transcript variant (column D). The verification summary section brings 
together both the in situ hybridization data and RT-PCR data and was used to calculate the final 
true positive (TP, green) and false positive (FP, red) rates as in (Fig. S2D). In addition, the table 
also shows false negative (FN, orange) and true negative (TN, light green) findings (columns F-
I). These same classifications are used in the in situ hybridization (AB-AE) and the RT-PCR (T-
W) sections. The values in the microarray section are FDR q-values, with significant differences 
highlighted in dark green for each song nucleus at a given time point relative to silent controls 
(K-N; timepoints in column R and Table S8). In both the in situ hybridization and the RT-PCR, 
gene expression was often measured at more than one time point. The sources of in situ 
hybridizations (column S) are Li et al (25), Wada et al (24), Jarvis and Nottebohm (17) or this 
study, (available online). 
 
Table S4. Transcripts detected in song nuclei in this study. Listed are the 24,498 groups of 
expressed transcripts detected in song nuclei above the background spike in controls in at least 
12% of the microarray samples (i.e. n=4 or more animals). Unique Transcript ID (column A) is 
the name given to the group of transcripts from the same gene that are expressed similarly. s, 
indicates transcript variant. Other columns show group IDs (B), gene symbols (C), gene 
description (D), ENSEMBL ID (E), zebra finch chromosome (F) and number of oligos that 
generated to the group of transcripts (G) with oligo IDs (H). For example, there are 8 oligos on 
the array that recognize transcripts from the glioblastoma amplified sequence (GBAS) gene, and 
these recognize transcript variants with 4 distinct patterns (GBAS-s1 to s4) (available online). 
 
Table S5. Transcripts differentially expressed in song nuclei at baseline. Listed are the 5,167 
transcripts detected as differentially expressed among song nuclei at baseline non-singing 
activity using a correlation and distance measure (SM8). The unique transcript ID (A) identifies 
the specific transcript and the symbol (B) of the gene to which it maps (available online).  
 
Table S6. Functional enrichment data for differentially expressed genes at baseline. Rows 
are colored according to cluster membership (A). The functional categories (B) are based on 
searches of genes categories from different sources, including gene ontology (C; source details in 
Table S7). The enriched sets of genes for each category are identified in column E. Rows are 
color-coded according to baseline-region cluster membership (as in Fig. 2A). Rows in bold text 
are the categories that show the strongest enrichment for each regional cluster, based on number 
of genes (D), p-values based on hypergeometric tests (F and G), and percent of genes from that 
cluster showing such enrichment (H) (available online).  
 
Table S7. Gene expression sets from prior studies used for comparative enrichment 
analyses. Listed are the names we have given to the genes sets, their description, numbers, 
whether the experiments were conducted in vivo or in cell culture, and the literature and PubMed 
ID source of the data (103-117)  (available online). 
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Table S8. Transcripts differentially expressed in song nuclei after singing. Listed are the 
2,740 transcripts detected as differentially expressed among song nuclei after singing. The 
unique transcript ID (column A) identifies the specific transcript and the symbol (column B) the 
gene to which it maps. The linear model FDR q-values are shown for each song nucleus (E-F), 
as well as the temporal cluster to which the transcripts belong to for each nucleus (J-M). NA, not 
applicable; xReg, regulated by singing. The data are sorted from most to least significant for 
combinations of the four song nuclei. The core 20 transcripts detected as singing-regulated in all 
four song nuclei are highlighted in green, and the remainder of the core in three or on the border 
of four song nuclei are in yellow (available online). 
 
Table S9. Differential singing-regulation of alternative transcript variants. Listed are the 
differential singing-regulated alternative transcript variants (s1, s2, s3, …) detected by oligos 
specific to those variants. These variants include those that are alternatively spliced, alternatively 
started, and alternatively polyadenylated. Of the 2740 singing-regulated transcripts, 390 were 
differentially-regulated alternative variants from 82 genes. For example, we detected UNC5A 
transcript variant s1 (UNC5A-s1) as regulated by singing in Area X, but transcript variant s2 
(UNC5A-s2) as regulated in LMAN. Group ID is the ENSEMBL gene ID based on genome 
mapping; the singing-regulated brain region cluster is from the temporal clusters (available 
online). 
 
