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MATERIALS AND METHODS 

 
1. RNA-seq data processing 
 

We used RNA-seq data to build and test our regulatory model of splicing. This 
section describes the key datasets and their processing methods. To apply our regulatory 
model to disease-causing genetic variants, we also performed whole genome sequencing 
from autism spectrum disorder (ASD) patients and control samples, which is described in 
Sec. S10. 

 
1.1 RNA-seq datasets 

Four RNA-seq datasets were used in this study. The training of our regulatory model 
was based on 75bp single-end RNA-seq data from the Illumina Human BodyMap 2.0 
project (NCBI GEO accession GSE30611), which was derived using poly-A selected 
mRNA from sixteen diverse human sources, including adrenal, adipose, brain, breast, 
colon, heart, kidney, liver, lung, lymph node, ovary, prostate, skeletal muscle, testis and 
thyroid tissues, plus white blood cells. This data set was also used extensively in testing 
the model’s performance on wild type (WT) predictions. Further evaluation of model 
performance used human and mouse RNA-seq data from various normal tissues 
generated in Kaessmann’s lab (53), RNA-seq data from a recent MBNL knockdown 
study (14), and lymphoblastoid RNA-seq data and their matching genotype data from a 
population study (15). 

 
1.2 Aligning RNA-seq reads 

Using Tophat (55), reads were mapped to hg19 and a comprehensive set of splice 
junctions (by combining RefSeq and Ensembl annotations with a high quality set of 
junctions mined from EST data, details in Sec. S2), while also allowing confident 
discovery of novel junctions. When needed, we used Cufflinks (56) to quantify transcript 
and gene expression levels, based on Ensembl 73 annotations. When counting uniquely 
mapped reads to a splice junction, no more than 3 mismatches were allowed and at least 8 
bases were required to align to both sides of the junction. This resulted in three sets of 
reads for each exon and tissue, corresponding to the junctions in isoforms with the exon 
included and excluded. For an exon triplet C1-A-C2, let Ninc denote the number of reads 
mapped to the two inclusion junctions C1A and AC2 and Nexc denote the number of reads 
mapped to the exclusion junction C1C2. Then, the total junction read coverage is defined 
as Nr = Ninc 2+ Nexc  for each exon and tissue. We used two techniques to estimate the 
percent of transcripts with the exon spliced in, referred to as PSI or Ψ (57). The simple, 
standard estimate was computed by normalizing Ninc and Nexc separately by the number of 
mappable positions, including a pseudo-count of 1 in each term, and then computing the 
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computed a more useful estimate that accounts for uncertainties due to low counts, read 
stacks and other effects. For this estimate, the number of reads mapped to each mappable 
position in each junction was further recorded. 
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1.3 Quantification of PSI using the ‘positional bootstrap’ 

Since average RNA-seq coverage is proportional to gene expression and the 
probabilities of reads at different positions within a transcript are not equal due to various 
position-dependent biases, the junction read coverage varies greatly across cassette exon 
sequences. Therefore, it is important to treat Ψ values probabilistically and take into 
account the variable amount of uncertainty for each exon and tissue based on RNA-seq 
data (58). We used a Beta model, which is derived under a Bayesian inference framework 
by treating Ψ as the parameter of a Bernoulli distribution. The prior for Ψ is set to the 
uniform distribution over [0 1], which is Beta(1,1) . By definition, the probability of 
sampling an inclusion isoform is Ψ while the probability of sampling an exclusion 
isoform is (1-Ψ). Thus, after obtaining i inclusion reads and e exclusion reads, the 
posterior of Ψ is Beta(1+ i,1+ e) . 

Adapting this model to junction reads from RNA-seq data, we obtained the Beta 
model for Ψ estimation: 

p(ψ) = Beta(1+ Ninc

2
,1+ Nexc ) ,  

p(ψ)∝ψ
Ninc
2 (1−ψ)Nexc . 

Note that as Nr = Ninc 2+ Nexc  increases, the value of Ψ becomes more certain and 

converges to a delta function centered at Ninc
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model only captures the uncertainty in Ψ due to insufficient junction read coverage after 
summing over all mappable positions, and does not account for position-dependent 
biases. 

To account for uncertainty introduced by position-dependent RNA-seq biases, we 
developed a bootstrapping method that incorporates the Beta model described above. If a 
problematic position of an isoform (e.g., inclusion) has a high sequence-dependent 
preference or has a read stack, the Ψ obtained by the Beta model will erroneously favor 
that isoform. To address this problem, we bootstrap the mappable positions, i.e., we 
randomly sample positions, sum the reads for each sample, and obtain a distribution over 
the resulting Beta model estimates of Ψ. In the above example, the single problematic 
position will have a significant probability of being omitted in some bootstrap samples, 
so that the final distribution of Ψ will have a much larger variance than in the Beta model 
without performing bootstrapping. As a result, uncertainty associated with outlier 
junction positions is discovered and addressed. On the other hand, if the number of 
mapped reads is the same across all positions, bootstrapping does not alter the Ψ 
estimates obtained from the Beta model.  

Specifically, in the bootstrapping model, Ninc and Nexc are random variables 
computed with the sum of np draws with replacement from the np position-specific 
number of mapped junction reads, where np is the number of mappable junction 
positions. It is described in the following generative process: 
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ri ~Uniform(1, 2,…,np ) ,  

Ninc =
1
2

nC1A
(ri ) +

i=1

np

∑ nAC2
(ri ) ,  

Nexc = nC1C2
(ri )

i=1

np

∑ ,  

ψ ~ Beta(1+ Ninc

2
,1+ Nexc ) , 

where nC1A
( p)  denotes the number of reads mapped to the p-th mappable position of the 

C1A junction. Note that for each bootstrapped Ψ value, the same set of ri is used for all 
three junctions, so that bootstrap samples always include triplets of matching positions 
that share RNA sequence. For example, matching C1A and C1C2 positions share the 
same C1 sequence. Doing this minimizes the impact of sequence dependent bias of C1 on 
the predicted Ψ, because the same bias is represented in both isoforms. For each exon and 
tissue, we simulated the above process 20,000 times and used the empirical distribution 
of the simulated samples as the distribution of Ψ. For example, the variance of this 
distribution was used to select low-noise cases for testing. 

 
2. Exon identification 

 
Various exon sets were constructed to train and test our regulatory model and to 

study genetic variations.  
 

2.1 Cassette exons used in training the splicing regulatory model 
Cassette exons were first mined from RefSeq annotations. We downloaded Human 

UniGene sequences (build 226) from NCBI and aligned them to hg19 using megablast 
(59) and Splign (60), with custom filtering strategies developed to keep only high quality 
spliced alignments that originated from normal tissue samples. Cassette exons were then 
mined based on EST evidence and combined with those annotated in RefSeq. In order to 
obtain a non-redundant and high quality set of training examples for our splicing 
regulatory model, we further filtered out cassette exons that overlap with other exons, 
highly similar exons, and exons that are very short (<10nt) or very long (>6000nt). This 
resulted in a total of 10,689 cassette exons for training, which will be referred to as the 
AS-EST exon set from now on. By combining RefSeq and EST evidence, we also built a 
set of 33,159 constitutive exons. 

 
2.2 Verification and filtering of cassette exons by RNA-seq 

Detecting alternatively spliced exons by RNA-seq is confounded by several factors 
including read coverage, erroneous reads and each exon having different expression 
levels and splicing patterns in different tissues. We performed various analyses to check 
the consistency between the mined AS-EST exon set and BodyMap RNA-seq data, while 
limiting the effect of these confounding factors. 

Fig. S1 shows the fraction of AS-EST exons detected to be alternatively spliced by 
RNA-seq, based on having at least k junction reads from the minor isoform across all 16 
tissues, where k ranges from 1 to 10. The 10,689 AS-EST exons were binned into 10 bins 
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of equal size based on total junction read coverage summed across tissues. The fraction 
of AS-EST exons detected to be alternative was computed for each bin and plotted 
against the medium junction read coverage in each bin. If sequencing error were the main 
reason behind detecting more alternative exons with higher coverage, the false positive 
rate would decrease exponentially with growing k. The consistent growing trend of 
alternative exon detection across all k values clearly shows that sequencing error didn’t 
play a major role in the detection. 

Next we restrict the standard estimate of Ψ of detected alternative exons to be within 
a certain range. As before, the 10,689 AS-EST exons were binned into 10 bins of equal 
size based on total junction read coverage. The detected fraction of alternative exons, 
which were required to have minimum junction read coverage of 10 and Ψ within a 
specified range (5-95% and 10-90% respectively) in at least one tissue, were plotted 
against the median junction coverage of each bin as shown in Fig. S2. The fraction of 
detected exons increases with junction read coverage initially, with a small drop towards 
the end. This is somewhat to be expected since for highly expressed genes, it is more 
likely that a rare splice variant is present in the EST library. However, the drop is 
relatively small and most of the exons with enough coverage are still detected to be 
alternative. 

In summary, we found that given enough coverage, the majority of exons in the AS-
EST set were indeed alternatively spliced in at least one of the 16 tissues profiled by 
BodyMap. To better use RNA-seq evidence to test the performance of our splicing 
regulatory model, we filtered the AS-EST exons based on Ψ estimated by the positional 
bootstrap and define the following four exon-tissue combinations, also termed events 
hereafter as in (5), to be used later: (1) AS-All events: exon-tissue combinations where the 
bootstrap standard deviation is less than 10%; (2) AS-Detected events: further restrict the 
AS-All events to only include exons whose bootstrapped Ψ is more than one standard 
deviation greater than 5% and more than one standard deviation less than 95% in at least 
one tissue (9,209 out of the original 10,689 exons were kept this way); (3) AS-Strict 
events: further restrict the AS-All events to only include exons whose bootstrapped Ψ is 
at least one standard deviation greater than 5% and at least one standard deviation less 
than 95% in at least one tissue where the bootstrap standard deviation is less than 10% 
(1,654 exons were kept); (4) AS-Extreme events: further restrict AS-All to only include 
the exon-tissue combinations whose bootstrapped Ψ is more than one standard deviation 
greater than 5% and more than one standard deviation less than 95% (6.8% of AS-All 
events). Fig. S3 shows the distribution of Ψ estimated by positional bootstrap for these 
four sets of AS events based on BodyMap RNA-seq data. 
 
