THE EFFECT OF ADRENOCORTICOTROPIC HORMONE IN PANHYPOPITUITARISM ¹

By FREDERIC C. BARTTER,² PAUL FOURMAN,³ FULLER ALBRIGHT, ANNE P. FORBES, WILLIAM McK. JEFFERIES, GRACE GRISWOLD, ELEANOR DEMPSEY, DOROTHY BRYANT, AND EVELYN CARROLL

(From the Department of Medicine of the Harvard Medical School and the Medical Service of the Massachusetts General Hospital, Boston)

(Submitted for publication November 12, 1949; accepted, March 20, 1950)

A priori one would anticipate that the effects of a hormone would be most apparent when given to an individual lacking that hormone. To be sure, when the hormone acts through another gland, as does adrenocorticotropic hormone (ACTH), one might find the "target" gland unresponsive through atrophy. In panhypopituitarism, one is dealing not with a single deficiency, but with a deficiency of all "tropic" hormones. This may be advantageous for the study of any one of them, in that compensatory changes in the others cannot obscure the results. It may be disadvantageous in that some of the effects might not occur in the face of other deficiencies.

All in all, we decided to employ three patients with panhypopituitarism for our first studies of the metabolic effects of ACTH. Preliminary reports of this work have appeared (1, 2). A number of other reports of the metabolic effects of ACTH are now available (3–9).

CASE SUMMARIES

(1) Patient M.W., female aged 43, M.G.H. No. 160,451, had a severe postpartum haemorrhage 17 years before the study. After delivery she did not lactate and her periods did not return. She remained weak and had an anemia resistant to iron treatment. On six subse-

quent occasions she had to be treated for Addisonian crisis precipitated by mild infections. Sixteen months before the present study treatment was begun with thyroid extract by mouth and with testosterone and desoxycorticosterone acetate by pellet implantation, and she remained symptom free thereafter. She continued to take thyroid during the study.

She had a facies suggestive of myxedema, thin skin, absent axillary and very scant pubic hair, and a normal-sized thyroid. The blood pressure was 108/58.

X-rays revealed a small sella turcica. The basal metabolic rate had been minus 38 before thyroid therapy. The following serum values were obtained: sodium 141 m.eq./L; chloride 100 m.eq./L; potassium 4.6 m.eq./L; carbon dioxide content 28.8 m.eq./L; glucose 88 mg. per 100 ml.; non-protein nitrogen 30 mg. per 100 ml.; total protein 7.1 gm. per 100 ml.; calcium 9.4 mg. per 100 ml.; inorganic phosphorus 3.6 mg. per 100 ml.; alkaline phosphatase 2.0 Bodansky units; cholesterol 278 mg. per 100 ml. The hemoglobin was 10 gm. per 100 ml.

Twenty-four hour urine specimens contained less than 0.5 mg. of 17-ketosteroids (before testosterone therapy), more than 3 but less than 6 mouse units of follicle stimulating hormone, 0.06 to 0.18 mg. of "11-oxysteroids," 5 and less than 3 mouse units of "cortin." 6 A Cutler-Power-Wilder test (four months after implantation of one 75 mg. "DOCA" pellet) showed normal four-hour urinary chloride concentration, but produced a fall in serum sodium to 134 m.eq./L.

(2) Patient H.J., male aged 41, M.G.H. No. 550,872, complained of failing vision for four years, and lassitude and loss of libido for two years.

He presented the facies of myxedema, scant axillary and pubic hair, soft testes, no palpable prostatic tissue, a thyroid normal to palpation, a blood pressure of 120/78, pale optic discs and a bitemporal hemianopsia.

The basal metabolic rate was minus 31. X-rays revealed an enlarged sella turcica. The following serum

¹ The expense of these studies was partly defrayed by grants from the Rockefeller Foundation, the National Advisory Cancer Council, Ayerst, McKenna and Harrison, Ltd., and the American Cancer Society on the recommendation of the Committee on Growth of the National Research Council. A bed supported by Mr. Edward Mallinckrodt on the Metabolic Ward was used for these studies.

² Surgeon, U.S.P.H.S., on detail from National Heart Institute.

⁸ Rockefeller Traveling Fellow.

⁴ By panhypopituitarism we mean a deficiency, (not necessarily an absence) of all functions of the anterior pituitary. In case 2, (vide infra) in spite of the presence of Leydig cells, there was obviously hypoleydigism.

⁵ Method of Talbot and his associates (10). The test depends on the reduction of alkaline copper tartrate. Normal subjects excrete between 0.10 and 0.44 mg. per 24 hours (11).

⁶ By "cortin" we mean urinary corticoids assayed biologically (12). The test depends on the amount of glycogen formed in the livers of fasting, adrenalectomized mice. Normal subjects excrete more than 3 and less than 24 mouse units per 24 hours.

values were obtained: sodium 146 m.eq./L; chloride 103 m.eq./L; potassium 4.8 m.eq./L; carbon dioxide content 32 m.eq./L; glucose 93 mg. per 100 ml.; non-protein nitrogen 25 mg. per 100 ml.; total protein 7.0 gm. per 100 ml.; calcium 9.5 mg. per 100 ml.; inorganic phosphorus 4.3 mg. per 100 ml.; alkaline phosphatase 2.7 Bodansky units; cholesterol 284 mg. per 100 ml.; protein bound iodine 3.5 micrograms per 100 ml. The hemoglobin was 12.4 gm. per 100 ml.

Twenty-four hour urine specimens contained 1.7 mg. of 17-ketosteroids, more than 3 but less than 6.5 mouse units of follicle stimulating hormone, 0.1 mg. of "11-oxysteroids" and less than 1.5 mouse units of "cortin."

Two insulin tolerance tests showed hypoglycemia unresponsiveness. A testicular biopsy was interpreted by Dr. Ronald S. Sniffen as follows: "The testis has tubules in all stages of activity from normal to those lined solely by a thickened tunica propria which is peppered with granules. The Leydig cells are present in normal numbers; most of them are solid, but a few contain vacuoles, crystalloids or pigment."

Following unsuccessful X-ray therapy, a chromophobe adenoma was partially removed by trans-sphenoidal approach. The first metabolic study preceded, the second and third followed this operation.

(3) Patient M.H., female aged 56, M.G.H. No. 568,954, complained of loss of energy for five years, dry hair for four years, cold sensitivity for two years, and episodes of weakness or dizziness, occurring in mid-morning, for one year. Menses had ceased 13 years previously without hot flashes.

She showed the facies of myxedema, dry thin skin, absent axillary and scant pubic and eyebrow hair, a slightly enlarged tongue, a very small thyroid, and a blood pressure of 190/95.

X-rays revealed a normal sella turcica. The basal metabolic rate was minus 37. The following serum values were obtained: sodium 108 m.eq./L; chloride 82 m.eq./L; potassium 5.7 m.eq./L; carbon dioxide content 27.2 m.eq./L; glucose 116 mg. per 100 ml.; non-protein nitrogen 24 mg. per 100 ml.; total protein 8.2 gm. per 100 ml.; calcium 9.1 mg. per 100 ml.; inorganic phosphorus 3.5 mg. per 100 ml.; alkaline phosphatase 3.5 Bodansky units; cholesterol 451 mg. per 100 ml.; protein bound iodine 1.0 microgram per 100 ml. The hemoglobin was 9.4 gm. per 100 ml.

Twenty-four hour urine specimens contained 1.0 mg. of 17-ketosteroids, more than 6.5 but less than 13 mouse units of follicle stimulating hormone (very low for the post-menopausal state). Two insulin tolerance tests showed hypoglycemia unresponsiveness. A Kepler water test gave an abnormal result and the calculated "index," A, was 19.

PROCEDURE

Five balance studies (13) were carried out. In these the effects of ACTH (Armour 7) were observed and

⁷ We wish to express our gratitude for the generous grants of ACTH made available to us by Dr. John Mote of Armour and Company. We are indebted to Dr.

TABLE I
Sequence, duration, and dosage of treatments in five balance studies

Period		1 (Jan. 1947) M. W. female see Table IV		2 (Jan. 1947) H. J. male see Table V (Figs. 1 and 2)		3 (May 1947) M. H. female see Table VI (Figs. 3 and 4)	H. see	ine 1947) J. male Table VII . 5 and 6)	see	(Oct. 1947) H. J. male Table VIII s. 7, 8, and 9)
Teriod	Days treat- ment	Daily dose in 3 divided doses 8 a.m., 2 p.m., 8 p.m.	Days treat- ment	Daily dose in 3 divided doses 8 a.m., 2 p.m., 8 p.m.	Days treat- ment		Days treat- ment	Daily dose in 4, 6- hourly doses	Days treat- ment	Daily dose in 4, 6-hourly doses
Control	10	0	24	0	6	0	8	0	18	0
ACTH* (Armour)	10	10-15 mg.†	18	15 mg.†	5	43 mg.§ (interrupted see Fig. 3)	13	43 mg.§	6	98 mg.§
Recovery	6	0	12	0	2	0	7	0	6	o
ACTH* (Armour)	4	10-15 mg.‡	4	15 mg.‡	7	43 mg.§			7	98 mg.§
Recovery	8	0	4	0	9	0			10	o
Additional treatment (1)					7	Pitressin 6–24 u			6	60 mg. Li and Evans' ACTH
Recovery					6	0			8	o
Additional treatment (2)					6	Prolactin 200 u			7	30 mg. DOCG
Recovery					3	0			7	0

^{*} Dissolved in physiological saline or distilled water according to solubility and pH adjusted for complete solution. † Amount sufficient for the period dissolved at the beginning of the period, filtered through sintered glass and kept at 4 C° until used.

[‡] As in previous footnote, but kept frozen until used.

[§] Each dose dissolved immediately prior to use and not filtered.

As in above footnote (†) but not filtered.

TABLE II
Properties* of ACTH Armour used in these experiments

Experi- ment	Lot No.	Strength† rela- tive to Armour	U	nits per m	g.
No.	Lot No.	Standard LA 1 A	Oxytocin‡	Pitressin§	Prolactin
1 and 2	21 B	102±8%	0.12	0.1-0.2	0.75-2.0
3 and 4	32 D	71±9%	0.05	0.1	1.8±.15
5	37 KF	41.5±12%	.0025	.005	0.5

^{*} All these tests were done by the Armour Laboratories. † Based on the rat adrenal ascorbic acid depletion test of Sayers and Sayers (23).

‡ Method of Thompson (24).

|| Method of Riddle and Bates (26).

compared with the effects of electrophoretically pure ACTH (Li and Evans), pitressin (Parke-Davis), prolactin (Schering) and desoxycorticosterone glucoside (Ciba). All injections were intramuscular. The sequence, duration and dosage of the treatments in each balance study are shown in Table I. In this table the doses of Armour ACTH are expressed as the equivalent weights of Armour standard, lot LA 1A. The actual weights of the different lots of Armour ACTH given and the estimated content of impurities are shown in Table II.

The approximate protein, fat and carbohydrate content of the diet for each experiment is shown in Table III. A sample diet was analysed for mineral and nitrogen content in each experiment except the first. Urinary excretion of N, P, Ca, K, Cl, Na and 17-ketosteroids was measured in all experiments and of "11-oxycorticosteroids," "cortin," creatinine 8 and creatine 8 in some. Glucose was not measured. Fecal excretion of N, P, Ca and K was measured; fecal excretion of Na was assumed to be 2 per cent of intake.