Table S10. Functional enrichment data for singing-regulated genes. (A) Enrichment in 
regional singing-regulated clusters of transcripts. (B) Enrichment in temporal singing-regulated 
clusters of transcripts. Rows are colored according to cluster membership (column A). The 
functional categories (column B) are based on searches of genes categories from different 
sources, including gene ontology (column C; source details in Table S7). The enriched sets of 
genes for each category are in column E. The p-values (columns F and G) are based on 
hypergeometric test. The % of list (column H) is the percent of transcripts relative to the total 
number of regulated transcripts for a given region or temporal cluster (available online). 
 
Table S11. Proportions of transcripts among temporal singing-regulated clusters. The Table 
shows for each the 20 temporal clusters (column A) their region-specificity (columns D-H). 
Cluster size (C) is calculated as the number of transcripts that make up that temporal cluster. The 
percentage for each song nucleus (D-G) is the percentage transcripts for each temporal cluster 
that come from that song nucleus. We treated the percentage of transcripts for every song 
nucleus as a vector. That vector was compared against a vector representing every combination 
of regions using Euclidean distance to determine the regions enriched (H). For example, the 
vector for tan cluster (0.43, 0.24, 0.2, 0.13) was closest to the vector representing all regions 
(0.25, 0.25, 0.25, 0.25) as opposed to the vector for Area X (1, 0, 0, 0). As a result, the five 
clusters that show a strong representation in all regions have at least 10% of their transcripts 
from each region (available online).  
 
Table S12. Statistical results for hypergeometric tests of overlap of transcripts from the 
baseline region-enriched, singing region-enriched, and singing temporal-enriched clusters. 
(A) Correlations between baseline region-, singing region-, and singing temporal-enriched 
clusters. (B) Correlations between baseline region- and singing region-enriched clusters. (C) 
Correlations between singing region- and singing temporal-enriched clusters. (D) p-values for 
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baseline region- and singing region-enriched correlations. (E) p-values for baseline region and 
singing temporal-enriched correlations. Red text denotes when the region baseline pattern is 
correlated with region specific pattern from the same or subgroup of song nuclei (available 
online). 
 
Table S13. Transcription factor motif enrichment data for temporal patterns of singing 
regulated gene clusters. Each row represents an association between a temporal singing-
regulated cluster and a transcription factor motif (column D) from the database in (column C, 
Table S14). Listed is the number of genes in the cluster for which an ENSEMBL annotation was 
found (column E) as well of the number of those genes that were identified as having the motif 
overrepresented in their non-coding regulatory region (column F) by a given method (column B). 
The significance of the association was quantified with four statistics; simulation p-value, 
hypergeometric p-value, locus length aware hypergeometric test p-value, and hypergeometric q-
value (columns G-J) (available online).  
 
Table S14. TRANSFAC and CUSTOM scanned binding motifs. (A) Listed are 118 binding 
motif names from the TRANSFAC database that corresponded to transcription factors that were 
differentially expressed in song nuclei at baseline or during singing. (B) 19 TRANSFAC motifs 
of TFs we hypothesized to be regulated by neural activity or plasticity. (C) 101 motifs used from 
the JASPAR database (available online). 
 
Table S15. Enriched motifs in temporal clusters of behaviorally regulated transcripts 
expanded to individual transcripts. Listed are the transcription factor (column A) to target 
gene (column B) relationships predicted by the transcription factor binding site scans that were 
supported with enrichments between the TF’s motif target gene set and the target gene’s 
temporal singing-regulated cluster (column C) as shown in Fig. S3. The specific brain region 
enriched expression of the target gene (column D) is also listed (available online). 
 
Table S16. Top 100 genes most affected by CaRF knockdown. Listed are the top 100 
transcripts identified as most differentially expressed between all samples with the scrambled 
control versus CaRF knockdown in mouse cultured cortical neurons. The subgroup ID (A) 
identifies the specific transcript and the symbol. This is a separate set from the zebra finch IDs. 
(B) Corresponding Affymetrix probe ID. (C-E) Gene annotations. (F-I) Statistical values 
calculated for each transcript (available online). 
 