2.3 Other exon sets used 

To facilitate genome-wide analysis in human, we also constructed unique exon 
triplets based on all internal exons in RefSeq transcripts and their two flanking exons, 
referred to as Triplet-RefSeq, exon triplets based on all internal exons in Ensembl 72 
transcripts and their two flanking exons, referred to as Triplet-Ensembl, and exon triplets 
based on all internal exons in Ensembl 72 transcripts with the canonical flag and their 
two flanking exons, referred to as Triplet-Ensembl-canonical. 
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3. Description of features 
 
The current RNA feature set is based on our previous one (3), but includes ~40% 

more features and some modifications of previously defined features, which were found 
to improve prediction performance significantly. The following notes describe these 
changes and additions: 

 
• Four nucleosome positioning features were introduced to encode computationally 

predicted nucleosome positions around exon A. Nucleosome occupancy scores 
were computed using (61) for the alternative exon and flanking introns. Features 
were defined as the average and maximal occupancy scores in the first 100nt in 
each intron and the first or last 50nt of the alternative exon. 

• Twelve Alu related features were introduced to account for Alu repeats around 
exon A.  Alu motif searches were executed using AF-1 (62) over the intronic 
sequences 300nt up and downstream of the alternative exon, and in an extended 
range of up to 2000nt in those introns. 

• ~350 new binding motif features were included, including motifs for general 
splicing related RNA binding proteins (RBPs), SR and SR-related proteins (SC35, 
SRp20, 9G8, ASF/SF2, SRp30c, SRp38, SRp40, SRp55, SRp75, Tra2α/β), and 
hnRNP proteins (hnRNPA1, hnRNPA2/B1, hnRNPF/H, hnRNPG). The added 
features were based on motif counts in each of the 7 intronic and exonic regions 
as in (3). 

• PTC features were removed since they rely on knowing the splicing pattern of the 
full transcript and cannot be reliably computed based on local DNA sequences. 

• To compensate for the loss of PTC features and test for the protein coding 
potentials of various combinations of exons, four binary ‘translatability’ features 
were introduced: Translatable.C1, Translatable.C1A, Translatable.C1C2 and 
Translatable.C1AC2. These features were computed locally without relying on 
full transcript information. Translatable.C1A equals 1 if the sequence comprised 
of exons C1 and A can be translated without a stop codon in at least one of the 
three possible translation frames and equals 0 otherwise. The translatability 
features for other exon combinations were computed similarly. 

• Feature names were modified to be more succinct, but the correspondence to 
previous feature names should be clear. 

• Some redundant features were combined, e.g., ‘Frame.shift.NaN’ and 
‘Frame.noShift.NaN’ features were complimentary to each other and they were 
combined into a single feature ‘FrameShift.A’. 

 
Overall, the number of RNA features grew from 1,014 to 1,393, and the complete 

list is in Table S1. 
 

4. Bayesian inference of the splicing regulatory model 
 
We assembled the human splicing regulatory model using a Bayesian machine 

learning framework. Each of the 10,698 cassette exons in AS-EST was treated as a 
training case. An ensemble of neural network models that relates the RNA features and 
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the observed Ψ values was fitted to the exons in the training dataset. Each model seeks to 
maximize an information-theoretic ‘code quality’ measure (3), which is defined as the 
amount of information provided by the predictions of the model beyond a naïve guesser: 

CQ = DKL (qt,e |qt )
t
∑

e
∑ −DKL (qt,e |pt,e ) , 

where qt,e  is the target splicing pattern for exon e in tissue t,  qt  is the prediction of the 
optimal guesser that ignores the RNA features, pt,e  is the prediction made by the 
regulatory model not trained on exon e and DKL is the Kullback–Leibler divergence 
between two distributions. It can also be interpreted as a likelihood function of the 
predictions pt,e  based on partial counts. Refer to (3, 11) for detailed explanations of this 
objective function. 

The structure of a single model in the ensemble is a two-layer neural network with 
sigmoidal hidden units shared across tissues. It is capable of modeling complex non-
linear and context-dependent interactions between the RNA features and the splicing 
patterns. In this model, features are combined to form the inputs to a maximum of 30 
hidden variables. Each of these hidden variables applies a sigmoidal non-linearity to its 
input. Subsequently, these non-linear hidden variables are combined by a softmax 
function to produce the prediction. The tissues were trained jointly as separate output 
units and shared the same set of hidden variables, enabling information about RNA 
feature usage to be combined across tissues. In this model, there are in total 41,820 
potential input-to-hidden parameters and 960 hidden-to-output parameters.  

Because of the complexity of this model, fitting a single model using a standard 
maximum likelihood learning method suffers severely from overfitting. Therefore, we 
adopted a Bayesian Markov chain Monte Carlo (MCMC) approach to search over billions 
of models with different structure and parameter values, and the final combined model 
substantially outperforms other popular machine learning techniques including linear 
regression, nearest neighbors and support vector machines. The learning algorithm and 
comparison to other techniques in terms of prediction accuracy have been described in 
detail in (11), where the method was tested using mouse microarray data. Here, we 
applied the model to human RNA-seq data and found that it worked well. We also found 
that accuracy was improved by the addition of many of the new features, including 
frequencies and locations of Alu elements and nucleosome positioning features. 

As described in detail below, we used two different training sets to train two types of 
computational models, for the purpose of (1) predicting low, medium and high Ψ in each 
tissue, and (2) predicting whether or not there is tissue-variable splicing. Both 
computational models were trained using some common parameter settings, as follows: 
(1) Each feature was normalized by dividing the feature value by its maximum absolute 
value across the training set. This results in feature values between -1 and 1, but with the 
value of 0 preserved, since it usually has special meaning, such as the absence of a motif. 
(2) A sparsity prior of 0.95 was used for all input-to-hidden connection. (3) No sparsity 
between hidden units and output units was used. (4) A zero-mean Gaussian prior with 
unit variance was used for the weights on all active connections. (5) All weights were 
discretized to be between -5 and 5 in steps of 0.1. (6) MCMC was run for about 3000 
iterations (full passes through all the parameters) for each experiment while discarding 
the first 100 burn-in samples. (7) Five-fold cross-validation with 6 different random 
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partitions of exons was used to obtain 30 different splicing regulatory models so that code 
prediction variability could be evaluated. 

Next, we describe the targets used in training these two computational models. 
 
4.1 Targets for the low/medium/high (LMH) model 

We defined the low-medium-high (LMH) splicing pattern using three numbers, 
corresponding to the probabilities that Ψ is low (0-33%), medium (34%-66%) and high 
(67%-100%). To produce these splicing patterns, the distribution of Ψ generated by the 
bootstrapped Beta model was discretized according to the above ranges, resulting in three 
probabilities that sum to 1. We only kept events where Nr is at least 10 reads for training, 
although we later tested the model on cases with less than 10 reads (see Section S5.1). In 
total, 38% of events were kept and 85% of exons had at least one tissue that was kept. 
The events that did not pass the read count threshold were treated as missing data during 
training. Overall, for the events that passed the threshold, 62% were labeled as ‘high’, 7% 
were labeled as ‘medium’ and 31% were labeled as ‘low’. 

 
4.2 Targets for the tissue-regulated-splicing (TRS) model 

The tissue-regulated-splicing (TRS) model aims to identify exons that have tissue-
dependent splicing but does not aim to predict the values of differences between tissues. 
The TRS splicing pattern was also defined as three categories:  ‘low-across-tissues’, 
‘high-across-tissues’ and ‘tissue-regulated’. They were derived using the LMH splicing 
patterns described above. For tissues that passed the junction coverage threshold 
(Nr ≥10 ), if the splicing category (low, medium, or high) with the highest assigned 
probability for all tissues is low or medium, the exon is classified as ‘low-across-tissues’. 
In other words, if Ψ of the exon is more likely to be between 0%-33% or between 34%-
66% than between 67%-100% for all tissues with confident measurements, that exon is 
classified as ‘low-across-tissues’. Similarly, if the most probable splicing category for all 
tissues is either high or medium, the exon is classified as ‘high-across-tissues’. 
Otherwise, the exon is classified as ‘tissue-regulated’. For these tissue- regulated exons, 
there is at least one tissue whose Ψ estimate is most probable between 67%-100% and at 
least one tissue whose Ψ estimate is most probable between 0%-33%, representing at 
least one significant tissue-dependent splicing difference. In total, 3087 exons were 
confidently labeled as ‘high-across-tissues’, 1506 exons were confidently labeled as 
‘low-across-tissues’ and 589 exons were confidently labeled as ‘tissue-regulated’. Note 
that our TRS splicing pattern targets were based on the list of 16 tissues studied. If we 
incorporate more tissues, more exons may exhibit tissue-dependent splicing. In addition, 
if RNA-seq coverage is increased, more exons may exhibit tissue-dependent splicing 
within the 16 tissues because of the omission of tissues with low coverage in our current 
dataset. Furthermore, the set of 5.5% (589 out of 10,689) ‘tissue-regulated’ exons used in 
training was identified with a very stringent threshold to ensure high quality training. If 
the threshold were lowered, a lot more exons would be identified as ‘tissue-regulated’. 
For example, 2,688 exons out of 10,689 alternative exons that we analyzed (25.2%) have 
at least one tissue pair whose expected Ψ difference is greater than 15% with a z-score 
greater than 2. Table S2 shows the number of tissue-regulated exons identified by varying 
the minimum threshold of ΔΨ and the z-score of this difference, based on Ψ quantified 
by positional bootstrap on BodyMap RNA-seq data. 
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4.3 Simple splicing regulatory model based on multinomial regression 

