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Methods 

Data were collected at ten locations in Northern California (Fig. 1 main text). Data collection 

began between 1972 and 1988, depending on the site (Table S1). Sites spanned an elevational 

gradient and included a variety of habitat types, from coastal marsh to alpine barrens. Sites were 

visited by A. M. S. every two weeks during “good” butterfly weather, that is during sunny days 

that were not too windy. Data were collected via the Pollard walk method [1] whereby a fixed 

path was walked during each visit and presence or absence of butterfly species noted (see 

http://butterfly.ucdavis.edu/ for descriptions of path taken at each site). Presences are henceforth 

referred to as “day positives”. Additionally, since 1999, abundance (count) data has been 

collected for sites at the lowest elevations (including the North Sacramento, West Sacramento, 



Rancho Cordova, Gates Canyon, and Suisun Marsh sites). The more intense data collection at the 

subset of sites since 1999 was inspired by extreme declines in population density that were 

observed for most species at low elevations [2,3]. Count data were divided by number of site 

visits for that year, and the coefficient of variation (CV) in this proportion across years was 

calculated for each resident species. CV was then averaged across sites for a given species as a 

way to assign an index of average population fluctuation, or volatility, to each species. Only 

those species observed at multiple sites and for which a total of 100 individuals or more were 

observed over the course of the study were included in the analysis. In total, 50 species were 

indexed in terms of average population fluctuation (this index henceforth referred to as “rank 

volatility”).  

It is possible that differences in detectability between species might lead to erroneous 

indexing in terms of volatility. In particular, abundant species might be more subject to detection 

error resulting in less accurate estimates of abundance (as made from counts of individuals). It is 

also possible that the least abundant species would be subject to detection error and less accurate 

estimates of abundance. Increased error in abundance estimates (whether for the most or least 

common species) could, in turn, lead to inflated estimates of inter-annual population variation, 

which would result (for our analyses) in incorrect indexing of species in terms of volatility. To 

address this possibility, we calculated correlations of our rank volatility index with abundance. 

Abundance was calculated as the mean population size across sites and years. We found no 

correlation of abundance with rank volatility (Spearman’s rho = -0.007, p = 0.96), which 

suggests that variation in detectability has not confounded our ranking of volatility.  

Indexed species were subjected to hierarchical Bayesian analysis using the R package 

rjags [4] to explore the relationship between population dynamics and climate. This approach 



utilizes Bayesian methodology within a hierarchical generalized linear modeling framework. In 

this case we modeled day positives, DP, for a given year i and site j as a binomially distributed 

response variable thus: DPij ~ Binomial(pij, Visitsij) where p is the proportion of day positives out 

of total visits, and Visits is the number of site visits per year. We modeled this response at two 

hierarchies; both for individual sites and across all sites. We created separate models for each 

species of butterfly examined. The details of the modeling approach are defined elsewhere [5]. 

Briefly however, an inverse logit link function, 

€ 

pij =1/ 1+ e(−α ij )( ) was used to link the binomial 

response variable with a hierarchical linear model of the form: 

€ 

α ij = µ j + β1 jCovariate1ij + β2 j Covariate2ij + ...+ βKj CovariateKij  

The intercept term of the linear model ( ) was the species-specific mean estimate of 

occurrence probability across years for a given site j. K is the total number of model terms. 

Intercepts and beta coefficients were drawn from normal distributions with means and precisions 

equal to transect-wide parameters: 

€ 

µ j ~ N µµ ,τµ( ) 

€ 

βKj ~ N µβ k
,τβ k( )  

Uninformative hyperpriors were used throughout and were defined as follows:  

 

Posterior probability distributions were obtained through Markov chain Monte Carlo 

(MCMC) sampling using rjags. The output of this approach is estimates of posterior probability 

density distributions describing the uncertainty in the effect size associated with each model term 



at both site- and transect-wide hierarchical levels. We used estimates of posterior probability 

distributions describing the transect-wide impact of model variables for the subsequent analyses 

described below. Terms included in the model were seasonal mean maximum and mean 

minimum temperatures and precipitation, year (to examine interannual population change) and 

two terms that were indices of the ENSO for a given year (described below). Site-specific 

seasonal weather was calculated using PRISM data (PRISM Climate Group). Seasonality 

reflected the "water year", consequently Winter encompassed December of the previous year, 