Blood samples on a given day were taken before food or treatment had been given.

Choh Hao Li for the Li and Evans ACTH, to Dr. Richard Tislow of Schering Corporation for the prolactin, to Drs. George Thorn and Peter Forsham for the DOCG.

8 These results are not discussed.

TABLE III
Composition of diets

Experiment No.	Carbohydrate	Protein	Fat	Calories
1	gm. 220.8	gm. 60.2	gm. 67.2	1730
2	256.8	79.3	71	1985
3	161.2	54.4	44.8	1265
4 and 5	311.2	79.8	71.3	2205

RESULTS

The results are given in Tables IV-VIII, and are shown graphically in Figures 1-12.

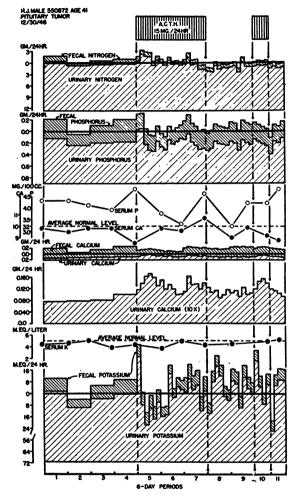


FIG. 1. PATIENT H.J., M.G.H. No. 550,872. EXPERIMENT 2. EFFECT OF ACTH ON N, P, CA, AND K BALANCES AND ON SERUM P, CA, AND K

Metabolic data in this and other figures are arranged according to the following scheme. There is a horizontal base line; intake is charted downward from this base line; the urinary and fecal excretions are then measured upward from the intake line towards the base line. If the output (fecal and urinary) exceeds the intake, the final level will be above the base line: if it does not, the final level will be below the base line. Thus a negative balance is indicated by a shaded area above the base line, and a positive balance by a clear area below the base line. The scales for N, P, Ca, and K metabolism are so chosen that (for changes in protoplasm and bone) the area representing P balance should equal the sum of the corresponding areas for N and Ca; and that representing K balance should equal that for N.

[§] Modification of method of Hogben, Schlapp and MacDonald (25).

a) Nitrogen metabolism

In all our experiments except the first, in which the dosage was small and our technique of preparation not optimal, ACTH caused an increase in urine N excretion and a negative N balance by the second day. N excretion after the second day apparently depended on the dose of ACTH; thus in patient H.J. it fell off on 15 mg. a day (see Figure 1), remained the same on 43 mg. a day (see Figure 5) and rose on 98 mg. a day (see Figure 7). In all experiments there was a fall in N excretion after stopping ACTH. This tended to bring the patient into positive balance. Retention of N in the recovery period was not as rapid as the loss during treatment, and usually lasted throughout the period of observation after treatment.

The changes in N balance during and after ACTH are taken to represent loss and restoration

of protoplasm and may be attributed to secretion of "sugar" hormone from the adrenal cortex. This hormone is thought (14) to inhibit anabolism of protoplasm (glyconeogenesis effect).

b) Calcium metabolism

There was a rise in the urinary Ca excretion in nine of the ten courses of ACTH given; there was a fall after stopping treatment in all ten. In some the rise was abrupt; in others it was step-like. For example, in experiment 3 (Figure 3, seventh day) the urinary Ca rose from 109 mg. to 195 mg. in one day, whereas in experiment 4 (Figure 5, days 9 through 18) it rose from 97 to 221 mg. in ten days. There was no consistent change in serum Ca or alkaline phosphatase 9 with therapy.

⁹ In later studies on patients with elevated serum phosphatase, ACTH produced a fall in serum phosphatase, consistent with diminished bone formation.

	TABI	LE :	IV		
Metabolic	data	for	ex	periment	1

	Date	Urine	Wt. of			Urinary	excretion				Serum	values*		Treat-
Periods	1947	vol.	pt.*	Calcium	Phos- phorus	Nitro- gen	Potassium	17-Keto- steroids	11-Oxy- steroids	Cı	к	CO2	Glu- cose	ment*·†
	Ţ	L	kg.	mg./24 hr.	mg./24 hr.	gm./24 hr.	m.eq./24 hr.	mg./24 hr.	mg./24 hr.	m.eq./L.	m.eq./L.	m.eq./L.	mg.%	
1	Jan. 28–30	2.5	58.7 _I	33	624	9.49	47.9	0.0	0.06					
2	Feb. 30-1	2.7	58.6 _I	36	659	9.44	54.3	0.1	0.06	100 _I	4.6 _I	28.8 _I	881	
3	1-3	2.8	58.2 _I	40	671	9.50	58.8	0.4	0.09					
4	3–5	2.4	57.9 _I	38	645	9.82	62.3	0.0	0.08	104 _I	4.7 _I	30.6 _I	92 _I	
5	5–7	2.4	57.8 _I	47	622	9.70	47.2	0.0	0.05					
6	7-9	2.1	57.8 _I	58	673	9.85	61.6	1.8	0.08	110 _I	3.7 _I	27.5 _I	82 _I	ACTH 15
7	9-11	2.5	58.1 _I	56	636	9.91	58.5	0.4	0.28	10611	4.0 _{II}	28.7 _{II}	9611	mg./24 hr. ACTH 15
8	11-13	2.0	57.7 _I	50	612	9.19	57.7	0.0	0.06					mg./24 hr. ACTH 15
9	13-15	2.6	57.7 _I	55	604	10.09	52.2	0.2	0.11	104 _I	4.3 _I	29.0 _I	67 _I	mg./24 hr. ACTH 15
10	15–17	3.5	58.0 _I	44	606	10.02	41.7	0.3	0.07					mg./24 hr. ACTH 15
														mg./24 hr.I ACTH 10
11	17-19	2.9	57.3 _I	26	503	7.69	41.1	0.4	! —	107 _I	4.6 _I	30.0 _I	72 _I	mg./24 hr.II
12	20-21	1.6	57.4 _I	31	524	9.09	53.0	0.5	_					
13	21-23	3.3	57.5 _I	32	535	9.28	58.8	0.4	0.12	107II	4.411	30.4 _{II}	100II	
14	23-25	2.0	57.2 _I	49	632	8.85	60.6	0.5	0.09					ACTH 15
15	25-27	3.8	57.8 _I	62	749	10.27	55.3	1.2	0.10	104 _I	4.7 _I	27.9	92 _I	mg./24 hr. ACTH 15
i									1					mg./24 hr.I ACTH 10
16	27-28	1.5	57.0	45	482	8.26	35.8	h	h					mg./24 hr.II
17	March 28-1	1.3	_	34	517	8.34	46.9	0.8	0.08					
18	1-3	3.2	56.8 _I	39	568	8.95	50.5	1.0	0.07	100I	5.0 ₁	31.8 _I	103 _I	
19	3-5	2.8	56.8 _I	35	500	8.07	50.4	0.5	-	1				
20	5–7	4.5	56.7 _I	35	541	8.98	62.2	0.4	0.05	85 ₁₁		29.411	10311	

^{*} Roman numerals indicate day of period to which values pertain.

† Expressed as equivalent of Armour Standard LA 1A.

The changes in Ca are taken to represent changes in bone, and one might anticipate corresponding changes in P (13). Whether these changes in calcium excretion are to be attributed to ACTH or to the contaminating pitressin is not clear since there were similar changes when pitressin was given alone (Figure 3). On the other hand, the electrophoretically pure ACTH of Li

and Evans reproduced the loss of Ca. Furthermore, in Cushing's syndrome, which is thought to be due to an overproduction of sugar hormone (14), osteoporosis (15) is a prominent feature. While osteoporosis is developing one expects hypercalcuria due to decreased bone formation in the presence of continued bone resorption. Characteristically, the serum Ca, P and alkaline phos-

TABLE V

Metabolic data for experiment 2

Period* Date	Date	Urine			Calcium ng./24		P	hospho	rus hr.		Nitroger gm./24 hi			lium /24 hr.		otassiu eq./24	
	Date	vol.	pt.	Urine	Fecal	Bal- ance†	Urine	Fecal	Bal- ance†	Urine	Fecal	Bal- ance†	Urine	Bal- ance†‡	Urine	Fecal	Bal- ancet
1 2 3 4 5 I 5 III 5 IV 5 V 5 VI 6 II 6 IV 6 VI 7 II 7 IV 7 VV 8 I 8 III 8 IV 8 V 8 VI 9 II 9 IV 9 VV	12/30- 15/47 1/5-1/11 1/11-1/17 1/17-1/23 1/23-1/24 1/24-1/25 1/25-1/26 1/26-1/27 1/27-1/28 1/28-1/29 1/30-1/31 1/31-2/1 2/1-2/2 2/2-2/3 2/4-2/5 2/5-2/6 2/6-2/7 2/7-2/8 2/8-2/9 2/9-2/10 2/10-2/11 2/11-2/12 2/12-2/13 2/13-2/14 2/14-2/15 2/15-2/16 2/15-2/16 2/15-2/16 2/19-2/20 2/19-2/21 2/19-2/20 2/20-2/21	L 11.1 10.2 5 11.7 1.3 1.8 2.3 2.2 2.2 2.2 2.4 1.9 1.6 1.5 1.5 1.5 2.7 1.6 1.6 1.2 1.7 1.3 1.6 1.6 1.2 1.7 1.3 1.6 1.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7		76 78 79 99 116 137 159 130 150 151 112 163 134 136 117 140 122 105 113 89 99 116 107 112 123 123 100 105	Fecal 336 173 274 364 222 222 222 222 229 189 189 189		Urine 780 662 720 935 956 677 558 727 558 727 680 714 681 675 680 675 680 671 762 860 675 681 677 681 6762 861 677 681 677 681 677 682 860 675 663 671 684 675 663 675 663 675 663 675 663 675 673 674	329 186 292 387 263 263 263 263 230 230 230 230 230 320 320 320 320 32		13.08 11.91 12.21 13.14 14.92 14.48 14.26 13.43 12.85 12.12 13.35 12.15 12.28 12.35 12.15 12.44 10.91 11.10 11.54 10.54 11.55 11.58	1.28 0.68 0.99 1.32 1.08 1.08 1.08 1.08 1.08 1.08 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06		Urine 59.8 68.9 67.6 84.3 65.8 80.7 84.0 106.9 112.6 89.3 91.2 79.8 64.0 50.9 71.2 118.7 66.8 58.2 34.1 59.5 43.0 45.7 57.4 67.8 55.1 66.3 55.2 84.5 59.9		72.90	8.88 5.74 9.91 8.54 8.54 8.54 8.54 8.54 8.59 8.59 9.75 9.75 9.75 9.75 7.34 7.34 7.34 7.34 7.34 7.34 7.34 7.34	-10.6 + 3.9 - 5.2 - 9.1 - 33.3 - 0.8 + 13.5 + 1.6 + 2.5 + 9.7 + 8.9 - 19.3 - 3.3
10 I 10 II 10 III 10 IV 11 I 11 II 11 III 11 IV	2/22-2/23 2/23-2/24 2/24-2/25 2/25-2/26 2/26-2/27 2/27-2/28 2/28-3/1 3/1-3/2	1.4 1.6 1.8 2.0 1.6 1.7 1.6	75.9 76.2 76.3 75.9 75.6 75.7	119 144 154 140 118 113 104 94	281 281 281 281 281 281 281 281	-198 -223 -233 -219 -197 -192 -183 -173	775 722 689 656 504 724 694 780	284 284 284 284 284 284 284 284	-160 -107 - 74 - 41 +111 -109 - 79 -165	11.81 12.11 12.04 12.08 11.06 11.71 11.13 11.51	1.05 1.05 1.05 1.05 1.05 1.05 1.05	$ \begin{array}{r} -0.10 \\ -0.41 \\ -0.34 \\ -0.38 \\ +0.65 \\ -0.01 \\ +0.58 \\ +0.19 \end{array} $	86.4 88.8 77.4 85.7 52.7 71.6 75.2 70.7	- 7.0 - 9.4 + 2.0 - 6.3 +26.7 + 7.8 + 4.2 + 8.7	93.36 76.01 64.10 77.20 45.15 76.71 80.71 80.55	7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.24	-29.4 -12.1 - 0.1 -13.2 +18.8 -12.8 -16.8 -16.6

^{*} Roman numerals indicate day of period to which values pertain.
† Intakes per 24 hr. were as follows for all periods save period 1: Ca 202 mg.; P 899 mg.; N 12.76 gm.; Na 81.0 m.eq.;
K 71.2 m.eq. In period 1, Ca intake was 211 mg. per 24 hr.; Na intake was not measured.