To demonstrate the importance of capturing context dependence when predicting 
splicing, we trained a multinomial regression model to compare with our Bayesian neural 
network model. As a generalization of logistic regression, the multinomial regression 
model is linear in the log odds ratio domain and does not have hidden variables. This 
model was trained using the same objective function, RNA features, splicing patterns and 
dataset partitions as the Bayesian neural network model described above. The features 
were normalized in the same way so that the numerical values of each feature ranged 
between -1 and 1. The multinomial regression model was trained with gradient descent 
and early stopping. The initial parameter values were set to small random values (mean 
zero Gaussian with σ 2 = 0.001 ) for the feature-to-output connections. The biases for 
each output unit were set to the optimal values so that the regression predicts the average 
probabilities for all training examples initially. As a result, the code quality starts around 
0. To avoid overfitting, 1/3 of training data points were randomly chosen and set aside as 
the validation dataset used for early stopping. Fig. S4 shows the training performance and 
validation performance for several runs of gradient descent using different data partitions. 
We observed that the validation performance peaks well before training performance 
saturates. The final model of the multinomial regression is defined by the set of 
parameter values with the best validation performance.  

 
5. Validation of WT predictions 

 
In order to successfully apply the human splicing regulatory model to analyze 

genetic variations, it needs to have high prediction accuracy and generalize well to 
unseen cases. Therefore, we have extensively evaluated our regulatory model with 
various types of experimental data, including different sources of RNA-seq data, RT-
PCR data, RNA binding protein (RBP) binding affinity data, splicing factor knockdown 
data, and matching genotype/phenotype data. These are described in detail in this section. 

 
5.1 Validation using RNA-seq Data 

We evaluated the prediction performance of the regulatory model using test sets that 
differ from the training data in several different ways. These include the ability of the 
proposed model to generalize across exons, chromosomes, datasets and species in 
predicting absolute Ψ levels and tissue-differential splicing on a genome-wide scale.  

Because the regulatory model can potentially overfit the training data, we ensured 
that prediction performance was always evaluated using held out exons, which are not 
seen by the training procedure. Based on this principle, we performed five-fold cross 
validation for each splicing prediction task, in order to increase the number of exons used 
for model training and to reduce the noise in the estimate of prediction performance. In 
this procedure, the AS-EST exons were randomly partitioned into 5 bins of equal size, 
each containing 20% of the exons. A regulatory model was trained using the exons in 
four of the five bins and then tested on the exons in the remaining bin, which were held 
out during training. This procedure was repeated five times to obtain one test prediction 
for each exon in the AS-EST exon set. These test predictions were then evaluated for 
each of the 6 random partitions to produce the final estimation of the model performance. 
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Under the assumption that exons come from a certain probability distribution, this 
procedure produces an unbiased estimate of the performance of the learned model on 
novel exons from that distribution. When performing cross-chromosome and cross-
species evaluation, this procedure was modified as described below. We also tested with 
randomly permuted exons to further demonstrate that our model does not suffer from 
over-fitting. 

Furthermore, since predictions obtained from the regulatory model are in the form of 
three probabilities: plow , pmedium  and phigh , we obtained real-valued predictions of Ψ by 
computing the expected value of Ψ under this predictive distribution, whose bins are 
centered at 1/6, 3/6 and 5/6:  

ψ̂ =
1
6
plow +

3
6
pmedium +

5
6
phigh . 

To correct for the fact that the bins bias the predictions toward 1/6 and 5/6 because of the 
quantization, we subtract 1/6 and multiply by 3/2 to get values between 0 and 1. The 
variance in Ψ is predicted as follows:  

σ̂ 2 =
1
6
−ψ̂

"

#
$

%

&
'
2

plow +
3
6
−ψ̂

"

#
$

%

&
'
2

pmedium +
5
6
−ψ̂

"

#
$

%

&
'
2

phigh . 

High variance predictions correspond to cases where the model spreads probability out 
over the low, medium and high categories.  

 
5.1.1 ROC curves for low versus high Ψ 

We used the bootstrap model to define a simple labeling scheme for high inclusion 
and low inclusion events in order to test the splicing model across gene expression 
ranges, exon sets, chromosomes, datasets and species. In this scheme, the distributions of 
Ψ are computed by bootstrapping and events with an expected Ψ above 66% and 
standard deviation of Ψ less than 15% are labeled as ‘high inclusion’, while events with 
an expected Ψ below 33% and standard deviation of Ψ less than 15% are labeled as ‘low 
inclusion’. All other events, such as those with a standard deviation of Ψ greater than 
15%, are discarded. The performance of the code in predicting absolute inclusion is 
evaluated by its ability of distinguishing ‘high-inclusion’ events from ‘low-inclusion’ 
events. The ROC curve for each tissue is plotted in Fig. S5a, and the overall AUC is 
95.5%. If we only test on the top 50% high confidence predictions, then the overall AUC 
becomes 99.1%. 

In Fig. S6, we grouped events based on their junction read coverage Nr. We observe 
that our model generalizes well across different ranges of gene expression. In particular, 
our model generalizes well when Nr <10  without being trained on any events in that 
range, which indicates that our model is able to predict splicing in genes with low 
expression for which direct measurement of Ψ is challenging.  

 
5.1.2 ROC curves for high inclusion versus non-high inclusion and low inclusion 
versus non-low inclusion 

We also evaluated performance of the LMH model in distinguishing low inclusion 
events from events that are likely medium or high, and high inclusion events from events 
that are either medium or low. For the ‘high inclusion’ ROC curve, the positive data 
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points are defined as the events whose high category in the LMH splicing pattern have 
probabilities above 0.5 (qhigh > 0.5 ) while the negative data points are the events whose 
low or medium category in the LMH splicing pattern is above 0.5 ( qmedium > 0.5  or 
qlow > 0.5 ). Similarly, for the ‘low inclusion’ ROC curve, positive data points are the 
events with qlow > 0.5  and negative data points are the events with qmedium > 0.5  or 
qhigh > 0.5 . Real-valued predictions of Ψ were obtained as described above and used to 
produce the ROC curves in Fig. S7, and the overall AUCs are 91.4% and 92.8% 
respectively. 

 
5.1.3 ROC curves for tissue-dependent differences 

To demonstrate that our new model can make accurate predictions for tissue-
differential splicing comparing to our previously developed model (3), we evaluated its 
performance on the task of predicting differences in Ψ between pairs of tissues. For each 
pair of tissues and each direction (sign of difference), we identified a ‘positive’ set of 
exons that have significant evidence supporting tissue-dependent inclusion and a 
‘negative’ set of exons that have significant evidence supporting no substantial 
difference. To produce these sets, we computed the distribution of the Ψ difference by 
randomly picking pairs of Ψ from the bootstrap-generated samples of the two tissues, 
which is based on the assumption that Ψ distributions of the two tissues generated by 
bootstrapping are independent given RNA-seq data. Exons with expected Ψ differences 
greater than 15% and z-scores greater than 2 are defined as inclusion. Exons with 
expected Ψ differences below 15% and combined standard deviations less than 25% are 
defined as no change. For each pair of tissues and each direction of change, we tested the 
ability of the model to distinguish between positive and negative exons. To remove biases 
caused by the mismatch between this task and the original task of predicting absolute 
inclusion levels, we constructed a simple logistic regression classifier that takes the 
output of the LMH model as input. The logistic classifier was trained by only using the 
data used to train the LMH model, i.e., it was not trained with validation or test data. For 
each tissue pair and direction of change, the logistic classifier takes six inputs 
corresponding to the log-probabilities of low, medium and high inclusion for the two 
tissues. The ROC curves for all tissues pairs are shown in Fig. S8, with an overall AUC 
of 89.1%. At a false positive rate of 1%, our new method correctly identifies 29.9% of 
cases, which improves substantially upon the previously published accuracy of 7.8% (3). 

 
5.1.4 ROC curves using different sets of test exons 

Although we have verified that most of the exons in AS-EST are indeed 
alternatively spliced, we also evaluated our regulatory model on the three event sets with 
increasingly stronger AS evidence: ‘AS-Detected’, ‘AS-Strict’ and ‘AS-Extreme’, to 
avoid possible biases introduced by constitutive or nearly constitutive exons. Since the 
estimated Ψ values will be noisier when imposing more stringent AS criteria on exons, 
restricting the prediction in this way will lead to decreased performance. However, as 
shown in Fig. S9, where ROC curves for different tissues are combined, and summarized 
in Table S3, the resulting performances are still extraordinary good on the task of 



 
 

12 
 

distinguishing low versus high Ψ. Similarly high performances were also obtained for 
other prediction tasks (data not shown). 

 
5.1.5 Testing with randomly permutated exons 

To further demonstrate the validity of our training and testing scheme, we performed 
the following random shuffling experiment. Using six random partitions and five-fold 
cross validation as described previously, we trained models with a dataset where the 
mapping between RNA features and splicing patterns were randomly scrambled. The 
resulting models were then tested on held out datasets, which were not permuted. The 
ROC curves for predicting absolute inclusion is plotted in Fig. S10. As expected, the 
splicing regulatory model so trained has no generalization power, since their performance 
on held out dataset is nearly random. Similar results were also obtained for predicting 
tissue-regulated splicing differences (data not shown). 