January, and February of the current year; Spring consisted of March, April, and May; Summer 

of June, July, and August; and, Autumn of September, October, and November of the previous 

year. For each site, precipitation, including snow, was summed for each season. ENSO indices 

were the top two components output from a PCA reduction of monthly values of the multivariate 

ENSO index (MEI) [6]. These components were obtained for each year of the study period. The 

MEI is itself a composite variable comprised of six metrics that together provide a measure of 

the strength of the ENSO for a given month. Habitat was not included as a covariate in the 

model. While habitat, in terms of vegetative community, does differ between sites (Table S1), we 

unfortunately do not have data quantifying those differences such that we could assign a 

continuous value describing the differences in vegetation among sites. Furthermore, 

characterizing each site’s habitat in terms of a qualitative factor would provide no additional 

explanatory power to the model, as each site would necessarily be assigned a unique level. Each 

model was run using two search chains for 55,000 iterations, with a burn-in of 45,000 iterations. 

We monitored chain mixing and convergence by examining trace plots and calculating effective 

sample size output by each model. Effective sample size necessarily varied between species and 

parameters, but was always at least several hundred, and most often in the many thousands. The 



final 10,000 samples generated by the Gibbs sampling algorithm were collected as representative 

of the posterior distribution of coefficients associated with a particular weather variable. The 

mean of these samples was used as a point estimate of the standardized partial regression 

coefficient describing the effect of a weather variable on day positives for a given species. The 

mean was calculated, as opposed to the median for example, because of the symmetrical 

distribution of samples output by the model (see Fig. S1). The percentage of these samples above 

or below zero was used to calculate the probability of a non-zero effect for a given variable.  

Samples were also used to investigate the relationship between response to weather and 

average population fluctuation across indexed taxa. To accomplish this we created a 50 x 10,000 

matrix for each model variable, with columns that consisted of the 10,000 samples representative 

of the species-specific, posterior probability distributions (PPDs) associated with the effect of the 

variable under examination and rows associated with the individual species. Matrices were 

ordered by rank volatility such that the first row contained samples associated with the most 

volatile species and the last row contained samples associated with the least volatile species (for 

a total of 50 rows). Each column of this matrix was then iteratively correlated (Pearson's product 

moment) with identically ordered species-specific coefficients of variation in abundance 

previously used to define rank volatility. Correlation coefficients generated at each iterative step 

were tabulated and the resulting frequency distribution of coefficients examined to determine the 

strength, direction, and certainty of the correlation.  

To summarize, this analysis reveals for which variables a more volatile butterfly species 

would tend to have a more positive, or more negative, response to weather as compared with a 

less volatile butterfly species, while retaining the uncertainty generated at each step in the 

modeling process. The open-source software R (Version 3.0.1 [7]) was used for all analyses. 



To account for potential phylogenetic non-independence of the data, we calculated 

phylogenetic independent contrasts (PIC) [8] in the ape package in R [7,9]. For all species in this 

study, a 658 base pair portion of the cytochrome oxidase I (COI) mitochondrial gene was 

selected from published sequences in GenBank. COI sequences were not available in GenBank 

for all species, so we used the criteria outlined in [10] to select replacement sequences of closely 

related taxa. Sequences were aligned and visually inspected in Sequencher 4.10.1.  

 A Bayesian phylogenetic tree was constructed in BEAST 1.8.0 [11]. A general time 

reversible model of evolution with invariant sites and a gamma distribution (GTR+I+G) was 

selected using jModeltest 2.1.5 [12]. In addition, a Yule process speciation tree prior was 

specified. The topology of the tree was constrained in BEAUti 1.8.0 by creating monophyletic 

taxon sets based on published phylogenetic trees. Butterfly family level relationships were 

constrained using the phylogeny of [13]. Subfamily and genus level relationships were also 

constrained for Hesperiidae [14], Lycaenidae [15,16], Nymphalidae [17,18], and Pieridae [19]. 