TABLE V-Continued

		Urinary 6	excretion					Serun	ı values*				T
Period	Chloride	17-Keto- steroids	11-Oxy- steroids	Biol. cortin	Ca	P	P'tase	Cı	K	Na	CO ₂	Glucose	Treatment
1	m.eq./24 hr.	mg./24 hr.	mg./24 hr.	Mouse units/ 24 hr. <1.5	mg.% 9.8 ¹	mg.% 4.3 ^I	B.U. 1.7 ^I	m.eq./L 103 ^I	m.eq./L 4.4 ^I	m.eq./L 135.6 ^I	30.2 ¹		
2 3 4 5 I	75.93 83.65 82.08 67.86	1.7 1.5 0.7	0.11 0.05 0.14	<1.5 <1.5 <1.5	9.5 ¹¹ 9.8 ¹ 9.8 ¹ 7.7	4.5 ^{II} 4.1 ^I 3.9 ^I 4.8	2.7 ^{II} 2.3 ^I 3.3 ^I 1.6	103 ¹¹ 105 ¹ 109 ¹ 103	4.6 ^{II} 5.0 ^I 3.8 ^I 4.3	139.0 ¹¹ 139.8 ¹ 145 ¹ 141.8	31.9 ^{II} 34.0 ^I 31.1 ^I 28.6	110 ¹ 86)
5 II 5 III 5 IV 5 V	89.87 100.39 117.98 116.05	2.5	0.42	>1.5									
5 VI 6 I 6 II 6 III	110.36 84.28 68.47 87.31	1.8	0.28	\ \ <1.5	9.8	3.8	2.2	97	3.7	139.1	33.2	84	ACTH\$
6 IV 6 V 6 VI	76.33 65.67 50.4		0.14					402] 15 mg./d.
7 I 7 II 7 III 7 IV	54.3 117.5 68.8 61.2	3.0	0.14	<1.5	9.6	3.3	2.9	103	4.9	137.5	33.3	82	
7 V 7 VI 8 I 8 II	45.0 64.2 50.1 61.0		0.12		10.7	4.6	1.8	103	4.3		32	95	
8 III 8 IV 8 V 8 VI	62.5 62.0 60.8 71.1	1.5	0.16	<1.5						145.6			
9 I 9 II 9 III 9 IV	70.6 73.6 70.4 84.1	1.3)		9.0	3.9	2.9	105	4.5	143	32.5	84	
9 V 9 VI 10 I	69.7 75.2 82.6	ll .	0.17	1	9.9	4.2	2.4	107			31.0	99)
10 II 10 III	81.4 87.4	2.0	0.15	<3.0								99	ACTH§ 15 mg./d.
10 IV 11 I 11 II	99.7 75.9 85.9	2.8	0.08	<3.0	9.2	4.2	2.8	97	4.9	142.5	30.9	95	J
11 III 11 IV	74.2 67.9	2.0) 5.55) 3.0	8.8	4.8	3.4	103	5.2	140.4	33.5	95	

‡ Fecal Na assumed to be 2 per cent of intake. § Expressed as equivalent of Armour Standard LA 1A.

phatase are within normal limits. An increased excretion of Ca with ACTH would be consistent with the findings in Cushing's syndrome.

c) Phosphorus metabolism

One might have expected (13) that the changes in P metabolism would be explained by the changes in N and Ca alone. Such was not the case. Thus, there was a slight rise in P excretion on the first day of giving ACTH—when there were no notable changes in N or Ca—and then there

was either little change in P balance or actual retention—while N and Ca were lost—(Figure 3, days 17 through 19, and Figure 7, days 33 through 37 and 50 through 53). In the recovery periods the reverse changes in P occurred, at first retention then loss.

The serum P fell with ACTH.¹⁰

¹⁰ Although the serum P is consistently high in acromegaly, we have not found it low in panhypopituitarism. Possibly the lack of ACTH in this disease counteracts the lack of growth hormone, so that normal values result.

Phosphorus is the main anion of intracellular fluid, and one must conclude that with ACTH there are changes in intracellular fluid volume independent of protoplasmic changes. This conclusion gains support from the data for K metabolism (see below).

d) Sodium and chloride metabolism

The effect of ACTH on Na and Cl metabolism apparently varied with the dose and the length of the course. The results were also probably af-

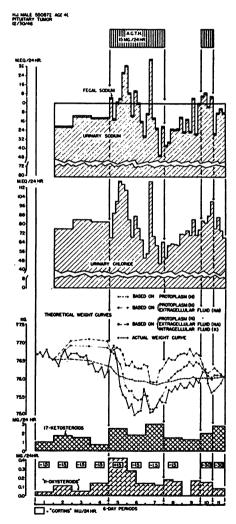


FIG. 2. EXPERIMENT 2, CONTINUED. EFFECT OF ACTH ON NA BALANCE, URINARY CL, 17-KETOSTEROIDS, "11-OXYSTEROIDS" AND "CORTIN," AND ON THE ACTUAL AND "THEORETICAL" WEIGHT CURVES

"Cortin" is expressed in "mouse units per 24-hours" (for '-', read 'less than'; for '+' read 'more than'). For method of plotting theoretical weight curves see (13).

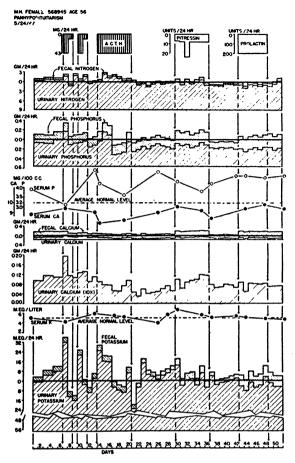


FIG. 3. PATIENT M.H., M.G.H. NO. 568,945. EXPERIMENT 3. EFFECT OF ACTH, PITRESSIN, AND PROLACTIN ON N, P, CA, AND K BALANCES AND ON SERUM P, CA, AND K

fected by pitressin contaminating the ACTH. Thus pitressin itself caused a transient loss of Na followed by a retention during the recovery period (Figure 4). With a dose of 15 mg. (experiments 1 and 2, Figure 2) ACTH had no consistent effect on Na. With the larger doses 1) Na was lost on the first day (possibly a pitressin effect); then 2) Na was retained for several days (experiment 5, Figure 8); but 3) Na was lost again if the administration of ACTH was continued after the seventh or eighth day (Figures 4 and 6). At this time the serum Na level fell. We have been able to confirm this late loss of Na in other experiments with ACTH (16). It sometimes took longer to appear.

Changes in Na were accompanied by relatively smaller changes in Cl. If changes in Cl are a

measure of changes in extracellular fluid (ECF), then the changes in Na due to changes in ECF

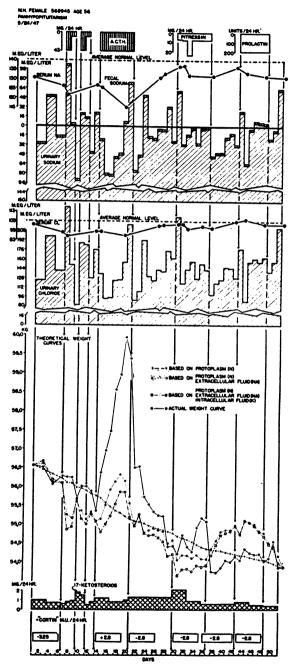


FIG. 4. EXPERIMENT 3, CONTINUED. EFFECT OF ACTH, PITRESSIN, AND PROLACTIN ON NA BALANCE, URINARY CL, 17-KETOSTEROIDS, AND "CORTIN," ON THE ACTUAL AND "THEORETICAL" WEIGHT CURVES, AND ON SERUM NA AND CL

"Cortin" is expressed in "mouse units per 24 hours" (for '-' read 'less than'; for '+' read 'more than').

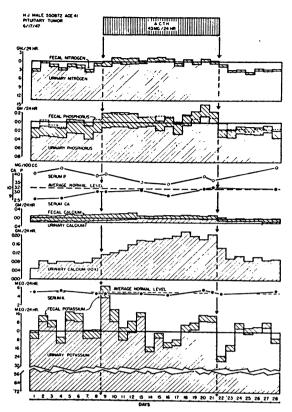


FIG. 5. PATIENT H.J., M.G.H. NO. 550,872. EXPERIMENT 4. EFFECT OF ACTH ON N, P, CA, AND K BALANCES, AND ON SERUM P, CA, AND K

would be given by the equation:

Na (ECF) =
$$\frac{\text{Na (serum)} \times .97}{\text{Cl (serum)} \times 1.04} \times \text{Cl.}$$

Na changes in excess of those due to ECF would represent shifts in intracellular Na (17).

In Figures 10-B and 11-B are plotted for experiments 3 and 5 the theoretical changes in intracellular Na. It apparently entered the cells when ACTH was given and left the cells during the recovery periods. A similar effect has been reported by Prunty, Forsham and Thorn (8).

e) Potassium metabolism

In some of the experiments there was an apparent negative K balance throughout the study (Figures 1 and 7). Therefore, K changes during treatment and recovery periods should be evaluated from the data in the control periods.