 
5.1.6 Generalization across chromosomes, assays and species 

To examine the ability of the splicing regulatory model to generalize across entire 
human chromosomes, we trained and tested a version of the regulatory model using a 
chromosome based 5-fold cross-validation. In this cross-validation partitioning, entire 
chromosomes were randomly assigned to five bins such that each bin has roughly the 
same number of exons. As a result, the prediction ability of the regulatory model is 
evaluated using exons from chromosomes that are not seen by the training procedure. As 
shown in Fig. S6b, the performance of the model is only marginally affected by 
partitioning according to chromosomes with an overall AUC of 93.7%. This provides 
additional support that the inferred code generalizes well and accounts for splicing 
mechanisms that regulate all chromosomes. 

To examine the ability of our regulatory model to generalize across assays and 
species, we downloaded the RNA-seq data from (53), referred to as Kaessmann’s data 
hereafter, which was produced by a set of different biological samples and sequencing 
machines in a different lab. We mapped Kaessmann’s mouse and human data consisting 
of five tissues (brain, heart, kidney, liver and testis), which is a subset of the sixteen 
tissues used to train our model. The generalization ability across the BodyMap dataset 
and Kaessmann’s dataset was evaluated by testing the regulatory model trained on 
BodyMap data using Kaessmann’s dataset as labels. ROCs for both absolute Ψ levels and 
tissue-differential Ψ values were produced using the same labeling methods as described 
above. As shown in Fig. S6c and summarized in Table S3, predictions generalize well 
across assays and biological samples.  

We also evaluated the performance of the regulatory model inferred from human 
splicing data using mouse exons and mouse RNA-seq data for brain, heart, kidney, liver 
and testis generated in Kaessmann’s study. To avoid making predictions for a mouse 
exon with a model that has been trained on the orthologous human exon, we first 
identified 1,967 orthologous exons in our training set, using a 90% sequence similarity 
threshold including indels (note that although the exon sequences of these orthologous 
exons are similar, their flanking intron sequences are generally different which result in 
different feature vectors). When making predictions for a mouse exon, only the models 
that were not trained on the orthologous human exon were used. The ROC curves for 
absolute inclusion prediction are shown in Fig. S6d and the overall AUC is 90.3%. 
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5.2 Evaluation using RT-PCR data 

To further study the ability of our regulatory model to predict tissue-dependent 
splicing differences, we selected a set of exons for RT-PCR validation in the following 
10 matching but independent tissue samples from BodyMap RNA-seq: brain, heart, 
skeleton muscle, adrenal, lung, colon, liver, breast, kidney and ovary. Exons were 
selected based on the following criteria after applying our method to the 10,689 AS-EST 
exons: (1) the top 200 exons predicted by the TRS model to exhibit tissue variable Ψ; (2) 
the top 10,000 exon-tissue pairs predicted by the LMH model to have tissue-dependent 
differential Ψ (out of the ~900,000 overall exon-tissue pairs in 10 tissues); (3) having 
adequate gene expression levels in most of the tissues, as determined by RNA-seq data, 
to increase chances of successful RT-PCR experiments; (4) maximization of the number 
of predicted tissue-dependent differential Ψ values for each exon, especially within tissue 
types that have fewer tissue-specific splicing patterns (as opposed to the dominant brain, 
heart and muscle specific inclusion patterns). When applying the regulatory model (TRS 
or LMH), care was taken to ensure that predictions for a specific exon were made by a 
version of the model that was trained without the test exon in the training set (one such 
fold per partition), and the ranking was averaged across the six partitions. This procedure 
was used to select 14 exons. Their RT-PCR measured Ψ values are summarized in Table 
S5, and the accompanying gel images with quantified Ψ values are shown in Fig. S11. 
Overall, among exons and tissue pairs where the RT-PCR-measured Ψ differs by more 
than 5% (n = 232 ), we examined cases with low predicted variance (n =193 ) and found 
that the direction of tissue-dependent splicing change is correctly predicted in 89.6% of 
cases. 

 
5.3 Comparison to recently published RBP binding data 

To see if our model can effectively account for information obtained from 
independent measurement on binding affinities of RNA-binding proteins (RBPs), we 
performed the following analysis. For each exon A, we first define the following six 
regions: up to 300 bases of the 3’ end of I1 upstream of A, ±6 nt around the splicing 
junction between I1 and A, up to 300 bases of the 5’ end of A, up to 300 bases of the 3’ 
end of A, ±6 nt around the splicing junction between A and the downstream intron I2, 
and up to 300 bases of the 5’ end of I2. Please note that the regions for each exon may 
have different lengths due to the limited length of the exon and its two flanking introns. 
In addition, the two exonic regions overlap when the exon length is less than 600nt, and 
become identical if an exon is shorter than 300nt. For each of the 98 RBPs measured in 
(13), we then scanned through each of the six previously defined regions and summed the 
z-scores of all overlapping heptamers based on the z-score matrices published in (13). 
Because the two junction regions have length 12, the heptamers always cross the exon-
intron boundary. Finally these summed z-scores were normalized by the length of the 
region so that we have one feature for each region and protein. The correlation between 
these features and the RNA-seq profiled PSIs for each event, before and after subtracting 
code-predicted PSIs, are plotted in Fig. 1c. We also used linear regression to identify 
code features that are associated with RBPs. Specifically, for each RBP feature vector at 
each of the six regions defined above, we used LASSO (63) to train a model with code 
features as covariates. The number of covariates included in the regression was chosen to 
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minimize the Akaike information criterion (AIC). Model performance was tested by 10-
fold cross-validation. Fig. S12 shows code features that have obtained a regression 
coefficient ≥ 1 for at least one RBP in at least one region. For ~90% of RBPs, code 
features can explain >80% of variance in RBP affinities across regions 1, 3, 4, and 6. By 
converting the resulting Pearson correlations to z-scores with Fisher’s transformation, 
this corresponds to P<1e-200 for all four regions under the normal distribution 
assumption. 

 
5.4 Analysis of MBNL knockdown data 

To test if our model can account for the regulatory effects of trans-elements, we 
used RNA-seq data generated from Hela cell lines in a recent MBNL knockdown study 
(14). Based on gene expression levels estimated by Cufflinks, we estimated that MBNL 
expression was reduced by ~50% in the knockdown sample versus the control sample. By 
profiling the 10,689 AS-EST exons and the similarly mined 33,159 constitutive exons, 
we identified 333 exons with increased PSI and 331 exons with decreased PSI as 
estimated by positional bootstrap (z-score≥1 and ΔΨ>5%). Besides these exons, 26,951 
out of 43,848 exons had a combined knockdown and control PSI standard deviation less 
than 5%.  These exons are labeled as no change. 

To compute the model predictions for the knockdown, we set the 24 MBNL-related 
features to the average value found in the training dataset. By comparing the knockdown 
prediction to the original prediction, we computed a MBNL regulatory score for each 
exon, similar to the regulatory score for SNVs (see Sec. S7.1). We found that the exons 
affected by MBNL knockdown had significantly higher predicted MBNL regulatory 
scores as described in the main text. We also found that the MBNL-related features 
themselves were also predictive. For example, the single most predictive feature is the 
conservation weighted MBNL motif count in the I2_5’ region, which corresponds to a p-
value of 3.1e-11, and combining all MBNL features produce a p-value of 2.5e-11. To 
further test if our code is capable of making more accurate predictions based on not only 
MBNL feature differences but also the context of other RNA features, we computed the 
distribution of AUCs by bootstrapping the exons. We found that our regulatory model 
had an AUC of 70.7% with standard deviation of 1.0% and the combined feature 
differences had an AUC of 59.8% and a standard deviation of 1.1%. Using a normal 
approximation, this corresponds to a highly significant p-value of 1.4e-14, which 
supports the superior performance of our regulatory model compared to directly using 
feature differences. 

 
5.5 Analysis of individual genotype/phenotype data 

Although a comprehensive population study is beyond the scope of the current 
paper, we examined genotype and RNA-seq data from lymphoblastoid cell lines of four 
individuals from a recent population study (15). Lymphoblastoid RNA-seq data was 
processed with our pipeline described earlier to obtain positional bootstrapped Ψ’s. We 
also mapped their haplotype-resolved genomes to the set of ~300k common SNPs (to be 
described in Sec. S7). For each exon with a common SNP nearby, we used our regulatory 
model to predict the overall change in PSI in white blood cells as an approximate to 
lymphoblastoid cell lines, which our model was not trained on. When more than one 
common SNPs are found within the exon triplet and flanking introns, predicted changes 
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in PSI are combined by summing. For four randomly selected individuals, we found 99 
events with measured delta PSI between two samples greater than 15%, measured 
standard deviation on PSI less than 15% and predicted delta PSI above the 25th percentile 
of all common SNPs. We used the above thresholds to ensure that these 99 differences 
are significant both in model prediction and in RNA-seq measurement. In this set of 
events, 72 are correctly predicted and 27 are incorrectly predicted, resulting in an 
accuracy of 73%. 

 
6. Feature analysis using the splicing regulatory model 

 
The analysis on MBNL knockdown data is an example showing that the cis-

regulatory code inferred by our model is consistent with some underlying biological 
mechanisms. Here we present more in-depth analysis on these cis-features: first by 
feature sensitivity then by feature relevance. 