Table S17. Pathway enrichment and gene ontology analysis of CaRF effected genes. (A) 
Gene sets built from MSigDB pathways were compared using GSEA (53) to the ranked list of 
genes effected by CaRF knockdown in the absence of membrane depolarization. Genes were 
ranked by signal to noise ratios using the GSEA default. Listed are name of the enriched 
pathway, the highest enrichment score, the nominal p-value, false discovery rate (FDR), family 
wise error rate (FWER), and size or number of genes found in the set. Thresholds for inclusion 
were p < 0.05 and q < 0.25. (B) Results of a gene ontology analysis (90) of the top 250 genes 
affected by CaRF knockdown in the absence of membrane depolarization, also ranked by GSEA 
according to signal-to-noise ratio (p < 0.05) (available online). 
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Table S18. Top 100 genes whose activity-dependence is most affected by CaRF knockdown. 
Listed are the top 100 transcripts identified as most differentially regulated by KCl membrane 
depolarization between the scrambled control virus and the CaRF knockdown virus infected 
mouse cultured cortical neurons. (A) The subgroup ID identifies the specific transcript and the 
symbol. This is a separate set from the zebra finch IDs. (B) Corresponding Affymetrix probe ID. 
(C-E) Gene annotations. (F-H) Statistical values calculated for each transcript (available online). 
 
Table S19. Membrane depolarization- and CaRF-regulated genes that overlapped with 
singing-regulated genes. Listed are 55 genes that were regulated by singing and enriched in 
zebra finch Area X and HVC, and that showed membrane depolarization and CaRF regulation in 
cultured cortical mouse neurons. Of these, 9 have a putative CaRF binding site in the zebra finch 
genome (#1 in column D). P-values are FDR (available online). 
 
Table S20. Quality control and sample annotation for H3K27ac ChIP-Seq. Each row 
corresponds to a different sample taken from the RA or Area X regions in silent and singing 
birds. Input comes from DNA with the H3K27ac antibody (DNA) or from whole cell extract 
(WCE, Column E). Highlighted green values represent quality control measures within a 
reasonable level of tolerance while red values represent low quality (available online). 
 
Table S21. H3K27ac near genes that are differentially expressed across brain regions at 
baseline. (A-D) Listed are 3,397 transcripts that are differentially expressed at baseline and have 
at least one H3K27ac peak that maps to it. (E-H) The expression t-value, p-value, adjusted p-
value, and log-fold change for the expression in RA relative to Area X. (I) The “expGrp” 
classifies the genes as Area X enriched, RA enriched at p < 0.01 or neither. (J) Mean log-fold 
difference between in RA vs. Area X for all peaks that map to the gene corresponding to that 
transcript. (K, L) The most significant peak mapping to that transcript and its log-fold difference 
and category in Area X vs. RA (available online). 
 
Table S22. H3K27ac near genes that are differentially induced across brain regions during 
singing. (A-D) Listed are 346 transcripts that are classified as late-response singing-regulated 
genes and have at least one H3K27ac peak that maps to it. (E-H) The expression t-value, p-
value, adjusted p-value, and log-fold change are shown for the match to the identified LRG 
profile in RA relative to Area X. (I) The “expGrp” classifies the genes as Area X enriched, RA 
enriched, or enriched in neither region during song production (p < 0.05). (J) The mean log-fold 
difference between in RA vs. Area X for all peaks that map to the gene corresponding to that 
transcript. (K, L) For the most significant peak mapping to that transcript, listed is the log-fold 
difference in Area X vs. RA and the peak category. (M) The expression category of the gene at 
baseline, where “Ax” is enriched in Area X at baseline, “Ra” is enriched in Ra at baseline, “diff” 
is genes that are differentially regulated in one or both of the nidopallial song nuclei, HVC and 
LMAN, and “none” refers to transcripts that are not detected as differentially expressed at 
baseline. Highlighted in blue are transcripts not differentially expressed at baseline, but singing-
regulated in Area X and have H3K27ac peak in their genes at baseline. Highlighted in red is the 
converse relationship for RA (available online).  
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