The tree was run for 10,000,000 MCMC iterations. Upon completion, tree parameters were 

visually inspected in Tracer 1.6 and a final target tree was constructed in TreeAnnotator 1.8.0. 

Phylogenetically-corrected (PIC) coefficient of variation data used for iterative 

correlation of rank volatility with samples representative of the effect of weather variables were 

non-normally distributed, thus precluding the use of Pearson’s r for iterative correlation. 

Consequently, Spearman’s rank correlation was used to iteratively correlate data generated by 

PIC. These correlation coefficients were compared with those generated from iterative 

Spearman’s rank correlation on uncorrected data.  

Life history information 



The following life history information was tabulated for each butterfly species examined: 

geographic range, overwintering strategy (i.e. egg, larva, pupa, or adult), voltinism, family-level 

host breadth, and wingspan.  Geographic range data (km2) was obtained from [10]. Host breadth 

and voltinism information was taken from [20]. Family-level host breadth was taken from [20]. 

All life history information was regionally specific. For instance, range-wide host breadth was 

not calculated; instead, we calculated host breadth for only that portion of California 

encompassing the transect. Nonparametric analyses (Kruskal-Wallis tests and Spearman’s rho) 

were used to investigate the relationship between life history traits and rank volatility.  

Results 

Our analysis successfully provided insight into the relationship between climatic variation 

and population dynamics for each species examined (Table S2). Species-specific parameter 

estimates varied widely, however several trends in the impact of model variables were noted. 

First, for most species, increased winter and spring precipitation had a negative impact on day 

positives, while increased summer precipitation had the opposite effect. Second, almost every 

species examined was declining.  

 Iterative correlation of rank volatility (Pearson’s r) with samples representing PPDs for 

each model variable showed that certain variables differentially impacted volatile species (Table 

S3). Climate conditions with a high certainty of differentially negatively impacting volatile 

species included: warmer mean minimum temperatures in the spring and autumn, warmer mean 

maximum temperatures in the winter, and heavier winter precipitation. Conditions that 

differentially positively impacted volatile species included: warmer summer mean minimum 

temperatures, wetter springs and autumns, and more marked ENSO events.  



Iterative correlation of rank volatility and samples representative of PPDs using Spearman’s 

rank correlation generated coefficients describing similar trends (i.e. directionality and relative 

impact of a given variable on fraction of day positives) in the impact of weather variables across 

rank volatility (Table S4). Furthermore, correlation coefficients derived from iterative correlation 

of data corrected using PIC also showed qualitatively similar trends in the impact of weather 

when compared with coefficients generated from uncorrected data (Table S4). Exceptions to this 

pattern of similar results between analyses conducted using corrected and uncorrected data 

include results for the impact of summer mean maximum temperature, spring mean maximum 

temperature, and MEI PC 2. Certainty of non-zero effect sizes is low for the differential impact 

of each of these three variables across rank volatility. When considering those variables with 

clear differential impact on volatile species, coefficients generated by iterative correlation using 

Pearson’s r, Spearmans rank correlation, and Spearman’s rank correlation on corrected data are 

all consistent in terms of directionality (Tables S3 and S4). 

Correlation of life history traits and rank volatility 

Neither geographic range (Spearman's rank correlation, = -0.09, p=0.52), family-level host 

breadth (Spearman's rank correlation = 0.06, p = 0.7), nor wingspan (Spearman's rank correlation 

= -0.25, p = 0.08) were significantly correlated with average coefficient of variation of examined 

butterflies (rank volatility). Rank volatility was also not significantly confounded with voltinism 

(Kruskal-Wallis chi-squared = 2.0, p = 0.36) or overwintering category (Kruskal-Wallis chi-

squared = 8.6, p = 0.13). 
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Table S1. Data collection start date, elevation, and general habitat type for each site.  

