Supplemental material

Figure S1. Nup100 and Nup116 levels are not altered in *AFG* strains. (A) Survival curves for wild-type and *nup100A* BY4741 cells. The mean RLSs are listed next to each strain name; *, P < 0.0001 when the curve is compared with wild type using a log-rank test ($n \ge 75$ cells). Mean RLSs are listed in parentheses. (B) Doubling times for the listed strains. Error bars represent SEM; *, P < 0.05 when compared with wild type using a two-tailed Student's t test. (C) Lysates from the listed strains were immunoblotted using anti-Ran, anti-Pgk1, and anti-Nup116 C-terminal antibodies. The asterisk is used to show the relative mobility of Nup116AGLFG. (D) Lysates from the listed NUP100-GFP::HIS3 strains were immunoblotted using anti-Pgk1 and anti-GFP C-terminal antibodies. The asterisk is used to show the relative mobility of Nup100∆GLFG-GFP.

Figure S2. **NPCs are altered during replicative aging.** (A) Enriched mother (\sim 6–9 divisions) and young (\sim 0–1 divisions) wild-type cells were lysed, and immunoblotting was conducted using anti-Nup53 and anti-Pgk1. (B) Relative levels of the listed transcripts were measured by quantitative RT-PCR using RNA derived from young (\sim 0–1 divisions) or enriched mothers (\sim 6–9 divisions). Error bars represent SEM from three independent experiments, each of which had three replicates per transcript. (C) Relative levels of Nup100-GFP and Nsp1-mCherry fluorescence at the nuclear rim in 0–1 or 7–8 division cells. *, P < 0.04 when the datasets were compared using a two-tailed Student's *t* test ($n \ge 20$ cells throughout three separate experiments). Error bars represent SEM.

Figure S3. **Epistasis analysis of NPC mutants.** (A and B) RLSs for the listed strains were measured at 30°C on glucose plates. *, P < 0.05 when the curves on the same graph are compared using a log-rank test with $n \ge 30$ cells. (C) Survival curves for gsp1-322 and gsp1-322 nup100 Δ mutants. (D) Survival curves for kap121-7 and $nup100\Delta$ kap121-7 cells were determined on 0.1 M KCl plates at 30°C; *, P < 0.05 when curves were compared using a log-rank test ($n \ge 30$ cells). Mean RLSs are listed in parentheses.

Figure S4. **Mitochondrial function is regulated by NUP116.** (A) *nup116* Δ *GLFG* cells were transformed with pRS314 vectors containing *nup116* Δ *GLFG* or *NUP116*. The strains were then serially diluted onto SC-Trp glucose or glycerol and incubated at 34°C until grown as shown. (B) The listed Δ *FG* strains were serially diluted on glucose or glycerol and incubated at 37°C until grown as shown. The Δ *C* strain lacks FG regions of the cytoplasmic-facing Nup42 and Nup159, the Δ *N* strain lacks FG regions of the nuclear-oriented Nup1, Nup2, and Nup60, and the Δ *N* Δ *C* strain combines these mutations. (C) Wild-type or gsp1-322 cells were serially diluted onto glucose or glycerol and incubated at 25°C until grown as shown. (D) Single wild-type or *nup116* Δ *GLFG nup145* Δ *GLFG* cells stained using MitoTracker red CMXRos (top) or expressing endogenously tagged Mrpl11-GFP (bottom) were visualized using fluorescence microscopy at 25°C. *, P < 0.05 when compared with wild-type cells using Student's *t* test; error bars represent SEM for three independent experiments ($n \ge 100$ cells per experiment). (F) Representative images of zero or eight division Mrpl11-GFP cells stained with CCFW and visualized using fluorescence microscopy. CCFW images show the top and bottom of cells for visualization of most bud scars. DIC, differential interference contrast. Bar, 2.5 µm.

Figure S5. Ran and Kap121 are required for RLS. (A) Wild-type and $nup116\Delta GLFG$ cells transformed with an empty 2µ vector or a 2µ vector containing GSP1 were serially diluted onto glucose or glycerol at 30 and 34°C until grown as shown. (B) Lysates of strains in A were immunoblotted using anti-Pgk1 and anti-mouse Ran antibodies. Anti-mouse Ran is able to detect yeast Gsp1 as a result of the high identity (80%) between these proteins. (C) Survival curves for the listed strains were determined on glycerol plates at 30°C. *, P < 0.02 when the curves are compared using a log-rank test with n = 30 cells. (D) Lysates from the strains in C were immunoblotted with anti-mouse Ran and anti-Pgk1. (E) kap121-7 and kap121-21 cells stained with MitoTracker red CMXRos were visualized using fluorescence microscopy. Brightness and contrast settings were adjusted on images shown in Fig. 6 B using ImageJ to better visualize MitoTracker signal. DIC, differential interference contrast. Bar, 2.5 µm.