With ACTH there was always a large, immediate loss of K within 24 hours of the beginning of treatment and a corresponding retention of K

TABLE VI Metabolic data for experiment 3

	D	Urine	Wt. of		Calciumg./24			hospho mg./24		l g	Nitroger m./24 h	n* Fr.		ium*† /24 hr.		otassiu 1.eq./24	
Day	Date	vol.	Pt.	Urine	Fecal	Balance	Urine	Fecal	Balance	Urine	Fecal	Balance	Urine	Balance	Urine	Fecal	Balance
1&2 3&4 5&6	1947 May 24-26 26-28 28-30 30-31	L. 3.5 4.9 4.1 1.8	kg. 56.5 56.5 56.0 56.3	94 117 109 195	225 225 225 145	-165 -188 -180 -186	432 419 495 727	226 226 226 169	- 99 - 86 -162 -337	8.93 9.37 9.15 10.52	0.70 0.70 0.70 0.59	-0.94 -1.38 -1.16 -2.42	207.3	+ 28.1 - 51.7 + 16.6 -105.0	61.53 64.83	4.92 4.92 4.92 4.14	- 3.13 - 8.67 -11.97 -35.84
8	June 31-1	1.4	56.2	115	145	-106	449	169	- 59	7.37	0.59	+0.73	160.6		44.82	4.14	+ 8.82
9 10	1-2 2-3	2.3 1.3	56.2 55.8	107 127	145 145	- 98 -118	486 489	169 169	- 96 - 99	10.56 9.01	0.59 0.59	-2.46 -0.91	65.7 161.0	+ 89.9 - 22.5		4.14 4.14	+12.34 -25.34
11	3–4	2.1	56.0	131	145	-122	529	169	-139	10.26	0.59	-2.16	170.3	- 14.7	54.55	4.14	- 0.91
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 1-10-1	2.1 2.5 1.1 .9 .8 .9 1.4 4.7 2.0 2.5 2.3 2.0 2.5 2.0 2.2 1.8 1.3 1.3 1.3 2.8	56.0 55.8 55.4 56.4 57.5 58.6 59.9 56.5 55.5 55.5 55.3 55.0 55.0 54.4 54.2 54.7 54.3 55.2 55.1	90 110 90 77 76 52 50 73 94 47 30 60 41 46 73 52 99 63 87 94 98 119	145 145 174 174 174 174 174 167 167 167 167 167 167 252 252 252 252 252 252 252 252 252	- 81 - 101 - 110 - 97 - 96 - 72 - 70 - 93 - 14 - 60 - 43 - 54 - 54 - 63 - 74 - 86 - 65 - 197 - 161 - 185 - 192 - 196 - 217 - 214 - 49	406 444 711 260 294 1251 313 351 418 369 470 430 430 4411 430 435 447 391 430 430 433 435 447 391 438 438	169 169 200 200 200 200 200 200 178 178 178 178 178 178 178 268 268 268 268 268 268 268 129	- 16 - 54 - 165 - 352 - 291 + 118 + 99 + 65 - 154 + 68 + 30 - 56 + 12 - 49 - 30 + 15 - 192 - 144 - 176 - 100 - 139 - 211 - 180 + 42	8.13 8.46 8.86 11.06 9.76 9.30 9.30 8.75 7.70 7.47 7.18 8.00 8.88 8.30 8.08 8.83 7.79 8.83 8.16 8.75 7.59	0.59 0.59 0.54 0.54 0.54 0.54 0.54 0.45 0.45 0.45	-0.04 -0.36 -0.71 -2.91 -1.83 -2.25 -1.61 -0.93 -1.151 +0.24 +1.06 +0.24 +1.06 -0.17 +0.36 -0.191 -0.91 -0.91 -0.91 -0.91 -0.93 -0.91 -0.93 -0.91 -0.93 -0.91 -0.93 -0.91 -0.93 -0.91 -0.93 -0.9	178.2 134.1 76.1 74.3 103.3 109.2 163.6 230.2 80.9 106.4 206.3 138.3 135.3 135.3 150.7 189.2 130.7 216.1 142.1 153.7 127.6 153.7 127.6 153.4	+ 43.5 - 22.6 + 21.5 + 79.5 + 81.3 + 52.3 + 46.4 - 8.0 - 74.7 + 49.2 - 53.1 + 17.3 + 20.3 + 4.4 + 4.9 - 33.6 + 24.9 - 1.5 + 1.9 + 2.5 + 1.0 + 2.5 + 1.0 + 2.5 + 1.0 + 2.0 +	59.23 82.83 74.12 73.76 53.22 49.87 48.24 64.30 52.28 67.79 63.06 61.50 61.07 62.19 64.07 66.69 70.29 53.75 58.38 59.25 53.97 64.38 52.03	4.14 4.48 4.48 4.48 4.48 4.48 4.48 4.33 7 3.37 3.37 3.37 3.37 3.37 3.37 3.	+ 5.72 - 5.59 - 29.53 - 20.82 - 20.46 + 0.08 + 3.43 + 5.06 - 11.09 - 18.19 - 8.65 - 7.78 - 9.66 - 7.78 - 12.28 - 17.97 - 1.43 - 6.06 - 6.93 - 1.206 + 0.29 - 6.95
38 39 40 41 42	July 30-1 1-2 2-3 3-4 4-5	2.0 1.8 2.1 2.4 2.0	53.8 53.7 53.2 54.0 54.0	66 69 80 77 66	124 124 124 124 124 124	- 36 - 39 - 50 - 47 - 36	374 393 387 390 366	129 129 129 129 129 129	+ 56 + 37 + 43 + 40 + 64	7.55 7.44 7.84 7.94 7.70	0.37 0.37 0.37 0.37 0.37	+0.43 +0.37	112.0 137.5	+ 43.8 + 43.6 + 18.1 + 10.7 + 29.6	55.92 56.71 58.39	3.06 3.06 3.06 3.06 3.06	+ 0.14 - 1.20 - 1.99 - 3.67 - 4.92
43 44 45 46 47 48 49 50 51 52	5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15	2.3 1.5 2.0 1.8 1.8 2.4 2.1 1.6 3.1 lost	54.1 54.3 54.2 54.2 54.2 54.2 54.0 54.1 54.6 53.9	88 49 84 82 80 83 70 72 73	260 260 260 260 260 265 265 265 265 265	-194 -155 -190 -188 -186 -189 -181 -183 184	358 386 351 392 383 334	260 260 260 260 260 260 286 286 286 286	- 66 - 59 - 87 - 52 - 93 -110 - 61 - 105	7.86 7.71 7.30 7.75 7.36 8.03	0.66 0.66 0.66 0.66 0.66 0.80	+1.27 +0.17 +0.32 +0.73 +0.29 +0.53 -0.14	151.4 164.5 163.1 161.9 135.5 150.2	+ 61.6 + 4.2 - 8.9 - 7.5 - 6.3	49.25 56.42 52.29 54.06 61.09 57.89 54.89	8.82 8.82 8.82 8.82 8.82 6.70 6.70 6.70	- 4.21 - 0.29 - 7.46 - 3.33 - 5.10 - 12.13 - 6.81 - 3.81

^{*} Intakes per 24 hr. were as follows for all days save day 23: Ca 154 mg.; P 559 mg.; N 8.69 gm.; Na 158.8 m.eq.; K 57.8. On day 23, intake was: Ca 132 mg.; P 540 mg.; N 8.16 gm.; Na 156.4 m.eq.; K 53.0 m.eq. † Fecal Na assumed to be 2 per cent of intake. † Expressed as equivalent of Armour Standard LA 1A.

TABLE VI-Continued

					TABL	E VI(Continued	,					
Day		Urinary	excretion					Serum	values				Treatment
Day	Chloride	17-Keto- steroids	11-Oxy- steriods	Biol. cortin	Ca	P	P'tase	Cı	к	CO ₂	Na	Glucose	1 Catment
	m.eq./24 hr.	mg./24 hr.	mg./24 hr.	Mouse units /24 hr.	mg.%	mg.%	Units %	m.eq./L	m.eq./L	m.eq./L	m.eq./L	mg.%	
1&2 3&4	123.7 198.2	1.0	0.48	3.25	8.8	3.9		99 91	5.0	28.1 25.4	130.5 126.6	89 89	
5&6 7	140.6 255.2	0.7 0.6	1.17 0.48	ן	9.4	3.1		87	4.2	24.2	121.4	106	ACTH§ 43 mg.
8	149.5	0.8	0.32									-	ACTH 11 mg.
9 10	82.4 187.4	0.9 1.8	0.27 0.58										ACTH 43 mg.
11	183.8	1.5	0.34										ACTH 11 mg.
12 13 14	127.5 17.63 135.3	0.5	0.17)	9.0	4.9	2.9	92	5.9	29.0	126.8	95	1
15 16	93.2 93.6	1.2	0.37		7.6	4.2	5.0	92		23.9	125.6	95	АСТН
17 18	124.2 124.9	0.8	_	> 2.8					5.5			400	43 mg. /24 hr.
19 20 21	154.8 218.3 90.8	1.0	0.56		8.2	3.6	3.6	88	5.2	26.9	115.1	100	J
22 23	105.7 191.7	1.3		-20									
24 25 26	130.6 123.8 141.8	1.3	0.04		9.0	4.8	3.0	99	4.0	26.0	130.8	83	
27 28 29	139.1 174.9 162.3	1.3						98	5.7		133.0		Pitressin
30 31 32 33	239.6 119.5 142.3 156.3	2.1	3.40	 	9.6	4.3	3.3	100 100 95	6.7	27.3	136.8 137.2 132.2	85	7 u. 8 u. 24 u. 8 u.
34 35	127.3 152.2	0.9	0.75		9.2	3.8	4.4	98	5.6	26.5	127.7	86	8 u. 8 u.
36 37	141.7 99.6	0.6	_		8.4	4.2	2.2	96	5.1	25.7	131.7	108	
38 39	119.7 125.4	K		<2.8									
40 41 42	146.2 145.2 128.4	0.6	2.00			4.6	4.0	103	5.4	26.3	137.5	83	Prolactin
43 44 45	177.2 89.1 155.3 160.4	} 0.8	2.24 2.24		9.4	4.6	3.8	105	5.1	24.9		120	200 u. 200 u. 200 u.
46 47 48	160.4 155.3 162.4 138.9	0.5	1.83	 <2.8	9.8	4.5	4.1	100	4.9	29.6	131.7	107	200 u. 200 u. 200 u.
49 50 51	138.9 155.5 212.6	0.4	1.00										
52					9.4	4.6	3.2	100	4.7	27.8	131.2	93	

at the beginning of the recovery period. These changes were out of proportion to the changes in N and P, the other constituents of ICF measured. Apart from this, K balances were little affected by ACTH.

With K then, as with P, the changes were not those to be expected from the changes in N. In Figures 10-A and 11-A are shown for experiments 3 and 5, respectively, 1) the difference between the K values found and the K values expected

from changes in protoplasm and ECF (solid lines) and 2) the difference between the P values found and the P values expected from changes in protoplasm, ECF and bone (broken lines).¹¹ Both

¹¹ For factors used see legend to Figure 10.

K and P are expressed in milliequivalents, P being given a "valence" of 2.12 The fluctuations in K and P beyond those expected from the changes in

¹² At the pH of body fluids, 1 mM of P would combine with 1.8 m.eq. of cation, giving P a "valence" of 1.8.