Site Elevation (m) 
Start of data 
collection Habitat type 

Castle Peak 2400-2775 1977 Alpine and sub-alpine 
Donner Pass 2000-2200 1973 Sub-alpine 

Lang Crossing 1500-1700 1974 Mixed mesic forest, meadows, 
and xeric outcrops 

Sierra Valley 1500 1982 Xeric woodland and scrub 

Washington 800-1400 1988 Mixed mesic forest, serpentine 
barren 

Gates Canyon 80-600 1976 Oak woodland, riparian corridor, 
and disturbed areas 

Rancho Cordova 18-22 1975 Oak woodland 
North 
Sacramento 

8-12 1988 Riparian, disturbed areas 

West 
Sacramento 

4-10 1988 Riparian, disturbed areas 

Suisun Marsh 1 1972 Coastal marsh 



Supplementary Results 

Table S2. Species-specific point estimates of standardized partial regression coefficients describing the effect on day positives of each weather variable as 
determined through hierarchical Bayesian analysis. Point estimates represent the mean of samples representative of the posterior probability distribution 
describing the effect of a variable on day positives. Species are arranged by average population volatility in descending order. The variable “Year” describes 
annual change in day positives for a species. The variables “MEI PC1” and “MEI PC2” are composite variables that act as indices for the impact of the El Niño 
Southern Oscillation. Those variables superscripted by † were correlated with rank volatility with a high degree of certainty. 

Species Year 
Winter 
Min. 

Temp. 

Winter 
Max 

Temp.† 

Winter 
Precip.† 

Spring 
Min. 

Temp.† 

Spring 
Max 

Temp. 

Spring 
Precip.† 

Summer 
Min 

Temp.† 

Summer 
Max 

Temp. 

Summer 
Precip.† 

Autumn 
Min. 

Temp.† 

Autumn 
Max 

Temp. 

Autumn 
Precip. 