 
6.1 Analysis using feature sensitivity 

To ascertain the quantitative effect that a single feature F is predicted to have on Ψ 
for a given cis- and trans-context, we define the exon-specific feature sensitivity, denoted 
by ΔΨ/ΔF, which is an estimate of the partial derivative of predicted Ψ with respect to a 
feature F. It equals the difference in predicted Ψ that a small change in the RNA feature 
F makes, while holding all other feature values constant. For example, suppose F is the 
FOX motif count in region I1, then a positive ΔΨ/ΔF for brain indicates that introducing 
an extra FOX motif in I1 will increase the value of predicted Ψ, when all other RNA 
features are left unchanged. In general, the magnitude of this ‘feature sensitivity’ 
indicates how much the feature affects splicing in the given context, and its sign indicates 
whether the feature inhibits or promotes splicing. Because our regulatory model can 
make non-linear predictions with interactive features, both the magnitude and sign of 
ΔΨ/ΔF can be different for different exons depending on their cis-element contexts. The 
distributions of ΔΨ/ΔF for the top 16 features, as determined by the frequency with 
which the feature was selected during Bayesian inference, are plotted in Fig. S13. For 
each tissue and the 100 features most strongly selected during learning, we computed a 
histogram of feature sensitivity across cis-contexts defined by different exons, shown in 
Fig. S14. Most features either positively or negatively affect Ψ across cis-contexts, but 
interestingly, 40 of the top 100 features frequently switch the direction of their effect in at 
least one tissue, depending on cis-context. To explore the effects of trans-context, we 
separated the sensitivities by tissue and found that the same feature can have quite 
different sensitivity in different tissues, e.g., while features have nearly identical 
sensitivities in breast and adipose tissue, they are often quite different in brain tissue. Fig. 
S15 plots the discrepancy in feature sensitivities for every pair of tissues, and illustrates 
rich compositional structure. In Fig. S16, for every pair of tissues, we plot the feature 
sensitivity in one tissue against the feature sensitivity in the other tissue for the top 20 
features in all exons. The importance of context dependence is also evident when the 
effects of genetic variations are analyzed, as described in the main text and Sec S7.6. 
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6.2 Visualization by feature relevance 
Here we aim to provide a 2-D visualization of pairwise feature relationships based 

on similarity of cis- and trans-context dependence. We derived an exon-specific 
relevance for RNA feature xi, which is a score that captures the overall effect of the i-th 
feature on the predicted Ψ. It is defined as the difference between the predicted Ψ using 
the original feature set and the predicted Ψ after xi is integrated away. Ideally, the 
conditional distribution of xi should be used in the integration. However, since the 
conditional distribution is unknown, the marginal distribution of xi is used as surrogate, 
and it is approximated by the empirical distribution of xi on the training set. 

Specifically, let ψ̂ e,t (x)denote the expected Ψ for exon e in tissue t predicted by the 
LMH model given features x = {x1,…, xN} . The predicted Ψ for exon e in tissue t with 
feature xi marginalized out is then 

ψ−xi
e,t (x) = ψ̂ e,t (x)

xi
∑ , 

where the sum is over all values that xi takes in the training set. ψ−xi
e,t (x)  was computed by 

numerical integration since most of our features take only few values. The relevance of 
feature xi for exon e in tissue t is defined as  

sxi
e,t = ψ̂ e,t (x)− ψ−xi

e,t (x) , 
which is a measure of how much and in which direction the predicted Ψ changes when 
the feature is unknown or removed from the model. We further define the relevance of xi 
for exon e by averaging over tissues  

sxi
e =

1
T

sxi
e,t

t
∑  

Putting all exon-specific feature relevance together results in the following matrix 
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where each row is like the signature of a feature. We may view the rows as vectors in the 
high-dimension space spanned by the columns of the feature relevance matrix, using their 
pairwise Euclidean distances as a similarity measure for the features. Features that affect 
the same set of exons will have very small distances while features that influence 
different sets of exons will have large distances. 

In order to visualize the rows of the feature relevance matrix in two-dimension, we 
applied a powerful non-linear dimensionality reduction technique called t-distributed 
stochastic neighbor embedding (t-SNE) (64). Because many features have little 
predictive power and their entries in the feature relevance matrix are very small, we only 
selected the 200 strongest features to visualize, where the strength of a feature xi is 
defined as 

θxi
= sxi

e

e
∑ . 
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Next we applied the version of t-SNE available as part of the Matlab Toolbox for 
Dimensionality Reduction, available from 
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html 
and set the perplexity parameter to 10 to achieve a good tradeoff between preserving 
local versus global structures. The embedded 2D visualization is shown in Fig. S17. 
 
7. Genome-wide analysis of SNVs 
 

To analyze the effects of SNVs on a genome-wide scale, we used the following 
three SNV datasets: 1) the common SNPs track of dbSNP135 on hg19 downloaded from 
the UCSC genome browser (65); 2) the point mutations in HGMD Professional version 
2011.3 (17); 3) GWAS catalog downloaded from http://www.genome.gov/gwastudies/ on 
Dec. 7, 2013. For each SNV dataset, we mapped them to various exon sets (AS-EST, 
Triplet-RefSeq, Triplet-Ensembl, Triplet-Ensembl-canonical etc.), which include an exon 
and up to 300nt of flanking introns, for different analyses. The total number of unique 
exon-SNV combinations analyzed is 658,420, and the total number of unique SNVs is 
410,412. In addition, we also analyzed rare variants on chromosome 1 (Sec. S7.7), and 
thousands more SNVs were studied when applying our regulatory model to three specific 
diseases (Sec. S8-10). 
 
7.1 Quantifying the effect of a SNV using our regulatory model 

After pairing up a mutant and its wild type (WT) sequence corresponding to after 
and before introducing a SNV, we used two measures to quantify its effect on an exon. 
First we compute the difference between mutant and WT PSIs predicted by our code 
across all tissues and take the one with the largest magnitude. This will be simply denoted 
by ΔΨ hereafter. We also derived a ‘regulatory score’ for each SNV based on the LMH 
model, which is computed by summing up the absolute differences of the three 
low/medium/high probabilities and averaging across all tissues. In order to display a 
smooth distribution of genome-wide regulatory scores as in Fig. 4, we created 56 bins 
from -5 to 0.5 with a bin width of 0.1, and applied a Gaussian smoothing filter with a 
standard deviation of 0.2. 
 
7.2 Other Computational methods 

When comparing to other methods that can detect aberrant splicing, since there 
already exists many in the literature that can predict the effect of splice site mutations 
accurately (see (66) for a review), we focused on two methods that are specifically 
designed to predict the effects of SNVs deep into exons and/or introns: Skippy (48), 
which can be applied only to exonic SNVs, and Spliceman (47, 67), which can be applied 
to both exonic and intronic SNVs. For both methods, the web versions of these tools were 
used (http://research.nhgri.nih.gov/skippy/input.shtml for Skippy and 
http://fairbrother.biomed.brown.edu/spliceman/index.cgi for Spliceman) and run 
according to the instructions provided on their webpages. Fig. S18 shows the result of 
comparing these two methods to our splicing code for detecting disease SNVs.  

To score variants according to their overlap with functional annotations, we 
annotated exonic and intronic sequences using the feature detectors that we previously 
developed (3), plus additional ones described in Sec. S3. Annotations include donor and 
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acceptor signal strengths, information about conservation in intronic and exonic regions, 
binding sites of splicing-associated proteins and exonic and intronic splicing enhancers 
and silencers. Also included are more complex, derived annotations, such as lengths of 
proximal introns and exons, information about whether splicing induces a frame shift or a 
nonsense codon, information about secondary structures in introns, exons and junctions, 
nucleosome positioning, retroviral sequences. For each wild type exon and mutant, the 
annotations were converted into a normalized feature vector (as described in Sec. S4) and 
a score was computed by summing the absolute feature differences. 
 
7.3 Proximal HGMD analysis 

To determine if the splicing regulatory effects of HGMD SNVs are simply due to 
their genomic locations, we compared the predicted splicing effects for pairs of nearby 
common and HGMD SNVs. Using a maximum distance of 10nt, we found 212 pairs of 
intronic SNVs that are more than 6nt away from the splice site. We performed the KS test 
for the regulatory scores on this position-matched set of common and HGMD mutations. 
HGMD SNVs are still significantly enriched for high regulatory scores with a KS-
statistics of 14.6% (P=0.0096), which is similar to the result for all intronic and non-
splice-site SNPs combined without controlling for genomic locations. Relaxing the 
threshold of distance to 50nt, we found 689 pairs of SNVs. The KS-stastics for this set is 
12.1% with P=4e-5. The resulting CDFs are plotted in Fig. S19. 
 
7.4 Analyzing GWAS SNVs and sQTLs 

Out of a total of 15,204 SNPs in the GWAS catalogue, 618 SNPs can be mapped to 
triplet-RefSeq and also overlap with the UCSC common SNPs track. It is observed that 
the GWAS-implicated SNPs are significantly enriched for exonic variants: 25.9% of 
GWAS-implicated SNPs are in exons compared to 15.0% overall (P=1.4e-12, one sided 
hypergeometric test). The GWAS SNPs are also enriched for missense and nonsense 
mutations (P=1.6e-10 and P=4.0e-4 respectively, one sided hypergeometric test). 
However, a two sample Kolmogorov–Smirnov (KS) test performed on the distribution of 
the predicted regulatory scores of the intronic GWAS-implicated mutations found no 
significant difference compared to other intronic mutations. There are 457 GWAS-
implicated and 26,2347 non-GWAS-implicated intronic SNPs used in this KS test. This is 
in striking contrast to the intronic HGMD SNVs whose regulatory scores are much higher 
than intronic common SNPs. To analyze the power of the two-sample KS test in this 
situation, we randomly replaced 5% of intronic GWAS-implicated SNPs with randomly 
chosen intronic HGMD SNVs. The KS test is able to reject the null hypothesis that 
disease-associated set and the common SNPs set have the same distribution of regulatory 
score 99.5% of the time with p<0.05. 