Table S1. Yeast strains used in this study

Strain	Genotype	Source	Description
arx 1	MAT α his3Δ1 leu2Δ0 lvs2Δ0 ura3Δ0 arx1Δ::KAN	Gigever et al., 2002	
BY4741	MATa his 3Δ 1 leu 2Δ 0 met 15Δ 0 ura 3Δ 0	Giaever et al., 2002	Wild-type S288C strain used with deletion library strains
fob 1 Δ	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 fob1Δ::KAN	Giaever et al., 2002	,
kap123∆	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 kap123Δ::KAN	Giaever et al., 2002	
kap95-L63A	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 kap95-L63A		BY4741 background
N43-6C-GSP1	MATa gsp1∆::HIS3::GSP1::LEU2 ade2 leu2 trp1 ura3	Oki et al., 1998	Wild-type strain for <i>gsp1-322</i> mutant
N43-6c-gsp1-322	MATa gsp1∆::HIS3::gsp1-322::LEU2 ade2 leu2 trp1 ura3	Oki et al., 1998	
Nsp1-GFP	MATa nsp1-GFP:HIS3 his3 Δ 0 leu2 Δ 0 met15 Δ 0 ura3 Δ 0	Huh et al., 2003	
nup100 <u>4</u>	ΜΑΤα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 nup100Δ::KAN	Giaever et al., 2002	
PSY1213	MATa pse1-7 (kap121-7) ura3-52 trp1∆63 leu2∆1	Seedorf and Silver, 1997	
PSY1214	MATa pse1-21 (kap121-21) ura3-52 trp1∆63 leu2∆1	Seedorf and Silver, 1997	
PSY580	MATa ura3-52 trp1 Δ 63 leu 2Δ 1	Winston et al., 1995	Wild-type strain for PSY1213 and 1214
rpl23a∆	ΜΑΤα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 rpl23aΔ::KAN	Giaever et al., 2002	
SWY127	MATa nup116-5::HIS3 ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 +pSW131	lovine et al., 1995	
SWY2284	ΜΑΤα ura3-1 his3-11,15 trp1-1 leu2-3,112	Strawn et al., 2004	Wild-type W303 strain used with ΔFG mutants
SWY2708	MATa trp1-1 ura3-1 leu2-3,112 his3-11,15 HA-LoxP-nup49∆GLFG	Strawn et al., 2004	
SWY2724	MATa lys2 ura3-1 leu2-3,112 his3-11,15 HA-LoxP-nsp1∆FXFG	Strawn et al., 2004	
SWY2734	MATα trp 1-1 ura3-1 leu2-3,112 his3-11,15 HA-LoxP-nup42ΔFG myc- LoxP-nup159ΔFG	Strawn et al., 2004	
SWY2752	MATα trp1-1 ura3-1 leu2-3,112 his3-11,15 myc-LoxP-nup57ΔGLFG	Strawn et al., 2004	
SWY2762	MATα trp1-1 ura3-1 leu2-3,112 his3-11,15 HA-LoxP-nup100ΔGLFG	Strawn et al., 2004	
SWY2791	MATα trp1-1 ura3-1 leu2-3,112 his3-11,15 T7-LoxP-nup116ΔGLFG	Strawn et al., 2004	
SWY2813	MATα lys2 ura3-1 leu2-3,112 his3-11,15 Flag-LoxP-nsp1ΔFG	Strawn et al., 2004	
SWY2867	MATα lys2 ura3-1 leu2-3,112 his3-11,15 myc-LoxP-nup145ΔGLFG	Strawn et al., 2004	
SWY2896	MATa lys2 ura3-1 leu2-3,112 his3-11,15 myc-LoxP-nup2ΔFXFG T7- LoxP-nup1ΔFXFG myc-LoxP-nup60ΔFXFG	Strawn et al., 2004	
SWY2916	MATa trp1-1 ura3-1 leu2-3,112 his3-11,15 myc-LoxP-nup145ΔGLFG T7-LoxP-nup116ΔGLFG	Strawn et al., 2004	
SWY2919	MATa lys2 ura3-1 leu2-3,112 his3-11,15 Flag-LoxP-nsp1ΔFXFG-ΔFG	Strawn et al., 2004	
SWY2971	MATα trp1-1 ura3-1 leu2-3,112 his3-11,15 HA–LoxP-nup42ΔFG myc- LoxP-nup159ΔFG T7-LoxP-nup1ΔFXFG myc-LoxP-nup2ΔFXFG myc- LoxP-nup60ΔFXFG	Strawn et al., 2004	
SWY2973	MATa ura ³ -1 leu2-3,112 his3-11,15 HA-LoxP-nup100ΔGLFG myc-LoxP- nup145ΔGLFG	Strawn et al., 2004	
SWY4232	MATa lys2 ura3-1 leu2-3,112 his3-11,15 nup1004::KAN	This study	
SWY5678	MATa ura3-1 his3-11,15 leu2-3,112 lys2 htb2-mCherry:HIS3	This study	
SWY5680	MATa ura3-1 his3-11,15 leu2-3,112 lys2 T7-LoxP-nup116ΔGLFG htb2- mCherry:HIS3	This study	
SWY5724	MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 nup188Δ::KAN	This study	
SWY5725	MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 nup188Δ::KAN htb2- mCherry:HIS3	This study	
SWY5728	MATα trp1-1 ura3-1 leu2-3,112 his3-11,15 HA-LoxP-nup100ΔGLFG htb2-mCherry:HIS3	This study	
SWY5836	MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 mrpl11-GFP:HIS3	This study	
SWY5837	MATα trp1-1 ura3-1 leu2-3,112 his3-11,15 HA-LoxP-nup100ΔGLFG mrp111-GFP:HIS3	This study	
SWY5838	MATα trp1-1 ura3-1 leu2-3,112 his3-11,15 T7-LoxP-nup116ΔGLFG mrp111-GFP:HIS3	This study	
SWY5839	MATα lys2 ura3-1 leu2-3,112 his3-11,15 myc-LoxP-nup145ΔGLFG mrpl11-GFP:HIS3	This study	
SWY5840	MATa trp1-1 ura3-1 leu2-3,112 his3-11,15 myc-LoxP-nup145ΔGLFG T7-LoxP-nup116ΔGLFG mrpl11-GFP:HIS3	This study	
SWY5874	MATa trp1-1 ura3-1 leu2-3,112 his3-11,15 myc-LoxP-nup145ΔLFG T7- LoxP-nup116ΔGLFG htb2-mCherry:HIS3	This study	
SWY5909	MATa trp1-1 ura3-1 leu2-3,112 his3-11,15 myc-LoxP-nup145ΔGLFG T7-LoxP-nup116ΔGLFG sir2Δ::KAN	This study	