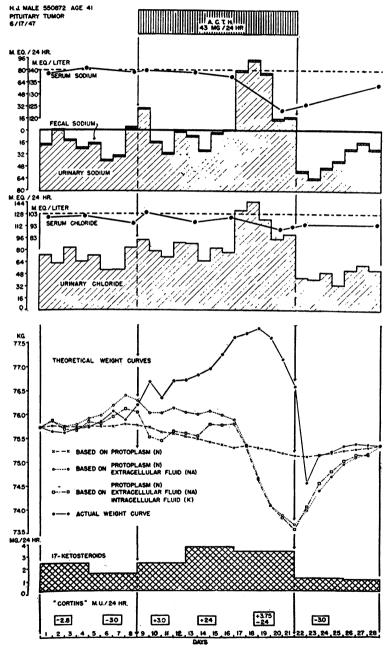


FIG. 6. EXPERIMENT 4, CONTINUED. EFFECT OF ACTH ON NA BALANCE, URINARY CL, 17-KETOSTEROIDS, AND "CORTIN" ON THE ACTUAL AND "THEORETICAL" WEIGHT CURVES, AND ON THE SERUM NA AND CL

"Cortin" is expressed in "mouse units per 24 hours" (for '-' read 'less than'; for '+' read 'more than').

N, Ca and Cl are highly correlated, and their relation to each other is roughly that of K to P in ICF.¹⁸

From the changes shown, one may conclude that, independently of the protoplasm changes, ICF is retained with ACTH, to be lost again during the recovery period. This may be due to glycogen deposition with ACTH (18, 19) for, when glycogen is formed, P and K are retained (20). In patients with hypopituitarism, in whom the stores of glycogen are depleted, this effect might be all the more marked.

There remains to be discussed the sharp loss of K on starting ACTH with corresponding retention at the beginning of recovery. These changes are not accompanied by commensurate changes in P values, but are inversely related to changes in intracellular Na (Figures 10-B and 11-B). They presumably represent changes in ICF composition rather than in ICF volume.

Desoxycorticosterone glucoside apparently had a similar effect on ICF composition (Figure 11), but since 17-hydroxycorticosterone, a substance with sugar hormone activity, also had this effect (21), there is no need to postulate that a separate desoxycorticosterone-like substance is liberated with ACTH.

f) Body weight and water balance

As reported elsewhere (13) one may pro-rate the changes in body weight contributed by proto-plasm, extracellular fluid, and intracellular fluid by constructing "theoretical weight curves" in which the actual fluctuations are plotted against the theoretical fluctuations expected from the N, Na and K balances.

"Theoretical weight curves" for experiments 2, 3, 4 and 5 are shown in Figures 2, 4, 6 and 8, respectively. The actual weight curves should be compared with the theoretical weight curves based on (N + Na + K). In experiment 5 (Figure 8),

TABLE VII

Metabolic data for experiment 4

Day Date	Urine	Wt. of		Calcium* mg./24 hr.			hosphorus mg./24 hr			Nitrogen's			ium*† /24 hr.	
	Date	volume	pt.	Urine	Fecal	Balance	Urine	Fecal	Balance	Urine	Fecal	Balance	Urine	Balance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 32 44 25 62 7	1947 June 17-18 18-19 19-20 20-21 21-22 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 July 30-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14	1.0 1.4 1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.4 1.4 1.4 1.4	75.5 75.7 75.6 75.7 75.7 75.7 75.9 76.1 76.2 76.7 77.3 77.6 77.3 77.6 77.6 77.6 77.6	53 83 71 79 79 72 75 97 119 133 159 175 173 185 189 1202 186 206 142 97 105 89 104 93	250 250 250 250 250 314 314 314 330 330 330 190 190 190 178 178 178 178 178 178 178 178 178 178	- 90 -120 -108 -116 -180 -173 -176 -198 -227 -236 -250 -276 -152 -166 -162 -166 -167 -151 -171 -171 -29 -13 -21 -29 -17	539 592 570 546 637 620 651 771 778 760 785 816 717 790 632 833 923 1059 901 544 536 627 620 627 620 618 655	234 234 234 234 313 313 313 345 345 345 240 240 247 247 247 247 247 176 176 176 176	+132 + 79 +101 +125 - 28 + 80 - 59 - 211 - 218 - 200 - 120 - 151 - 52 - 125 + 265 - 175 - 265 - 401 - 243 + 193 + 193 + 193 + 194 +	10.04 12.56 11.42 10.44 11.51 11.18 9.90 11.92 11.76 12.52 12.52 13.00 13.72 13.89 13.60 12.00 13.44 12.52 13.60 12.99 12.17 10.31 10.47 9.43 10.60 10.35	0.71 0.71 0.71 0.71 0.96 0.96 0.96 1.76 1.76 1.76 0.88 0.88 0.85 0.85 0.85 0.85 0.85 0.85	+2.73 +0.21 +1.35 +2.33 +1.01 +1.34 +2.62 +0.60 -0.97 -0.79 -0.80 -0.40 -1.12 -1.29 -1.00 +0.63 -0.81 +0.11 -0.97 -0.36 +0.79 +2.65 +2.49 +3.53 +2.36	61.7 80.5 67.0 56.6 62.7 40.6 46.1 84.1 109.0 64.6 78.7 72.7 53.4 76.5 80.6 149.6 173.1 155.8 97.6 25.5 16.0 31.7 39.8 55.4,6	+18.0 - 0.8 +12.7 +23.1 +17.0 +39.1 +33.6 + 4.4 -29.3 +15.1 +30.2 + 7.0 +26.3 + 3.2 - 0.9 -69.9 -93.4 -15.4 -17.9 +54.2 +63.7 +49.0 +39.9 +24.3 +15.1
									$\begin{vmatrix} +111 \\ +74 \\ +122 \end{vmatrix}$		0.52 0.52 0.52	+2.36 +2.61 +2.47	55.4 64.6 55.5	$\begin{vmatrix} +24.3 \\ +15.1 \\ +24.2 \end{vmatrix}$

¹⁸ See appendix.

			~		
TADI	10	3777	('041	tama.	ıod

D		Potassiu n.eq./24			Urinary e	xcretion		Serum values						Treatment
Day	Urine	Fecal	Balance	Chloride	17-Keto- steroids	Biol. cortin	Creatinine	Ca	P	CI	К	CO ₂	Na	Treatment
				m.eq./24 hr.	mg./24 hr.	Mouse units/ 24 hr.	gm./24 hr.	mg.%	mg.%	m.eq./L	m.eq./L	m.eq./L	m.eq./L	
1 2 3	65.78 81.70 76.98	5.41 5.41	+ 1.58 -14.34 - 9.62	72.85 61.61 82.52	2.4	<2.8	1.10 0.99 1.03	8.7	4.0	100	5.1	33.1		
4 5 6 7	61.89 83.56 81.63 66.78	7.18	+ 5.47 -17.97 -16.04 - 1.19	64.16 71.15 54.77 55.24	1.5	} < 3.0	0.98 1.12 1.20 1.25	8.9	4.3	100	5.2	33.1	140.7	
8 9 10 11 12 13	66.89 102.78 81.10	7.18 11.12 11.12 11.12	- 1.30 -41.13 -19.45 + 5.11 - 1.28 - 9.16	82.78 92.82 77.80 69.77 89.33 87.65	2.4		1.20 1.30 1.35 1.16 1.37 1.33	9.6 9.6	3.9 4.0	95 104	4.8 4.7	32.3 26.1	139.0 139.7	
14 15	53.05 65.98 57.53	4.86	+14.86 + 1.93 +10.38	64.78 81.82 75.77	3.8	≥ 24	1.26	9.9 9.2	3.6 3.5	96 100	4.6 4.1	28.8	139.0 137.2	ACTH 43‡ mg./ 24 hr.
16 17 18 19 20 21	59.74 73.01 74.25 81.74 81.07	5.79 5.79 5.79 5.79 5.79	+ 7.24 - 6.03 - 7.27 - 14.47 - 14.09	132.41 144.28 121.69 93.98 99.90	3.4	 	1.23	10.0	3.9	90	5.6	30.0	128.2	
22 23 24 25	45.66 55.69 75.43 71.02	4.71 4.71 4.71 4.71	+22.40 +12.37 - 7.37 - 2.96	42.53 40.96 49.40 33.90	1.1	<2.8	1.28 1.31 — 1.32	10.2	3.7	92 94	5.1 4.9	31.0	125.1 125.0	
26 27 28	72.59 76.93 62.63	4.71 4.71 4.71	- 4.53 - 8.87 + 5.43	52.70 60.22 53.45	1.0		1.45 1.37 1.39							

* Intakes per 24 hr. were as follows: Ca 213 mg.; P 905 mg.; N 13.48 gm.; Na 81.3 m.eq.; K 72.77 m.eq.

† Fecal Na assumed to be 2 per cent of ntake.

‡ Expressed as equivalent of Armour Standard LA 1A.

in which the ACTH contained little pitressin, the correlation was good. In experiments 2, 3 and 4 the ACTH produced a gain of weight not explained by N, Na and K (Figure 2, periods 5 and 10; Figure 4, days 14 through 20; Figure 6, days 9 through 21). This was probably due to water retention without sodium and may have been a pitressin effect, since a similar discrepancy was produced in the experiment with pitressin (Figure 4, days 30 through 36).

a) Urinary corticoids

ACTH caused a rise in "cortin" 6 in the three experiments (2, 3 and 4, Figures 2, 4 and 6) in which it was assayed. In the control periods the values were below normal, as one would expect in panhypopituitarism. With ACTH there was a rise to values of at least 1.5 (experiment 2), 2.8 (experiment 3) and 24 (experiment 4) mouse units per 24 hours. The last value is above

the normal range. Upon stopping ACTH "cortin" excretion fell to the control levels.

In the three experiments ¹⁴ (1, 2 and 5, Figures 2 and 9) in which "11-oxysteroid" excretion could be determined chemically ¹⁵ ACTH produced a rise from low normal values to normal values (experiments 1 and 2) or, when larger doses were given, to values greatly above normal. In experiment 5, where the highest doses of ACTH were used, the rise (Figure 9) was to 2.41 mg. per 24 hours, a value within the range found in Cushing's syndrome.

Thus in all experiments urinary corticoid values indicated an increased output of sugar hormone with ACTH.

¹⁴ In experiments 3 and 4, determinations of "11-oxysteroids" were carried out, but all determinations done at that time were later found to be unreliable due to technical difficulties.

¹⁵ These determinations were done for us by Dr. Nathan Talbot, to whom the authors are indebted.

h) Urinary 17-ketosteroids

Most workers, including ourselves have found in subjects with intact pituitaries a rise in 17-ketosteroid excretion after giving ACTH. On the other hand, only one of these three patients with panhypopituitarism showed a significant rise (H.J., experiments 2, 4, 5; Figures 2, 6, 9), and he was certainly not totally lacking in pituitary function. Thus, there were many mature Leydig cells in the testicular biopsy as evidence that the luteinizing hormone (L.H.) was being produced, albeit not sufficiently to prevent hypoleydigism.

In M. W. (experiment 1), given about the same dose of ACTH that H. J. received in experiment 2, and in M.H. (experiment 3), given the same

dose of ACTH that H.J. received in experiment 2, and in M.H (experiment 3), given the same dose that H. J. received in experiment 4, there was no significant rise in 17-ketosteroids. In each case, however, there was a rise in corticoids, and in the latter the other metabolic effects of ACTH were produced.