We also analyzed the 1,763 splicing QTLs (sQTLs) reported in (51), of which 453 
exon-SNV combinations (or 324 unique SNVs) can be mapped to ‘triplet-RefSeq’. These 
sQTLs were discovered by correlation analysis based on RNA-seq data of blood samples 
from 922 individuals. Using our model, a regulatory score is computed for each mapped 
sQTL and compared to the distribution of all common SNPs. Using the KS test, we found 
that the splicing QTLs are significantly enriched for higher regulatory score, with a p-
value of 4.2e-10 as stated in the main text. This is true even after breaking them down 
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into exonic and intronic SNVs: P=2.2e-3 for 165 exonic sQTLs and P=1.2e-6 for 297 
intronic sQTLs (KS test). 
 
7.5 Condel analysis 

We used the Condel webserver (20) that combines predictions of several methods, 
including SIFT (68) and PolyPhen2 (69), to predict the implications of missense SNVs in 
HGMD in terms of protein function. For each missense SNV, Condel annotates it as 
either ‘deleterious’ or ‘neutral’. A ‘score’ between 0 and 1 accompanies this label such 
that a score of 1 implies the highest likelihood of pathogenicity and a score of 0 implies 
neutrality. In order to pick the most reliably predicted SNVs from deleterious and neutral 
sets, we sorted SNVs in each set based on their Condel scores and picked the top and 
bottom 25% of SNVs from deleterious and neutral sets, respectively. We then compared 
their code-predicted ΔΨ’s. Fig. S20 depicts the CDFs of the ΔΨ’s of two sets for the 25% 
(P= 6.65e-20, KS test), and also the 10% (P=5.46e-19, KS test) most reliable SNVs. 
Further, for the 25% threshold, approximately five times more SNVs that are neutral to 
protein function disrupt splicing (ΔΨ >5%), compared to those that are deleterious (see 
Fig. S20). 
 
7.6 Analysis of context dependency 

By taking into account cis-context dependence, our computational model can make 
more accurate predictions for Ψ, but we wondered whether the predicted effects of 
mutations also depend on context. Therefore, we sought to analyze pairs of SNVs that 
induce very similar changes of ΔF in their wild type feature vectors, but where the wild 
type feature vectors are themselves different (note that whereas above F referred to a 
singled feature, here F refers to the entire feature vector). For such pairs of SNVs, linear 
methods, such as correlation analysis, would predict very similar changes in Ψ, since if 
Ψ=AF, then we have ΔΨ1=AΔF1 and ΔΨ2=AΔF2, and ΔΨ1-ΔΨ2 = A(ΔF1-ΔF2) ≈ 0. In 
contrast, context-dependent models are capable of predicting different changes in Ψ. 

For each SNV, we identified another SNV whose ΔF was most similar, according to 
the normalized dot product (angle) between ΔF for the two SNVs. If that angle was 
greater than 5 degrees, we discarded the pair, but otherwise we kept it. To ensure that the 
changes in the two feature vectors were identical, rather than just similar, we modified 
ΔF for the two SNVs to be equal to (ΔF1-ΔF2)/2. This ensures that linear models would 
predict exactly equal changes in Ψ, i.e., ΔΨ1-ΔΨ2 = 0. We applied this correction to the 
mutant feature vectors, re-applied the computational model, and computed ΔΨ1 and ΔΨ2 

for the two SNVs. Fig. S21 plots ΔΨ1 against ΔΨ2, and we found that for 43% of the 
cases, ΔΨ1 and ΔΨ2 differed by more than 5%, indicating that the predicted effects of 
mutations are highly context dependent.  
 
7.7 Analysis of rare variants 

Since our method was derived (trained) using the reference genome, without any 
mutation data, its accuracy in predicting the effects of mutations should not directly 
depend on population frequency. To demonstrate this, we analyzed chromosome 1 
variants of three types: disease annotated (based on HGMD), common with no disease 
annotation (minor allele frequency or MAF>1%) and rare with no disease annotation 
(0.1%<MAF<1%). We downloaded the rare variants via ANNOVAR (54) at 
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http://www.openbioinformatics.org/annovar/annovar_download.html, selecting ones 
whose maximum MAF across major populations is between 0.1% and 1%. To match the 
genomic distributions of the three sets of variants, we only kept variants that are located 
within the exonic and intronic regions used by our code for HGMD mutations, and 
among intronic mutations we only kept those that are at least 3nt from a splice site. 
Further, to focus on variants that don’t change protein sequence, which may have a 
disease cause that is unrelated to splicing regulation, we only kept synonymous exonic 
mutations and intronic mutations. This procedure resulted in 860 intronic and 1584 
synonymous exonic rare variants, 316 intronic and 2395 synonymous exonic common 
variants, and 140 intronic and 333 synonymous exonic disease-annotated variants. For 
each variant from the three sets (common, rare, disease-annotated), we applied our 
technique to predict the mutation-induced change in PSI for each tissue and then 
computed the maximum absolute change across tissues. We used the KS test to compare 
the distribution of the mutation-induced change in PSI for the three different sets. 

We observed a significant difference in the regulatory scores generated by our 
method for disease variants and all other variants (both rare and common): P=3.2e-39 for 
intronic mutations and P=1.2e-10 for exonic mutations. However, no significant 
difference was observed in the regulatory scores for non-disease annotated rare and 
common variants, although the common and rare variant sets are larger than the disease-
annotated set. 
 
8. Analysis of SMA genes SMN1/2 
 

To carry out mutagenesis experiments for validation, we constructed parental 
SMN1/2 minigenes pCI-SMN1 and pCI-SMN2 as described in (24). The previous 200-nt 
shortened intron 6 was modified to 283nt long, comprising first 61nt of intron 6, 3nt 
linker (TCT) and last 219nt of intron 6. All nucleotide differences that occur naturally 
between endogenous SMN1 and SMN2 were carried over to the two minigenes. All 
mutants (SMN1 G-44A, A100G, and A215G, and SMN2 G-35T, A-133G and C-134A) 
were transfected into HEK293 cells by electroporation; total RNA was isolated with 
Trizol reagent (Invitrogen), and 1 µg of each RNA sample was used per 20-µl reaction 
for first-strand cDNA synthesis with Oligo-dT and ImProm II reverse transcriptase 
(Promega). Standard radioactive RT-PCR was performed, and splicing was analyzed in 
native polyacrylamide gels as described in (70). 

Although SMA is a neural disease, we performed experiments on HEK293 cells 
instead of neuron cells. One reason is due to the easy transfection of HEK-293 cells, but 
more importantly, we have previously tested many splicing-modulatory antisense 
oligonucleotides in neonatal and adult transgenic mice (to follow in vivo effects on SMN2 
splicing in spinal cord, brain, liver, muscle, heart, and kidney in murine models of SMA), 
as well as in HEK-293 cells and patient fibroblasts (24, 70–72) and have not observed 
cell-type specific differences in the splicing regulation of the ubiquitously expressed 
SMN1 and SMN2 genes. In particular, ISIS-SMNRx is an investigational drug in phase-2 
trials involving intrathecal injection to correct splicing in spinal-cord motor neurons, and 
we originally identified this oligonucleotide by screening in HEK-293 cells. 

There are a large number of published mutagenesis studies aiming to understand 
various regulatory mechanisms of exon 7 splicing. After an extensive literature survey, 
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we identified over 300 variations, including substitutions, insertions and deletions. For all 
of these, we used our regulatory model to predict the mutation-induced ΔΨ, and 
compared our results with the corresponding studies in the literature (23, 24, 73–77). 
Since these studies were generally carried out in cell lines that our splicing model was not 
trained on, we took the average of ΔΨ across all 16 tissues as a surrogate. For each 
mutation, a value of ΔΨ was computed using either SMN1 or SMN2 as the wild type, 
depending on the experiment conducted in the original study. When both wild type 
sequences were tested in an experiment, a more appropriate one was chosen as the 
reference. To estimate the uncertainty in the code-predicted ΔΨ, we used all 30 LMH 
computational models trained from different partitions and folds to compute the sample 
variance of ΔΨ. To identify confident predictions of change, we computed a z-score and 
applied a threshold of ±1. Table S6 summarizes all in silico mutational analyses for 
SMN1/2 mutations and lists the classification accuracies for the direction of regulation in 
each region or mechanism of interest. More details on the in vivo selection of exon 7 and 
representative experiments in each of the four regions of interest are plotted in Figs. S22-
26. The same data was also used to generate Fig. 5d in the main text. 
 
9. Analysis of nonpolyposis colorectal cancer genes MLH1/MSH2 
 

We downloaded all MLH1 and MSH2 single nucleotide substitution variants from 
the international society for gastrointestinal hereditary tumors (InSIGHT) mutation 
database (26) as of September 18, 2012. We only considered mutations located in exons, 
plus mutations located at the 3’ end of the upstream intron and 5’ end of the downstream 
intron. We computed ΔΨ between the wild type and the mutant (variant). To assess the 
significance of the predictions for each variant, we determined the percentile rank of its 
ΔΨ among those of common SNPs.  

A total of 977 mutations were analyzed (536 in MLH1 and 441 in MSH2), 156 of 
which introduced a stop codon (63 and 93). From the 977 mutations, if nonsense 
mutations are considered, 421 of them (243 and 178) had ΔΨ larger than the 95% 
percentile of common SNPs, and if nonsense mutations are ignored, this number reduces 
to 265 (180 and 85). All of the code predictions for MLH1 and MSH2 variants are listed 
in Tables S7 and S8, respectively. Moreover, significant predictions excluding nonsense 
mutations are plotted in Fig. 6a in the main text. In that figure, coding sequence (CDS) 
numberings for MLH1 and MSH2 are based on GenBank NM_000249.3 and 
NM_000251.2 respectively, where the numbering starts at the A of the ATG-translation 
initiation codon. 