MEI 
PC1† 

MEI 
PC2† 

Vanessa cardui 0.11** 0.03 -0.17*** -0.29*** -0.13** 0.37*** 0.44*** 0.01 0.11** 0.25*** -0.04 -0.29*** -0.12** 0.57*** 0.13*** 
Pontia protodice -0.88*** -0.13 -0.04 -0.47*** 0.09 -0.54*** -0.34*** 0.38** -0.17* -0.05 -0.17** 0.30** 0.00 0.35*** 0.18*** 
Satyrium saepium -0.05 0.08 0.07 0.11 -0.22* 0.00 -0.12 0.06 -0.03 0.02 -0.14 0.01 0.03 0.03 -0.05 
Glaucopsyche lygdamus -0.19** 0.08 -0.08 -0.08 -0.02 -0.09 -0.12* 0.05 0.07 0.05 -0.05 0.01 0.04 0.03 -0.03 
Nymphalis californica 0.02 -0.09 -0.21*** 0.00 -0.15* 0.39*** 0.15** -0.01 0.11* 0.03 -0.12 -0.02 -0.07 -0.05 0.07* 
Satyrium sylvinus -0.33** 0.03 -0.01 0.08 -0.03 0.13 -0.01 -0.08 -0.05 -0.03 0.12 -0.04 0.00 -0.07 0.01 
Pyrgus scriptura -0.67* 0.18** 0.02 -0.25*** 0.23** -0.24 -0.31** -0.12 0.17 0.11 -0.03 0.10 0.00 0.06 -0.06 
Junonia coenia -0.18 0.34*** -0.08* 0.02 0.10* 0.04 -0.03 -0.07* 0.03 0.09** -0.15*** 0.12** 0.09* 0.10* 0.09*** 
Brephidium exile -0.34** -0.13** 0.05 0.07 0.01 0.03 -0.05 0.02 0.04 0.10** -0.08 -0.09 -0.18*** 0.09** 0.00 
Coenonympha tullia 
california -0.71** 0.05 0.13* 0.08 0.07 0.02 -0.09 0.03 -0.05 0.01 0.02 0.02 0.03 0.02 -0.05 
Lycaena xanthoides -0.52** 0.00 0.08 -0.07 0.08 -0.16 -0.32** -0.07 0.17* 0.18** -0.05 0.10 -0.04 0.13* -0.08 
Lycaena helloides -0.47*** 0.05 0.05 -0.02 0.10 -0.03 0.01 -0.14** 0.11** 0.03 0.17* -0.18*** -0.10* -0.04 0.08* 
Satyrium auretorum -0.28 0.08 -0.09 0.04 0.00 0.19 0.06 0.05 -0.23 -0.04 0.15 -0.09 0.06 -0.03 0.15 
Euchloe ausonides -0.96*** -0.02 0.10 0.13** 0.11 0.01 0.07 -0.11 0.04 0.04 0.11 0.06 -0.02 0.00 0.11** 
Euphydryas chalcedona -0.33*** 0.07 -0.04 0.16* -0.27** 0.26** 0.04 -0.12 0.17** 0.03 0.15* -0.18** -0.11 0.03 0.02 
Lerodea eufala -0.70*** 0.01 0.16** -0.11* 0.18** 0.00 -0.13 0.05 0.15* -0.07 -0.12* 0.02 0.00 -0.01 -0.11** 
Plebejus acmon -0.10* 0.07* -0.01 -0.03 -0.05 0.04 -0.13*** -0.05 0.04 0.10*** -0.07* 0.01 -0.07* 0.03 0.04 
Poanes melane -0.17 -0.34** 0.33*** -0.10 0.52*** -0.38** -0.28** -0.21** 0.47** 0.04 0.14 -0.17* -0.06 -0.04 0.05 
Ochlodes sylvanoides -0.16* -0.05 -0.03 -0.06 0.12** 0.01 0.09* -0.11** 0.15** -0.02 0.00 -0.03 -0.03 -0.04 -0.01 
Everes comyntas -0.20* -0.07 0.02 -0.09* 0.10 -0.06 -0.24*** -0.05 0.06 0.06 0.08 -0.08 0.01 0.08* 0.11** 
Vanessa annabella -0.92*** 0.13** 0.13** -0.10* 0.20*** -0.22*** 0.05 -0.08 0.15*** 0.14*** -0.03 -0.08 0.08 0.01 0.08** 
Phyciodes mylitta -0.25** 0.16*** 0.13*** -0.19*** 0.22*** -0.17** -0.25*** -0.06 0.03 -0.03 0.09* -0.16*** -0.05 -0.05* 0.04 
Erynnis propertius -0.04 -0.05 0.07 0.04 0.08 -0.02 -0.05 -0.05 0.05 0.06 -0.13 0.16* 0.03 -0.04 0.10* 
Battus philenor 0.14 -0.09 0.10* 0.08 0.03 0.12 -0.01 -0.13** 0.07 0.00 -0.07 0.00 0.14* -0.01 0.05 
Danaus plexippus -0.75*** 0.09** 0.12** -0.07* 0.10* 0.09 0.10* 0.13*** -0.12** -0.06 0.14** -0.07 0.02 0.00 -0.04 
Celastrina ladon echo -0.22 0.07 0.00 -0.02 0.06 0.04 -0.09 -0.05 0.00 -0.07 0.01 0.04 0.13** 0.03 -0.04 
Nymphalis antiopa -0.60*** -0.21*** 0.31*** 0.28*** 0.21*** 0.05 0.06 -0.04 0.02 0.10** 0.15** -0.08 0.03 -0.04 0.02 
Polites sabuleti sabuleti -0.76** 0.23*** -0.08 -0.12* 0.06 -0.12 -0.15* -0.11 0.09 -0.06 -0.04 0.00 -0.08 0.04 -0.09* 
Satyrium californica -0.07 0.16** -0.03 -0.02 0.10 -0.09 -0.10 -0.12 0.02 -0.04 0.14 -0.17* 0.03 0.03 0.02 
Colias eurytheme -0.20* 0.02 0.07 -0.06 -0.02 -0.02 -0.06 -0.09* 0.04 0.10*** 0.01 -0.07 0.05 0.05 0.01 
Chlosyne palla -0.03 0.09 -0.02 0.09 -0.12 0.22 0.06 -0.04 0.02 -0.03 -0.01 -0.01 0.03 -0.04 0.08 
Papilio zelicaon -0.52*** 0.01 0.03 0.02 0.13* -0.08 0.01 0.00 0.09** 0.01 0.01 0.05 0.05 -0.01 0.00 
Pholisora catullus -1.17*** 0.03 0.03 -0.07 0.38*** -0.29** -0.14* -0.17** 0.21** 0.11** 0.18** 0.02 -0.04 0.03 -0.06 



