Subject ID	Age ^a	Gender ^b	PTPN22 SNP ^c
HD #1	33	F	C/C
HD #2	42	F	C/C
HD #3	42	F	C/C
HD #4	30	F	C/C
HD #5	40	Μ	C/C
HD #6	24	F	C/C
HD #7	27	Μ	C/C
HD #8	35	F	C/C
HD #9	40	F	C/C
HD #10	42	F	C/C
HD #11	26	Μ	N/D ^d
HD #12	43	Μ	N/D

Supplemental Table 1. Information on healthy donors (HD) used for this study

^a The mean age was 35.3 years.

^b The female to male ratio was 4:1.

^c Denotes single nucleotide polymorphism (SNP) identified by genotyping PTPN22 at position 1858.

^d Not determined.

Subject	Age ^a	Gender ^b	Time since	PTPN22 SNP ^d
T1D #1	43	М	25 years	C/C
T1D #2	53	F	42 years	C/C
T1D #3	43	F	35 years	C/C
T1D #4	27	F	12 years	C/C
T1D #5	43	М	25 years	C/C
T1D #6	41	F	12 years	C/C
T1D #7	56	М	13 years	C/C

Supplemental Table 2. Information on type 1 diabetic subjects used for study

^a The mean age was 43.7 years.

^b The average time since diagnosis was 23.4 years.

^c The female to male ratio was 4:3.

^d Denotes single nucleotide polymorphism (SNP) identified by genotyping PTPN22 at position 1858.

Supplementary Figure 1. PTPN22 affects FOXP3 induction by inhibiting T cell activation in mice. CD4+CD25- T cells from 8-12 wk-old wild-type (WT) or PTPN22.KO mice were cultured under iTreg polarizing conditions with increasing amounts of anti-CD3/CD28 mAbs. (A) Histogram overlay depicting the levels of CTLA-4 in WT and PTPN22.KO CD4+ T cells 4 days after culture. Blue line indicates WT cells, whereas red, KO. (B) The MFI levels of CTLA-4 in WT and KO cells depicted in C shown in a graph. Results from one representative experiment are shown. (C) Cumulative data showing the % difference in CD25+FOXP3+ induction between WT and KO cells from ten independent experiments are displayed in a graph. Each colored line indicates results from independent experiments. In some experiments, naive T cells (CD4+CD62Lhi) or cells from young animals (>6 wks-old) were cultured (indicated in the figure, including the experiment that was selected as representative in Fig.1). Not all anti-CD3/28 activating conditions were tested in each experiment.

Supplementary Figure 2. Antisense PTPN22-specific oligonucleotide treatment reduces by 50% the endogenous PTPN22 expression levels in human iTreg cultures. (A) Human CD4+CD127+CD25- T cells from HD were FACS-sorted and cultured under iTreg polarizing conditions as described in Materials and Methods. PTPN22-specific and control (CTRL) oligonucleotides were added at the beginning of iTreg cultures with CD4+ T cells derived from HD. Expression levels of PTPN22 were evaluated 2 days later by real-time qPCR, p<0.05. (B) Percent reduction of PTPN22 expression levels in human CD4+ T cells as compared to CTRLoligos. Each open square represents individual donor.

Supplementary Figure 3. CD4 T cell expansion and Treg cell development upon lymphopenic expansion in the absence of PTPN22. (A-B) Forty five days after transfer into lymphopenic B6.Rag1-/- hosts, CD4+CD25-T cells from PTPN22 WT and PTPN22.KO mice were studied for expansion (total number of CD4+ T cells) and iTreg conversion in the SPL and MLN. Each symbol represents individual animal and horizontal bar shows the mean of values. *, p<0.05, **,p<0.005.

Supplementary Figure 4. Cytokine production by peripherally-induced Treg and Teff in the absence of PTPN22. (A-B) Forty five days after transfer into lymphopenic B6.Rag1-/- hosts, CD4+CD25- cells from PTPN22.WT and PTPN22.KO mice converted into FOXP3-expressing pTregs and memory cells in the spleen and MLN. Total lymphocytes were activated with leukocyte activation cocktail (LAC) prior to staining intra-cytoplasmatically for FOXP3 and IFN- γ (A-B) or IL-10 (C-D) anti-cytokine antibodies. One representative experiment of two with similar results is shown in A and C after gating on total CD4+T cells. Each dot represents individual mice in B and D and horizontal bar shows the mean of values.