Table S1. Yeast strains used in this study (Continued)

Strain	Genotype	Source	Description
SWY5912	his341 leu240 ura340 fob14::KAN nup1004::KAN	This study	BY4741 background
SWY5913	MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 nup100-GFP:HIS3	This study	
SWY5914	MATα trp1-1 ura3-1 leu2-3,112 his3-11,15 HA-LoxP-nup100ΔGLFG- GFP:HIS3	This study	
SWY5915	MATa trp1-1 ura3-1 leu2-3,112 his3-11,15 myc-loxP-nup145ΔGLFG T7-loxP-nup116ΔGLFG nup100-GFP:HIS3	This study	
SWY6012	MATa pse1-7 (kap121-7) ura3-52 trp1Δ63 leu2Δ1 flo11Δ::KAN	This study	
SWY6013	MATa pse1-21 (kap121-21) ura3-52 trp1Δ63 leu2Δ1 flo11Δ::KAN	This study	
SWY6014	MATa ura3-52 trp1Δ63 leu2Δ1 flo11Δ::KAN	This study	
SWY6044	MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 sir2Δ::KAN	This study	
SWY6169	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 GPD-GSP1:URA3	This study	BY4741 background
SWY6170	ΜΑΤα ura3-1 his3-11,15 trp1-1 leu2-3,112 sir2Δ::KAN nup100Δ:: TRP1	This study	
SWY6236	MATa gsp1Δ::HIS3::gsp1-322::LEU2 ade2 leu2 trp1 ura3 nup100Δ:: TRP1	This study	
SWY6237	MATa pse1-7 (kap121-7) ura3-52 trp1Δ63 leu2Δ1 nup100Δ::TRP1	This study	
SWY6238	MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 nup100-GFP:HIS3 nsp1- mCherry:KAN	This study	
SWY6239	nup116ΔGLFG fob1Δ::KAN	This study	

A list of yeast strains as well as their origins. Descriptions are provided for some strains that provide context about their use.