Superscripts used to denote percentage of samples above or below zero thus quantifying probability of a non-zero effect for a given variable. Probability that effects differ from zero indicated as follow: 
≥ 90% probability of a non-zero effect is denoted by *, ≥ 95% probababilty by **, and ≥ 99% probabiilty by ***

Limenitis lorquini -0.16 -0.09* 0.21*** 0.19*** 0.20** -0.12 -0.10* -0.05 0.01 -0.01 0.19** -0.07 0.12** -0.10*** 0.09*** 
Anthocharis sara sara -0.51** 0.15 -0.13 -0.11 0.12 -0.16 -0.18* 0.07 0.02 0.03 -0.02 0.14 -0.02 -0.06 0.03 
Erynnis tristis -0.30*** -0.12* 0.20*** 0.06 0.02 0.03 -0.10 -0.05 0.08 0.01 0.00 0.06 0.11* -0.08 0.06 
Atalopedes campestris 0.03 0.08* 0.02 -0.09* 0.13** -0.02 -0.09 -0.13** 0.21*** 0.07* -0.11* -0.05 -0.05 0.11*** 0.04 
Incisalia augustinus 
iroides -0.05 0.00 0.08 0.00 -0.08 0.21 -0.04 -0.16* 0.14 0.02 0.07 -0.07 -0.06 -0.01 0.08 
Vanessa virginiensis -0.26* 0.25*** 0.11** 0.00 0.10 -0.25*** -0.15*** -0.29*** 0.21 0.12** -0.02 0.03 0.05 0.00 0.02 
Papilio eurymedon -0.05 0.12 -0.02 0.04 0.02 0.06 0.00 -0.09 -0.03 -0.02 0.01 0.08 0.05 -0.04 0.02 
Papilio multicaudatus -0.14 0.05 0.13 0.07 0.16 -0.02 -0.09 -0.31** 0.07 0.02 0.30 -0.33** -0.07 0.12 0.00 
Strymon melinus -0.20*** 0.05 -0.03 -0.08* 0.12** -0.03 -0.09* -0.11** 0.12*** 0.05 0.01 0.00 -0.08* 0.04 0.07* 
Hylephila phyleus -0.16 0.00 0.02 -0.09* 0.06 0.03 -0.01 -0.10** 0.13** 0.05 -0.05 0.02 -0.05 -0.01 0.03 
Papilio rutulus 0.09 0.04 0.08** 0.03 -0.04 0.08 -0.03 -0.12** -0.01 -0.01 -0.06 0.08 0.08* -0.05* 0.10*** 
Vanessa atalanta -0.32** 0.09* -0.03 0.03 0.18** -0.03 0.06 -0.11* 0.17*** 0.07* 0.12** -0.07 -0.03 0.06* 0.04 
Pieris napi -0.16* 0.13 -0.08 -0.04 0.06 -0.07 -0.09 -0.09 0.03 0.10 0.09 -0.06 -0.06 0.01 0.09 
Adelpha bredowii 
californica -0.23* 0.05 -0.02 0.08 0.13* 0.03 -0.02 -0.08 0.02 -0.08 0.09 -0.10 -0.08 -0.04 0.00 
Pieris rapae -0.27*** 0.02 0.07 0.00 0.05 -0.07 -0.10* -0.08* 0.06 0.10*** 0.05 -0.07 0.05 0.05* 0.01 
Pyrgus communis -0.11 0.05 0.01 -0.07 0.06 0.09 -0.05 -0.08* 0.03 0.07** -0.03 0.00 -0.04 -0.05* 0.06* 
Ochlodes agricola 0.04 0.16 0.09 -0.03 0.06 -0.19 -0.18 -0.34** 0.07 0.10 0.14 -0.17 -0.07 0.02 0.00 