These observations suggest that ACTH produces less rise in 17-ketosteroids in patients with panhypopituitarism than in others, possibly because a second pituitary hormone is required. The second hormone might, for example, be L.H. The normal child, whose output of sugar hormone, and therefore of ACTH, is presumably normal, does not excrete appreciable amounts of 17-keto-

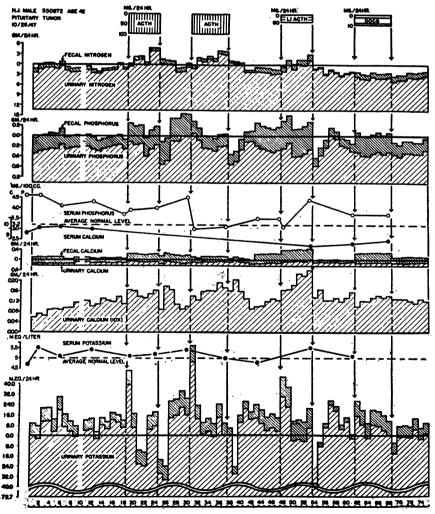


FIG. 7. PATIENT H.J., M.G.H. No. 550,872. EXPERIMENT 5. EFFECT OF ACTH AND DESOXYCORTICOSTERONE GLUCOSIDE (DOCG) ON N, P, CA, AND K BALANCES, AND ON SERUM P, CA, AND K

TABLE VIII—Metabolic data for experiment 5

		Urine	Wt. of	Calcium* mg./24 hr.		Phosphorus* mg./24 hr.		Nitrogen* gm./24 hr.		Sodium*† m.eq./24 hr.		Potassium* m.eq./24 hr.					
Day	Date	Vol.	Pt.	Urine	Fecal	Balance	Urine	Fecal	Balance	Urine	Fecal	Balance	Urine	Balance	Urine	Fecal	Balance
	Oct.	L.	kg.														
1 2	1947 26–27 27–28	.9 1.2	75.9 76.1	58 71	251 251	- 96 -109	557 601	303 303	+ 45 + 1	10.94 12.01	1.23 1.23	+1.30 +0.24	47.9 44.4	+ 31.8 + 35.3	72.79 70.32	9.88 9.88	- 9.9 - 7.4
3 4 5	28-29 29-30 30-31 Nov.	1.4 1.6 1.8	76.3 76.3 76.3	64 87 90	251 251 251	-102 -125 -128	621 650 640	303 303 303	- 19 - 48 - 38	12.47 12.58 12.17	1.23 1.23 1.23	-0.23 -0.34 +0.08	50.8 71.0 81.0	+ 28.9 + 8.7 - 1.3	83.07 84.55 75.90	9.88 9.88 9.88	-17.2 -21.7 -13.0
6 7 8 9	31-1 1-2 2-3 3-4	1.8 1.3 1.2 1.3	76.2 76.2 76.2 76.3	87 94 96 115	251 189 189 189	-125 - 70 - 72 - 91	754 663 675 693	303 228 228 228 228	$ \begin{array}{r} -152 \\ + 14 \\ + 2 \\ - 16 \end{array} $	12.99 11.74 11.15 11.38	1.23 1.01 1.01 1.01	-0.74 +0.73 +1.32 +1.09	78.5 59.0 63.8 77.6	+ 1.2 + 20.7 + 15.9 + 2.1	92.93 80.14 76.46 72.05	9.88 8.14 8.14 8.14	-30.0 -15.5 -11.8 - 7.4
10 11 12 13 14 15	4-5 5-6 6-7 7-8 8-9 9-10	1.5 1.2 1.2 1.3 1.3	76.3 76.3 76.3 76.4 76.4 76.4	122 101 108 130 123	189 189 189 163 163 163	- 98 - 77 - 58 - 80 - 73	695 648 616 657 687	228 228 228 189 189 189	- 18 + 29 +100 + 59 + 29	11.88 10.74 10.86 11.61 11.71	1.01 1.01 1.01 0.59 0.59 0.59		81.9 59.0 70.0 78.8 71.6	- 2.2 + 20.7 + 9.7 + 0.9 + 8.1	77.01 78.03 69.91 81.61 78.53	8.14 8.14 8.14 5.23 5.23 5.23	-12.4 -13.4 - 1.4 - 14.1 -11.0
16 17 18 19 20 21	10-11 11-12 12-13 13-14 14-15 15-16	1.4 1.3 1.5 1.2 1.1	76.5 76.6 76.6 76.6 76.9 77.0	118 137 110 164 160 139	163 163 163 301 301 301	- 68 - 87 - 60 -252 -248 -227	712 733 647 801 741 758	189 189 189 367 367 367	+ 4 - 17 + 69 -263 -203 -220	11.98 13.30 11.96 12.85 14.91 15.01	0.59 0.59 0.59 1.01 1.01	+0.91 -0.41 +0.92 -0.38 -2.44 -2.54	59.9 74.9 78.0 93.1 42.8 27.2	+ 19.8 + 4.8 + 1.7 - 13.4 + 36.9 + 52.5	85.44 83.75 79.60 122.40 79.41 61.50	5.23 5.23 5.23 10.66 10.66 10.66	-17.9 -16.2 -12.1 -60.3 -17.3 + 0.6
22 23 24 25 26 27	16-17 17-18 18-19 19-20 20-21 21-22	.7 .8 .9 1.0 1.7 2.2	76.3 76.7 77.1 77.5 77.7 77.0	135 147 163 89 178 165	301 301 301 299 299 299	-223 -235 -251 -175 -264 -251	508 658 737 361 430 812	367 367 367 440 440 440	+ 30 -120 -199 +104 + 35 -347	13.20 17.39 17.46 13.79 13.41 13.22	1.01 1.01 1.01 1.30 1.30 1.30	-0.73 -4.92 -4.99 -1.61 -1.23 -1.04	22.5 31.7 40.6 23.0 188.6 228.9	+ 57.2 + 48.0 + 39.1 + 56.7 -108.9 -149.2	55.95 78.21 80.69 42.84 38.42 87.10	10.66 10.66 10.66 12.50 12.50 12.50	+ 2.2 -16.1 -18.6 +17.4 +21.9 -26.8
28 29 30 31 32 33 34 35	22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30	1.4 1.0 1.7 1.2 1.2 .7 .7	76.2 75.8 75.6 75.3 75.1 74.9 75.1 75.6	108 90 101 142 124 158 162 161	299 299 299 203 203 203 203 203 203	-194 -176 -187 -132 -114 -148 -152 -151	813 908 905 966 830 683 679 628	440 440 440 243 243 243 243 243	-348 -443 -440 -304 -168 - 21 - 17 + 34	11.04 11.37 12.74 12.28 14.72 14.32 15.08 14.53	1.30 1.30 1.30 0.94 0.94 0.94 0.94 0.94	+1.14 +0.80 -0.57 +0.26 -2.18 -1.78 -2.54 -1.99	127.0 95.6 98.0 95.0 26.5 14.4 13.7 13.6	- 47.3 - 15.9 - 18.3 - 15.3 + 53.2 + 65.3 + 66.0 + 66.1	88.81 95.08 89.41 129.35 86.27 73.07 76.52 71.35	12.50 12.50 12.50 10.29 10.29 10.29 10.29 10.29	-28.5 -34.8 -29.1 -66.9 -23.8 -10.6 -14.0 - 8.9
36 37 38 39 40 41 42 43 44 45 46 47 50 51 52 53 54 66 57	Dec. 30-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8-8 8-9 9-10 10-11 11-12 12-13 13-14-15 15-16 16-17 17-18 18-19-20 20-21 21-22 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 3-31 Jan.	.7 .7 .8 1.8 2.1 1.5 1.2 1.0 1.1 1.2 1.4 1.3 1.0 1.0 1.3 1.1 1.7 1.1 1.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	75.6 76.1 76.6 76.9 75.7 74.9 74.7 74.9 74.5 75.0 75.1 75.4 75.2 75.2 75.2 75.2 75.5 75.6 75.5 75.6 75.6 75.7	192 174 163 204 161 194 100 104 1124 1164 1164 1165 1167 1125 1137 1125 1137 1126 1137 1137	203 203 142 142 142 142 356 356 356 356 356 356 445 445 445 96 96 96 96 96 96 96 97 374 374 374 374	-182 -164 - 92 -133 - 89 - 60 - 23 -247 -269 -396 -401 -416 -427 -419 -434 - 24 - 50 - 8 - 28 - 20 - 38 - 20 - 38 - 20 - 38 - 24 - 22 - 24 - 24 - 25 - 26 - 20 - 21 - 22 - 22 - 22 - 22 - 22 - 23 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - 24	705 729 375 431 660 814 826 739 671 643 632 531 580 531 580 666 320 675 853 713 690 6197 526 536 64	243 243 243 206 206 206 206 457 457 457 457 457 457 457 457 457 105 105 105 105 105 105 105 105 105 105	- 43 - 67 +324 +268 + 39 -115 -127 -223 -197 -165 -191 -323 -429 -165 -170 -219 -305 +408 +262 +113 -125 -53 +87 +110 +81 -17 - 6 +10 - 44 - 89 - 89 - 80 - 90 - 10 - 10	16.85 16.54 14.06 13.91 13.53 11.25 11.28 11.53 11.53 11.29 11.02 10.97 11.54 13.29 12.15 13.28 14.88 12.23 12.50 10.62 11.84 11.07 9.97 10.98 11.28 10.93 9.90 9.44	0.94 0.94 0.60 0.60 0.60 1.25 1.25 1.25 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.6	-4.31 -3.99 -1.19 -1.03 -0.65 +1.63 +1.59 +0.64 +0.70 +0.29 -1.46 -0.33 -1.72 -1.45 -0.33 +2.51 +2.07 +3.17 +2.16 +1.85 +2.12 +2.44 +2.69 +2.12 +2.55	26.0 25.3 39.5 246.3 225.1 128.6 80.9 54.7 54.7 56.2 83.4 52.3 31.6 57.5 62.2 101.1 103.6 67.3 23.9 16.4 20.9 46.5	+ 53.7 + 54.4 + 40.2 - 166.6 - 145.4 - 48.9 - 1.2 + 25.0 + 31.1 + 31.1 + 31.1 + 31.1 + 45.0 + 48.1 + 45.0 + 29.4 + 36.8 - 23.9 - 23.9 - 11.4 + 11.2 + 11.2 + 11.2 + 11.2 + 11.3 - 23.5 - 3.7 - 23.9 - 35.5 - 1.0 + 11.9 + 12.4 + 36.3 + 59.1 + 49.8 + 33.3 + 3	87.58 72.63 73.42 42.96 85.45 94.00 85.81 86.62 82.44 77.00 76.13 103.12 95.15 68.76 69.63 68.73 67.37 90.73 90.73 90.73 81.16 70.70 81.21 80.16	10.29 10.29 5.42 5.42 5.42 10.54 10.54 10.54 11.51 11.51 11.51 11.51 13.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	-25.1 -10.2 -12.4 -18.5 -24.4 -20.2 -14.8 -13.9 -45.5 -37.5 -37.5 -11.2 -10.9 +37.8 +5.4 -9.5 -27.2 -22.6 -8.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2
67 68 69 70 71 72 73	31-1 1-2 2-3 3-4 4-5 5-6 6-7	.9 1.2 1.2 1.2 1.1 .9	76.3 76.5 76.4 76.2 76.0 76.0 76.1	139 147 133 132 131 122 113	374 374 217 217 217 217 217 217	-300 -308 -137 -136 -135 -126 -117	559 594 554 505 581 584 568	385 385 233 233 233 233 233 233	- 39 - 74 +118 +167 +111 + 88 +104	9.44 9.61 8.72 9.32 9.36 9.76 9.66	1.45 1.45 1.26 1.26 1.26 1.26 1.26	+2.59 +2.42 +3.50 +2.90 +2.85 +2.45 +2.56	62.5 69.1 119.6 95.9 86.5 60.8 51.3	+ 17.2 + 10.6 - 39.9 - 16.1 - 6.8 + 18.9 + 28.4	77.01 72.79 58.81 71.58 71.72 71.14 77.32	11.79 11.79 8.41 8.41 8.41 8.41 8.41	-16.0 -11.8 + 5.6 - 7.2 - 7.4 - 6.8 -13.0
74 75	7-8 8-9	.9 1.1	76.2 76.2	132 120	217 217	-136 -124	568 631	233 233	+104 + 41	9.71 10.16	1.26 1.26	+2.51 +2.06	73.8 61.2	+ 5.9 + 18.2	69.73 74.02	8.41 8.41	- 5.4 - 9.7

^{*} Intakes per 24 hr. were as follows: Ca 213 mg.; P 905 mg.; N 13.48 gm.; Na 81.3 m.eq.; K 72.77 m.eq. † Fecal Na assumed to be 2 per cent of intake. † Expressed as equivalent of Armour Standard LA 1A.