To further evaluate the accuracy of the predictions, we compiled a set of positive 
(aberrant splicing in the form of varied exon inclusion) and negative (negligible/no 
change in splicing) test cases, as determined by RT-PCR experiments. Overall, we 
complied a set of 229 mutations (150 and 79). Validations of predictions for MLH1 and 
MSH2 are listed in Tables S9 and S10, respectively. It can be seen that the majority of the 
predictions are concordant with RT-PCR experiments. Ignoring the novel/cryptic splice 
site cases and cases for which different studies report inconsistent outcomes, the code 
achieves an AUC of 92.4% (P = 2.8e-23, one-sided permutation test, n=134) for MLH1 
and an AUC of 93.8% (P = 8.7e-15, n=73) for MSH2. 
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When analyzing the three cognate mutations c.1976G>[T|C|A] in exon 17 of MLH1, 
ESEFinder 3.0 (32) detected higher scoring SRSF5 (SRp40) ESEs for all three mutations 
(the WT score of 4.33 increased to 6.09, 5.15 and 7.79 respectively), while both 
C1976G>T and C1976G>C also gained a novel SRSF2 (SC35) ESE with scores of 2.60 
and 2.83. Therefore, ESE evidence points toward increased exon inclusion for all three 
mutations. However, this contradicts experimental evidence of increased exon skipping 
for C1976G>T and C1976G>C as described in the main text. In contrast, our 
computational model confidently predicts increased exon skipping for all three mutations 
(Table S10). 
 
10. Analysis of rare variants implicated in ASD 
 

To study rare mutations in autism spectrum disorder (ASD) with our splicing 
regulatory model, we used brain tissue samples from five autism cases obtained from the 
Autism Tissue Program, detailed in Table S11. They are all Caucasians without any other 
known cytogenetic findings for autism (e.g., chromosome 15q duplication). We also 
carefully selected the following three control groups: (1) CEU Subjects (Utah residents 
with Northern and Western European ancestry): four unrelated Caucasian samples 
(‘NA06985’, ‘NA06994’, ‘NA07357’, and ‘NA12004’), with whole genome sequencing 
data publically available from Complete Genomics (ftp://ftp2.completegenomics.com/), 
two males and two females; (2) TSI Subjects (Tuscans in Italy): four unrelated Caucasian 
samples (‘NA20502’, ‘NA20509’, ‘NA20510’, and ‘NA20511’), with whole genome 
sequencing data publically available from Complete Genomics, three males and one 
female; (3) IMS Subjects (In-house Male Subjects): four unrelated Caucasian samples 
sequenced by Complete Genomics (GS12066, GS12067, GS13808, GS13809). The 
whole genome sequencing data of five autism cases and four in-house controls have been 
deposited at the European Genome-phenome Archive (EGA, http://www.ebi.ac.uk/ega/) 
under accession number EGAS00001000928. 
 
10.1 Sequencing and variant calling 

Genomic DNA of the autism cases was extracted from brain tissues, and sequenced 
by Complete Genomics (CG) (78), with average depth of coverage >40x. Around 10ug of 
non-degraded DNA was provided for whole genome sequencing as required by CG. 
Sequencing reads were aligned to the human reference genome GRCh37. Genetic 
variations that occur in known genes, including a description of the variation’s putative 
effect on the protein (for example, frameshift, nonsynonymous, etc.) were annotated in-
house by CG. Other information, such as small insertions/deletions (indels), CNVs, 
structural variants (SVs) were also provided. Variations in the genome that correspond to 
known polymorphisms in dbSNP were annotated for each variant detected. All the low-
quality variant calls were filtered (varScore less than 20 for homozygous calls and less 
than 40 for other calls). Only SNVs were kept; all heterozygote SNVs in which both 
alleles mismatched the reference allele were also removed. The median number of high 
quality SNVs per subject is ~3.2M. Lastly, we removed all SNVs already observed in 
dbSNP138, leaving a median of 42K rare SNVs per subject. More detailed information is 
provided in Table S12. 
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10.2 Checking systematic biases among subjects 
In order to ascertain that there are no systematic biases between case and different 

control sets, we added subjects from African ancestry in Southwest USA (ASW; 
‘NA19700’, ‘NA19701’, ‘NA19703’, ‘NA19704’), subjects from Japanese in Tokyo, 
Japan (JPT; ‘NA18940’, ‘NA18942’, ‘NA18947’, ‘NA18956’), and three in house 
subjects: two from Middle East (MEA) and one Indonesian-Canadian (INC). We 
computed a genomic distance between any two subjects by: 1) Taking the union of all 
high quality SNVs from 29 subjects (12 used in the study and 17 for checking the biases) 
in chromosomes 1 to 22 (~12.6M SNVs in total); 2) If a subject’s SNVs did not include a 
SNV in the union, we assumed its alleles match the reference allele; 3) For any two 
subjects, we summed the Manhattan distance across all 12.6M SNVs in the union, such 
that the distance between matching homozygotes is zero, between heterozygote and 
homozygote is one, and between two different homozygotes is two. As shown in Fig. 
S27, a dendrogram formed by genomic distances between any two subjects shows clear 
separation between Caucasians and non-Caucasians, while no discernable bias is 
observed between ASD subjects and other Caucasian subjects. 
 
10.3 Analysis using our splicing regulatory model 

For the 5 cases and 12 controls, we mapped their high-quality, rare SNVs onto 
Triplet-Ensembl-canonical and used our regulatory model to predict the variant-induced 
ΔΨ. Since the majority of SNVs are either intergenic or very deep into introns (more than 
300nt away from the closest splice site), only a fraction of variants were analyzed; the 
median number of variants per subject is 1,035. Tables S13.1-13.4 list the code-predicted 
ΔΨ for the subjects in each of the four sets (one case and three control sets) as well as 
other relevant information. 
 
10.4 Targeted functional enrichment analysis to assess different ΔΨ thresholds 

Biologically relevant splicing alterations in ASD subjects are supposed to 
specifically affect genes with a known role in neurodevelopmental pathways, or at least 
expressed at higher levels in brain. To evaluate different ΔΨ thresholds, we tested the 
enrichment of ASD subjects compared to control subjects in genes with predicted 
splicing alterations, using the following curated and neurally-related gene-sets. This 
analysis was intended to select ΔΨ thresholds to achieve higher biological specificity. 

1) DevCNS: Central nervous system development (GO:0007417) 
2) Synaptic: Synaptic components and regulators, set union of genes in (79) and 

(80). 
3) NeuroPh: Genes associated with neurodevelopmental or neurobehavioral 

phenotype in human or mouse. 
4) BrainExpr_HI: Genes in the top 25% expression tier, requires support from at 

least 5 data points (including replicates) based on BrainSpan RNA-seq RPKM 
values as available from the Allen Brain Atlas resource. 

5) BrainExpr_AL: Genes in the top 75% expression tier, requires support from at 
least 5 data points based on BrainSpan RNA-seq RPKM values. 

First of all, we found that only reduction in exon inclusion produced a significant 
enrichment in neurally-related gene-sets; see Fig. S28. As expected, we typically found 
the highest enrichment at the most stringent ΔΨ thresholds (1st, 2nd and 3rd percentiles), 
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with a decline at the less stringent thresholds (4th and 5th percentiles). However, the 1% 
threshold tended to have inconsistent results using different control subsets, probably 
because of stochastic variability caused by the small number of genes with predicted 
alterations (Fig. S29). Therefore, we used the 2% and 3% thresholds for all other ASD 
analyses. We additionally show that enrichment tests using all controls, or only a subset 
of controls (based on ethnic groups), all display enrichment of neurally-related gene-sets 
in ASD subjects, suggesting that ethnic differences are not driving results (Fig. S29).  

Enrichment was tested using Fisher’s Exact Test: the contingency matrix for the test 
was composed by counting the number of genes with predicted splicing alterations in 
ASD subjects or controls, within or outside the tested gene-set; genes with predicted 
splicing alterations in both ASD subjects and controls were discarded prior to the 
contingency matrix construction, as they would introduce double counts. Notably, this 
approach is robust to biases such as gene length or variability (propensity to have genetic 
variants at the locus), because the same biases are expected to be present in ASD subjects 
as well as control subjects and thus cancel out. 

These five gene sets have some overlaps and their overlap percentages are listed in 
Table S14. Fig. S28 & S29 depict the enrichment ratios that are calculated as: 

(ASD_predicted_gene-set) (ASD_predicted_total)
(Control_predicted_gene-set) / (Control_predicred_total)

. 

 
10.5 Complete functional enrichment with ΔΨ thresholds of 2nd and 3rd percentiles 

We tested enrichment for all gene-sets derived from Gene Ontology annotations and 
pathway databases using predictions of reduced exon inclusion at 2nd and 3rd 
percentiles. With P < 0.01 (Fisher’s exact test), there are 8 gene sets for the 2nd 
percentile and 16 gene-sets for the 3rd percentile (Tables S15.1-2). To further assess the 
significance of our results, we performed two more experiments. First we swapped cases 
and controls and redid the enrichment analysis (also listed in Tables S15.1-2 as the 
‘Inverse p-value’ column), which resulted in 2 and 1 GO terms with P < 0.01 for the 3rd 
and 2nd percentiles, none of which are neuro-related. Second we performed enrichment 
analyses by comparing one control group against another and found no significant GO 
terms, with the detailed results listed below:  

a) CEU vs IMS, 3rd percentile: 0 significant GO terms, smallest P > 0.05. 
b) CEU vs IMS, 2nd percentile: 0 significant GO terms, smallest P > 0.1. 
c) TSI vs IMS, 3rd percentile: 0 significant GO terms smallest P > 0.01, only 

GO:0005975 (carbohydrate metabolic process) has a P < 0.05. 
d) TSI vs IMS, 2nd percentile: 0 significant GO terms, smallest P > 0.05. 