 

Table S3. Means of the distributions of correlation coefficients generated by 
iterative correlation (Pearson’s r) of rank volatility with samples representative of 
species-specific posterior probability distributions describing the effect of a given 
model variable. This shows if a given variable differentially impacts more volatile 
species as compared with less volatile species. The percentage of samples above or 
below zero is provided to quantify the certainty of a non-zero correlation. 

Variable Mean  % of samples > 0 % of samples < 0 
Winter maximum 
temperature -0.23 0.6 99.4 
Winter minimum 
temperature -0.10 10.2 89.8 
Winter 
precipitation -0.37 0.0 100.0 
Spring maximum 
temperature 0.10 90.7 9.3 
Spring minimum 
temperature -0.19 0.6 99.4 
Spring 
precipitation 0.24 99.9 0.1 
Summer maximum 
temperature -0.09 14.8 85.2 
Summer minimum 
temperature 0.36 100.0 0.0 
Summer 
precipitation 0.18 96.0 4.0 
Autumn maximum 
temperature -0.02 43.6 56.4 
Autumn minimum 
temperature -0.21 1.0 99.0 
Autumn 
precipitation -0.10 15.1 84.9 
MEI principle 
component #1 0.66 100.0 0.0 
MEI principle 
component #2 0.17 96.9 3.1 
Year -0.04 20.1 79.6 

 



 

Table S4. Means of the distributions of correlation coefficients generated by 
iterative correlation (Spearman’s rank correlation) of rank volatility with samples 
representative of species-specific posterior probability distributions describing the 
effect of a given model variable. This shows if a given variable differentially 
impacts more volatile species as compared with less volatile species. The 
percentage of samples above or below zero is provided to quantify the certainty of 
a non-zero correlation. Numbers contained in parentheses describe the output of the 
same analysis when using data corrected for phylogenetic autocorrelation. 

Variable Mean  % of samples > 0 % of samples < 0 
Winter maximum 
temperature -0.11 (-0.17) 16.2 (10.0) 83.8 (90.0) 
Winter minimum 
temperature -0.12 (-0.02) 12.2 (42.9) 87.8 (57.0) 
Winter 
precipitation -0.10 (-0.20) 13.4 (4.9) 86.6 (95.1) 
Spring maximum 
temperature 0.06 (-0.05) 74.2 (34.3) 25.8 (65.7) 
Spring minimum 
temperature -0.14 (-0.03) 8.5 (40.4) 91.3 (59.5) 
Spring 
precipitation 0.02 (0.05) 56.7 (65.0) 43.3 (35.0) 
Summer maximum 
temperature -0.07 (0.04) 24.9 (62.6) 75.1 (37.4) 
Summer minimum 
temperature 0.33 (0.22) 100.0 (95.1) 0.0 (4.9) 
Summer 
precipitation 0.02 (0.11) 57.1 (79.1) 42.9 (20.8) 
Autumn maximum 
temperature 0.06 (0.15) 72.4 (86.1) 27.7 (13.9) 
Autumn minimum 
temperature -0.21 (-0.23) 1.8 (3.9) 98.2 (96.1) 
Autumn 
precipitation -0.04 (-0.07) 36.4 (33.3) 63.6 (66.7) 
MEI principle 
component #1 0.18 (0.28) 96.0 (98.6) 4.0 (1.4) 
MEI principle 
component #2 0.00 (-0.04) 49.6 (37.7) 50.4 (62.2) 
Year -0.19 (-0.15) 1.0 (7.4) 98.7 (92.6) 

 
 
 
 



 
 
Fig. S1 Estimates of posterior probability distributions describing the impact of year on 
day positives for the five most volatile species examined. Estimates of posterior 
probability distributions for other species and for other model terms also described 
similarly symmetrical distributions. 
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