TABLE VIII—Continued

Day		Ur	inary Excret	ion	Serum Values						_	
	Chloride	17-Keto- steroids	11-Oxy- steroids	Creatinine	Creatine	Ca	P	Cı	K	Na	Glucose	Treatment‡
	m.eq./24 hr.	mg./24 hr.	mg./24 hr.	gm./24 hr.	gm./24 hr.	mg.%	mg.%	m.eq./L	m.eq./L	m.eq./L	mg.%	
1 2 3	45.92 41.35 44.67 64.75	0.8	0.07	1.18 1.22 1.34	0.13 0.16 0.20 0.25	9.7	4.6	104	5.5	139.5		
5 6 7 8 9	77.41 84.03 54.94 54.00 74.37		{	1.32 1.32 1.19 1.27 1.22	0.19 0.25 0.25 0.21 0.26	9.8	4.1	98	5.1	138.2	100	
10 11 12 13 14 15	65.89 60.50 58.85 74.01 72.04	1.7	0.09	1.29 1.10 1.15 1.29 1.26	0.27 0.31 0.29 0.28 0.30	9.6	4.3	100	5.4	136.8		
16 17 18 19 20 21	58.20 64.82 71.56 91.33 73.73 54.33	2.3	0.10	1.34 1.43 1.33 1.32 1.33 1.33	0.33 0.57 0.35 0.50 0.21 0.0		4.1 3.9	101 100	5.1	140.8 139.5		ACTH 100
22 23 24 25 26 27	35.67 54.85 52.80 22.33 103.91 170.29			1.20 1.37 1.30 1.30 1.36 1.24	0.08 0.0 0.0 0.0 0.0 0.0		4.0	100	5.2	139.0		mg./24 hr.
28 29 30 31 32 33 34 35	101.75 66.26 79.58 93.26 56.04 46.19 44.89 32.94	8.0	0.14	1.16 1.33 1.32 1.30 1.34 1.38 1.37 1.33	0.0 0.0 0.15 0.20 0.22 0.04 0.10 0.24		3.9	104 101	4.7	139.6 137.4		ACTH 100 mg./24 hr.
36 37 38 39 40 41 42 43	51.34 37.76 36.01 194.22 193.39 103.62 57.92 48.43	4.4	0.25	1.32 1.30 1.28 1.33 1.28 1.32 1.32 1.37	0.15 0.11 0.09 0.11 0.10 0.16 0.20 0.21		3.1	103	5.0	142.4		
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55	45.41 49.09 71.02 74.48 78.62 69.16	3.7	0.05	1.31 1.33 1.28 1.34 1.42 1.34	0.34 0.30 0.32 0.34 0.19 0.31		3.5	105	,		94	ACTH LI
51 52	64.33 65.59 54.17 69.93	4.6	0.83	1.26 1.32 1.29	0.21 0.22 0.28 0.27		3.1	106				60 mg./24 hr.
54 55 56 57	38.32 148.91 86.62 72.60	2.9	0.03	1.27 1.29 1.32 1.26 1.27	0.14 0.13 0.10 0.27	9.0	3.9	102	5.5	142.9		,
57 58 59 60 61 62	88.43 73.16 70.88 67.51 41.36	1.6	0.19	1.31 1.13 1.22 1.34 1.35	0.34 0.43 0.49 0.46 0.37	9.2	3.7	100	5.1	142.1)
63 64 65 66	28.61 32.59 42.91 52.50	1.7	0.31	1.22 1.33 1.33 1.27	0.35 0.35 0.27 0.40							DOCG 16 mg. 24 hrs.
67 68 69 70 71 72 73	67.41 70.10 89.25 104.22 86.18 67.35 60.71	1.5	0.08	1.32 1.26 1.25 1.36 1.35 1.32 1.30	0.39 0.40 0.33 0.35 0.38 0.33 0.40	9.5	3.7	102]
74 75	71.72 68.04	0.6	0.05	1.28 1.32	0.38 0.46							

steroids. These first appear in the urine at about the time that there is evidence of secretion of L.H., which controls ovulation in the female and the development of Leydig cells in the male.

i) Comparison of the effect of electrophoretically pure sheep ACTH (Li and Evans) with that of less purified hog ACTH (Armour); effect of prolactin

In experiment 5, the electrophoretically pure ACTH of Li and Evans was given for a six day period, in order to determine to what extent the

effects produced by the Armour preparations might be due to the small amounts of contaminants which they contain (Table II).

The results (see Table VIII and Figures 7-9) indicate that there are no qualitative differences between the action of the preparation of Armour, poor in pitressin, and that of Li and Evans. Milligram for milligram, Li and Evans' ACTH may have produced a more marked rise in urinary Ca. In all other respects, the effects of the two products were quite similar.

Prolactin, which is present in Armour ACTH

FIG. 8. EXPERIMENT 5, CONTINUED. EFFECT OF ACTH AND DOCG ON NA BALANCE, URINARY CL, ON THE ACTUAL AND "THEORETICAL" WEIGHT CURVES, AND ON SERUM NA AND CL

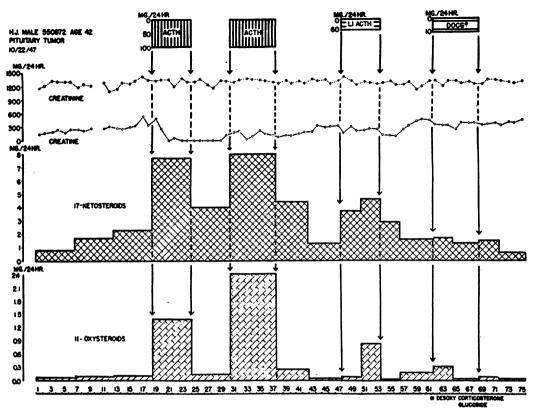


Fig. 9. Experiment 5, Continued. Effect of ACTH and DOCG on Urinary Creatinine, Creatine, 17-Ketosteroids, and "11-Oxysteroids"

(Table II), had no measurable effects when given alone (Table VI and Figures 3 and 4, days 43 through 48).

DISCUSSION

The first and most consistent response to ACTH is the loss of K, almost surely from cells, on the first day. This is accompanied by a relatively smaller loss of P, and is countered by a retention of Na. The reserve occurs when ACTH is stopped. The significance of this phenomenon is not clear.

A second group of sequelae is more comprehensible. ACTH is apparently an essential link in the "alarm reaction" of Selye (22). It leads to the following sequence of events:

- 1) Adrenal cortical "sugar" hormone is liberated (cf. rise in corticoids by chemical and biological tests).
- 2) The "sugar" hormone causes anti-anabolism of protoplasm, so that amino acids become available.

- 3) The amino acids thus freed are deaminized; the N is excreted; the carbohydrate and fatty acid fragments are added to the "metabolic pool."
- 4) Glycogen is formed from the "metabolic pool."
- 5) The P and K of intracelluluar fluid, made available by the excess of protoplasmic catabolism over anabolism, are retained with the glycogen.

Teleologically, such a sequence is readily understandable, since the net result of forming glycogen at the expense of protoplasm is to create an easily mobilizable source of energy.

SUMMARY

1. The effects of ACTH (Armour) in doses ranging from 10 to 100 mg. daily were observed in three patients with panhypopituitarism. Metabolic balances of N, Ca, P, Na, K and the urinary excretion of Cl, corticoids and 17-ketosteroids are shown.

2. ACTH produced:

- a) loss of N without commensurate loss of P and K. (This discrepancy can be explained if there is a concomitant deposition of glycogen).
- b) loss of Ca.
- c) retention of Na and Cl in extracellular fluid.

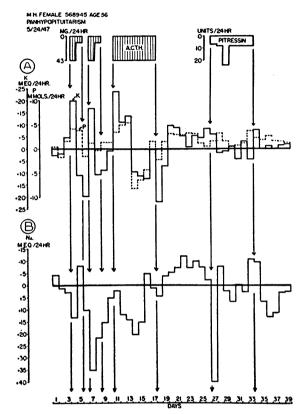


FIG. 10. URINARY DATA FROM EXPERIMENT 3 RECAL-CULATED, AND EXPRESSED AS DEVIATIONS FROM THE AVER-AGES OF CONTROL VALUES

A. "Corrected" K (solid line) and P (dotted line). P is plotted with a "valence" of 2.

B. "Corrected" Na.

Factors used in calculating the data are as follows (see [13]):

K/N in "protoplasm" = 2.7; K/Cl in ECF = 0.05. The K in the diagram = K excreted -2.7 N -0.05 Cl. P/N in "protoplasm" = 0.068; P/Cl in ECF = 0.38. Ca/Cl in ECF = 0.5; P/Ca in bone = 0.448.

The P in the diagram:

= P excreted - 0.068N - 0.38 Cl - 0.448 (Ca - 0.5 Cl).

= P excreted - 0.068N - 0.16 Cl - 0.448 Ca.

Na/Cl in ECF = $\frac{.97 \text{ Na serum}}{1.04 \text{ Cl serum}}$.

Na in ECF = 1.145 Cl in ECF (for this patient). The Na in the diagram = Na excreted - 1.145 Cl. For discussion see text.

- d) transient loss of K, which was apparently partly replaced by Na in intracellular fluid.
- e) rise in urinary corticoid excretion.
- f) rise in 17-ketosteroid excretion in one patient who still produced luteinizing hormone but not in the other two patients.
- 3. The effects of Armour ACTH were compared with those of pitressin and prolactin (which are present as contaminants in Armour ACTH) and with those of Li and Evans' ACTH (which is electrophoretically pure). Pitressin produced a loss of Ca, and a transient loss of Na and Cl; prolactin had no effect; ACTH (Li and Evans) produced all the effects of ACTH (Armour).
- 4. The effects of ACTH were compared with those of desoxycorticosterone glucoside (DOCG). DOCG had an effect on K, Na and Cl similar to that of ACTH, but the effect on K was less.
- 5. These effects of ACTH could all be due to release of "sugar" hormone, but whether the rise in 17-ketosteroids is to be so interpreted remains doubtful.