Table S2. Plasmids used in this study

Plasmid	Description	Source
GFP-4PrA	GFP-4PrA cloned into pRS415 (LEU2 CEN single copy) under TPI1 promoter	This study
pGAD-GFP	SV40 NLS fused to GFP cloned into a LEU2 2µ plasmid under ADH1 promoter	Shulga et al., 1996
pRS426	URA3 2μ (multicopy) empty vector	
pSpo12 ₇₆₋₁₃₀ -GFP	Spo12 NLS fused to GFP cloned into LEU2 2µ multicopy plasmid under TPI1 promoter	Chaves and Blobel, 2001
pSW173	<i>nup116AGLFG</i> cloned into pRS314 (<i>TRP1 CEN</i> single copy)	lovine et al., 1995
pSW176	NUP116 cloned into pRS314 (TRP1 CEN single copy)	lovine et al., 1995
pSW273	nup116SFxFG _{Nsp1} cloned into pRS314 (<i>TRP1 CEN</i> single copy)	lovine et al., 1995
pSW287	nup116SGLFG _{Nup100} cloned into pRS314 (TRP1 CEN single copy)	lovine et al., 1995
pSW326	nup116SGLFG _{Nup116} cloned into pRS314 (TRP1 CEN single copy)	lovine et al., 1995
pSW4070	GSP1 cloned (URA3 2 µ multicopy) into under its own promoter	This study
Rpl25NLS-EGFP	Rpl25 NLS fused to GFP cloned into pYX242 (<i>LEU2 2µ</i> multicopy) under TPI1 promoter	Timney et al., 2006

References

- Chaves, S.R., and G. Blobel. 2001. Nuclear import of Spo12p, a protein essential for meiosis. J. Biol. Chem. 276:17712-17717. http://dx.doi.org/10.1074/jbc. M010760200
- Giaever, G., A.M. Chu, L. Ni, C. Connelly, L. Riles, S. Véronneau, S. Dow, A. Lucau-Danila, K. Anderson, B. André, et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 418:387–391. http://dx.doi.org/10.1038/nature00935
- Huh, W.-K., J.V. Falvo, L.C. Gerke, A.S. Carroll, R.W. Howson, J.S. Weissman, and E.K. O'Shea. 2003. Global analysis of protein localization in budding yeast. *Nature*. 425:686–691. http://dx.doi.org/10.1038/nature02026
- Iovine, M.K., J.L. Watkins, and S.R. Wente. 1995. The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J. Cell Biol. 131:1699–1713. http://dx.doi.org/10.1083/jcb.131.6.1699
- Oki, M., E. Noguchi, N. Hayashi, and T. Nishimoto. 1998. Nuclear protein import, but not mRNA export, is defective in all *Saccharomyces cerevisiae* mutants that produce temperature-sensitive forms of the Ran GTPase homologue Gsp1p. *Mol. Gen. Genet.* 257:624–634. http://dx.doi.org/10.1007/s004380050690
- Seedorf, M., and P.A. Silver. 1997. Importin/karyopherin protein family members required for mRNA export from the nucleus. Proc. Natl. Acad. Sci. USA. 94:8590– 8595. http://dx.doi.org/10.1073/pnas.94.16.8590
- Shulga, N., P. Roberts, Z. Gu, L. Spitz, M.M. Tabb, M. Nomura, and D.S. Goldfarb. 1996. In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation. J. Cell Biol. 135:329–339. http://dx.doi.org/10.1083/jcb.135.2.329
- Strawn, L.A., T. Shen, N. Shulga, D.S. Goldfarb, and S.R. Wente. 2004. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat. Cell Biol. 6:197–206. http://dx.doi.org/10.1038/ncb1097
- Timney, B.L., J. Tetenbaum-Novatt, D.S. Agate, R. Williams, W. Zhang, B.T. Chait, and M.P. Rout. 2006. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. J. Cell Biol. 175:579–593. http://dx.doi.org/10.1083/jcb.200608141
- Winston, F., C. Dollard, and S.L. Ricupero-Hovasse. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast. 11:53–55. http://dx.doi.org/10.1002/yea.320110107