APPENDIX

Analysis of K and P data

The relation between the K and P data obtained after "correcting" for protoplasm, bone and extracellular fluid changes has been determined from the linear regression of K on P for the data of experiments 2-5. The general form of the linear regression equation is:

$$y = a + b (x - \bar{x}).$$

In this case y is K and x is P. Here we are concerned with the value of b, the regression coefficient giving the slope of the line relating K to P. With K in milliequivalents and P in 100 mg. the values of b given by the corrected data are:

Experi- ment No.	ACTH Adminis- tration	No. of data	Value of b	Vari- ance	Combined value of b	Vari- ance
5	on	19	10.6	2.7	7.44	.39
3	off	24	8.1	0.3		
3	on	7	6.9	3.1	7.01	2.24
3	off	9	13.9	18.6		
2	on	18	9.0	3.6	8.99	2.62
2	off	12	17.6	5.8		
4	on	13	8.0	13.3	9.52	6.71
4	off	7	13.1	4.3		

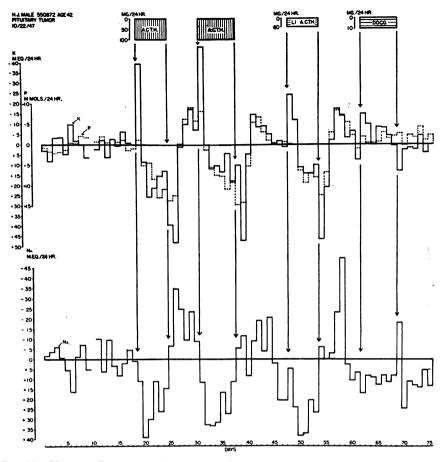


Fig. 11. Urinary Data from Experiment 5 Recalculated and Expressed as Deviations from the Average of Control Values

A. "Corrected" K (solid line) and P (dotted line).

B. "Corrected" Na.

For factors used see legend to Figure 10.

Na in this patient = Na excreted -1.268 Cl.

For discussion, see text.

The regression coefficients differ significantly from 0, implying that the K and P values are not independent.

Similar results were obtained with data from two experiments on patients with other diseases:

Disease	Treat- No. o		Value of b		Combined value of b		
Carcinomatosis	on	13	4.8	3.5	7.11	1.53	
Carcinomatosis	off	8	9.3	8.1			
Acromegaly		10			7.94	6.87	

The weighted mean of the regression coefficients for all the data on and off ACTH taken together is 7.63 ± 0.5 . This represents the number of milliequivalents change in K for every 100 mg. change in P. Since 100 mg. P =

3.2 mM P, for each millimol change in P there is 2.36 ± 0.16 m.eq. change in K. Thus the changes in K are greater than would be expected if they were due merely to intracellular fluid shifts, since in intracellular fluid the ratio of K (m.eq.) to P (mM) is only 1.5.

The scatter diagram in Figure 12 gives the graphic interpretation of the regressions calculated for experiment 5. The data for the days when therapy was started and stopped increase the slope of the regression line. If these data be arbitrarily omitted from the calculation of the regression, we obtain a value of 1.65 ± 0.17 for the milliequivalents change in K for each millimol change in P. This value indicates that except when ACTH administration is started and stopped, K and P are associated in a ratio such that the changes in these ions could be due to intracellular fluid changes.

An attempt was made to relate statistically the K changes to the calculated changes in intracellular sodium,

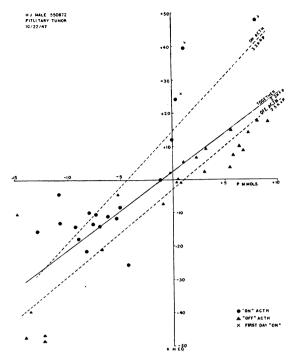


FIG. 12. "CORRECTED" URINARY DATA FROM EXPERIMENT 5. SCATTER DIAGRAM SHOWING THE REGRESSION OF K ON P FOR THE DATA SHOWN IN FIGURE 10, EXCLUDING CONTROL DATA AND THOSE FOR DOCG

The dotted lines show the regressions calculated separately for the data during and after ACTH. The joint regression is discussed in appendix.

derived from the sodium and chloride data. (See Figures 10-B and 11-B.) It can be shown that the K changes are not correlated with intracellular Na changes except when the association of K with P is taken into account. When this is done we find a significant negative correlation between K and intracellular Na:

K (m.eq.) =
$$a + 2.33 \pm 0.06$$
 P (mM) -0.17 ± 0.02 Na (m.eq.)

("a" is a constant which depends on the mean values of K, P and Na).

This means that the changes in K beyond those that are associated with P are negatively correlated with Na. This in turn is interpreted to mean that K may change because of intracellular fluid shifts (association with P) or because it is lost from, or restored to intracellular fluid (exchange with Na). While the significant negative correlation with intracellular Na is of some interest, the actual value of the coefficient means very little, since it does not take into account the time lag between K and Na change in the body.

The calculated relations have been determined from data derived on the basis of many assumptions. In particular, the corrected data are based on the assumption that changes in nitrogen excretion should be associated with

certain changes in K and P excretion. To see whether we have introduced an artificial relation between K and P by correcting for presumed protoplasm changes, we have calculated the multiple linear regression of K on P independent of N for the urine data of experiment 5 omitting the data for on and after DOCG. This experiment was chosen because it has the most data. The regression equation is:

K (m.eq.) =
$$a' - 0.8 \pm 0.7$$
 N (gm.) $+ 3.1 \pm 0.3$ P (mM)

(a' is a constant which depends on the mean values of K, N, and P). K excretion is correlated with P excretion independently of any correlation of these two variables with N excretion. The regression coefficient for P is high compared with the mean coefficient for the corrected values, partly because Ca changes are allowed for in the corrected values is not likely to be simply an artefact due to correcting for assumed protoplasm changes.

BIBLIOGRAPHY

- Conferences on Metabolic Aspects of Convalescence, Josiah Macy, Jr. Found., New York. Trans. of the 15th Conf., 1947, p. 118; Trans. of the 16th Conf., 1947, p. 53; Trans. of the 17th Conf., 1948, p. 138.
- Bartter, F. C., Fourman, P., Forbes, A. P., Jefferies, W. M., and Albright, F., An analysis of the various factors influencing potassium, phosphorus, and sodium excretion on administration of ACTH. Trans. of the First Conf. on Metabolic Interrelations, Josiah Macy, Jr. Found., New York, 1949, p. 137.
- Conn, J. W., Louis, L. H., and Johnston, M. W., Metabolism of uric acid, glutathione, and nitrogen, and excretion of 11-oxysteroids and 17-ketosteroids during induction of diabetes in man with adrenocorticotropic hormone. J. Lab. & Clin. Med., 1949, 34, 255.
- Conn, J. W., Louis, L. H., and Wheeler, C. E., Production of temporary diabetes mellitus in man with pituitary adrenocorticotropic hormone; relation to uric acid metabolism. J. Lab. & Clin. Med., 1948, 33, 651.
- Forsham, P. H., Thorn, G. W., Prunty, F. T. G., and Hills, A. G., Clinical studies with pituitary adrenocorticotropin. J. Clin. Endocrinol., 1948, 8, 15.
- Mason, H. L., Power, M. H., Rynearson, E. H., Ciaramelli, L. C., Li, C. H., and Evans, H. M., Results of administration of anterior pituitary adrenocorticotropic hormone to a normal human subject. J. Clin. Endocrinol., 1948, 8, 1.
- McAlpine, T. H., Venning, E. H., Johnson, L., Schenker, V., Hoffman, N. M., and Browne, J. S. L., Metabolic changes following the administration of pituitary adrenocorticotrophic hormone (ACTH) to normal humans. J. Clin. Endrocrinol., 1948, 8, 591.

- Prunty, F. T. G., Forsham, P. H., and Thorn, G. W., Desoxycorticosterone-like activity induced by adrenocorticotrophin in man. Clin. Sc., 1948, 7, 109.
- Venning, E. H., The effect of large doses of adrenocorticotrophin on steroid metabolism. Trans. of the 17th Conf. on Metabolic Aspects of Convalescence. Josiah Macy Jr. Found., New York, 1948.
- Talbot, N. B., Saltzman, A. H., Wixom, R. L., and Wolfe, J. K., The colorimetric assay of urinary corticosteroid-like substances. J. Biol. Chem., 1945, 160, 535.
- Talbot, N. B., Albright, F., Saltzman, A. H., Zygmotowicz, A., and Wixom, R., The excretion of 11-oxycorticosteroid-like substances by normal and abnormal subjects. J. Clin. Endocrinol., 1947, 7, 331.
- Forbes, A. P., Griswold, G. C., and Albright, F., Clinical experience with a bioassay method for the determination of urinary corticosteroids. J. Clin. Endocrinol., 1950, 10, 230.
- Reifenstein, E. C., Jr., Albright, F., and Wells, S. L., The accumulation, interpretation, and presentation of data pertaining to metabolic balances, notably those of calcium, phosphorus, and nitrogen. J. Clin. Endocrinol., 1945, 5, 367.
- 14. Albright, F., Cushing's syndrome. Harvey Lectures, 1942-3, 38, 123.
- Albright, F., Osteoporosis. Ann. Int. Med., 1947, 27, 861.
- Bartter, F. C., Forbes, A. P., and Albright, F., Armour Conference on ACTH, October, 1949. Blakiston Co., Philadelphia, 1950, p. 214.
- 17. Darrow, D. C., and Miller, H. C., The production of

- cardiac lesions by repeated injections of desoxy-corticosterone acetate. J. Clin. Invest., 1942, 21, 601.
- Long, C. N. H., Katzin, B., and Fry, E. G., The adrenal cortex and carbohydrate metabolism. Endocrinology, 1940, 26, 309.
- Britton, S. W., and Silvette, H., Effects of corticoadrenal extract on carbohydrate metabolism in normal animals. Am. J. Physiol., 1932, 100, 693.
- Fenn, W. O., The deposition of potassium and phosphate with glycogen in rat livers. J. Biol. Chem., 1939, 128, 297.
- Fourman, P., Bartter, F. C., Albright, F., Dempsey, E., Carroll, E., and Alexander, J., Effects of 17hydroxy-corticosterone ("compound F") in man. Submitted for publication.
- Selye, H., The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol., 1946, 6, 117.
- Sayers, M. A., and Sayers, G., Method for the assay of adrenocorticotropic hormone. Federation Proc., 1946, 5, 200.
- Thompson, R. E., Biological assay of posterior pituitary.
 J. Pharmacol. & Exper. Therap., 1944, 80, 373.
- Hogben, J. T., Schlapp, W., and MacDonald, A. D., Studies on the pituitary. IV. Quantitative comparison of pressor activity. Quart. J. Exper. Physiol., 1924, 14, 301.
- 26. Riddle, O., and Bates, R. W., The preparation, assay and actions of lactogenic hormone, in: Sex and Internal Secretions (edited by Allen, E., Danforth, C. H., and Doisy, E. A.). Williams & Wilkins Co., 1939, 2nd ed., p. 1088.