 
10.6 Computing empirical FDRs 

To compute empirical false discovery rates (FDRs), we performed the following 
random permutation test. For the case group and each control group, Ensembl gene IDs 
were randomly permuted and the genes with code-predicted ΔΨ below 2nd and 3rd 
percentile thresholds were selected. This permutation and sampling procedure ensures 
that genes over-represented in affected exons are adequately represented, thus modeling 
selection biases that would be missed by a random uniform gene sampling. Each Gene 
Ontology and pathway derived gene-set was also tested for enrichment using Fisher's 
Exact Test as described before. A panel of brain and neuron-related Gene Ontology terms 
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(including all their offspring terms) was defined to assess the specificity of enrichment 
results to ASD:  

• GO:0097458 neuron part 
• GO:0043005 neuron projection 
• GO:0045202 synapse 
• GO:0007399 nervous system development 
• GO:0007417 central nervous system development 
• GO:0030182 neuron differentiation 
• GO:0050808 synapse organization 
• GO:0019226 transmission of nerve impulse 

Offspring terms were extracted from the Bioconductor package GO.db 2.9.0. The 
permutation and enrichment procedure was iterated 500 times and the following statistics 
were recorded: 

1) The mean and median number of gene-sets passing the 0.01 nominal p-value for 
the 500 iterations 

2) The mean and median number of brain and neuron-related gene-sets passing the 
0.01 nominal p-value for the 500 iterations 

3) The empirical FDR, defined as mean or median number of 0.01-significant gene-
sets observed for the permuted data divided by the number of 0.01-significant 
gene-sets for the original data 

4) The empirical FDR when restricting to brain and neuron-related gene-sets 
5) The fraction of iterations with the same or more 0.01-significant gene-sets than 

original results (interpretable as a ‘global’ enrichment significance p-value) 
6) The fraction of iterations with the same or more 0.01-significant brain and 

neuron-related gene-sets than the original results 
We found permuted data produced a smaller but consistent number of significant gene-
sets, but they did not produce a significant enrichment in brain and neuron-related gene-
sets. When using all gene sets to assess the original (not permuted) gene enrichment 
results, the mean-based empirical FDRs are 0.4605 and 0.4175 for the 2rd and 3nd 
percentile thresholds respectively, or median-based empirical FDRs of 0.25 and 0.25, and 
iteration fractions of 0.138 and 0.1, which are not significant. When restricting to brain 
and neuron-related gene-sets, the mean-based empirical FDRs become 0.0316 and 0.0384 
for the 2rd and 3nd percentile thresholds, median-based empirical FDRs are less than 
0.002 for both, and iteration fractions are 0.01 and 0.006, which are all significant. 
 
10.7 Enrichment analysis for brain-expressed genes 

To test the enrichment for Brain-related and Brain-agnostic genes, we defined the 
following BrainSpan derived gene-sets, of roughly equal size, based on brain expression 
levels:  

• BSpan_VH_thr4.86: genes with at least 5 BrainSpan (available from 
http://developinghumanbrain.org) data points for which log2(rpkm) >= 4.86, thus 
deemed expressed at (very) high levels in brain. 

• BSpan_HM_thr3.32: genes with at least 5 BrainSpan data points for which 4.86 > 
log2(rpkm) >= 3.32, thus deemed expressed at high/medium levels in brain. 

• BSpan_ML_thr0.84: genes with at least 5 BrainSpan data points for which 3.32 > 
log2(rpkm) >= 0.84, thus deemed expressed at medium/low levels in brain. 
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• BSpan_Ab_thr.MIN: genes with BrainSpan data points failing all previous 
criteria, thus deemed expressed at very low level or not expressed in brain. 

The enrichment analysis is done as described before and the results are listed in Table 
S18. 
 
11. Development of the mutation analysis web tool 
 

To make our human splicing code available to all medical researchers and 
practitioners, we have developed a web tool that allows anybody to access and run 
variant analyses on our servers. The web tool is comprised of two parts: a webserver that 
hosts the web application and database, and a computational server that runs the resource 
intensive splicing regulatory model. Both servers run Ubuntu Linux. The web application 
is written in Python using the Flask web framework (http://flask.pocoo.org/) and stores 
application data in a MongoDB database (http://www.mongodb.org/). The computational 
model of splicing is implemented in Matlab while the feature extraction pipeline is 
mostly written in Perl, with the use of third party tools to compute features based on 
RNA secondary structures, nucleosome positioning and Alu repeats. The webserver 
communicates with the computational server using the Celery distributed task queue 
(http://celery.readthedocs.org/). The predictions generated by the computational server 
are stored in a MongoDB database on the webserver so that predictions on the same 
variants, even submitted by different users, are not computed twice. 

The mutation analysis web tool, available at <http://tools.genes.toronto.edu>, 
provides an easy-to-use interface for users to input one or more SNVs in standard VCF 
format, where each entry specifies the genetic locus, wild type nucleotide, variant 
nucleotide, and optionally an identifier chosen by the user to reference the SNV. Fig. S30 
shows a screenshot of the job submission page. Upon submission, the tool automatically 
determines if there are any exons affected by the submitted SNVs. If yes, it further runs 
our splicing regulatory model and displays the prediction results for them. We have 
carefully designed the result pages to clearly show all relevant information and statistics. 
On top of the result page for a completed job, it shows the mapping of SNVs to internal 
RefSeq exons, explaining any cases in which a SNV cannot be analyzed, e.g., because it 
is too deep into the intron or not inside an annotated gene. Below, predictions from our 
splicing code are shown in a table with the following information: 

• ΔΨ between the wild type and variant 
• The percentile of the mutant ΔΨ among all common SNP ΔΨ’s 
• The log-regulatory score 
• The percentile of the regulatory among all common SNP regulatory scores 
• The wild type Ψ 

Fig. S31 shows a screenshot for part of this global result page. Clicking on any exon in 
the result table will further bring up a detailed result page with information such as the 
RefSeq transcript ID, exon number, the coordinates of the cassette exon and the flanking 
exons, and a list of RNA features changed by the mutation. A screenshot is shown in Fig. 
S32. Please note that we are continuingly improving our web tool, including both the user 
interface and the underlying computational engine. 
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Fig. S1. 
Detecting alternative exons by the number of mapped junction reads k from the minor 
isoform across different total junction read coverage over 16 tissues. 
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Fig. S2 
Detecting alternative exons by restricting PSI and minimum junction coverage. 
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Fig. S3 
The distribution of expected Ψ, estimated by positional bootstrap from BodyMap data, 
over all 16 tissues for different sets of AS events. For AS-All, AS-Detected and AS-
Strict, the number of exons are plotted; for AS-Extreme, the number of events or exon-
tissue combinations are plotted. 
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Fig. S4 
Training and validation set log-likelihoods for multinomial regression models versus 
number of gradient iterations, for the low/medium/high dataset (five folds, six partitions). 
 



 
 

31 
 

 
 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
a.

False positive rate

T
ru

e
 p

o
si

tiv
e
 r

a
te

Generalization across exons

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
b.

False positive rate
T

ru
e
 p

o
si

tiv
e
 r

a
te

Generalization across chromosomes

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
c.

False positive rate

T
ru

e
 p

o
si

tiv
e
 r

a
te

Generalization to Kaessmann’s dataset

 

 

ROC of predictions on absolute inclusion levels

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
d.

False positive rate

T
ru

e
 p

o
si

tiv
e
 r

a
te

Generalization to another species: mouse

 

 

Adipose
Adrenal
Brain
Breast
Colon
Heart
Kidney
Liver
Lung
Lymph node
Ovary
Prostate
Skeletal muscle
Testes
Thyroid
White blood cell

Adipose
Adrenal
Brain
Breast
Colon
Heart
Kidney
Liver
Lung
Lymph node
Ovary
Prostate
Skeletal muscle
Testes
Thyroid
White blood cell

Brain
Heart
Kidney
Liver
Testis

Brain
Heart
Kidney
Liver
Testis

 

Fig. S5 
ROC curves of the proposed model for different prediction tasks. (a) Generalization to 
held-out exons. (b) Generalization to held out chromosomes. (c) Generalization to an 
independently prepared dataset. d) Generalization to mouse. 
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Fig. S6 
ROC curves of the inferred splicing code for exons in diverse gene expression ranges. 
The exons are binned according to the junction coverage indicated at the top of each 
panel. 
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Fig. S7 
ROC curves of predictions using low/medium/high labels. Exons are sorted by the 
predicted probability of being in the high inclusion category and low inclusion category 
respectively. 
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Fig. S8 
Part 1 of 4. ROC curves of tissue-regulated Ψ differences:  Each panel is for the task of 
identifying increased inclusion in a particular tissue compared to all other tissues (color 
coded). For example, comparing panel (c) to other panels, we observe that brain-specific 
inclusion events were predicted better than many other types of tissue-specific inclusion 
events 
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ROC of tissue−regulated Ψ differences (part 2)
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Fig. S8 
Part 2 of 4. ROC curves of tissue-regulated Ψ differences:  Each panel is for the task of 
identifying increased inclusion in a particular tissue compared to all other tissues (color 
coded). For example, comparing panel (c) to other panels, we observe that brain-specific 
inclusion events were predicted better than many other types of tissue-specific inclusion 
events 
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ROC of tissue−regulated Ψ differences (part 3)
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Fig. S8 
Part 3 of 4.  
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Fig. S8 
Part 4 of 4.  
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Fig. S9 
ROC curves of the splicing regulatory model for different sets of AS events. 
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Fig. S10 
ROC curves of predicting absolute inclusion with randomly permuted exons. 
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Fig. S11 
Part 1 of 5: RT-PCR gel images. 
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Fig. S11 
Part 2 of 5: RT-PCR gel images. 
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Fig. S11 
Part 3 of 5: RT-PCR gel images. 
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Fig. S11 
Part 4 of 5: RT-PCR gel images. 
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Fig. S11 
Part 5 of 5: RT-PCR gel images. 
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Fig. S12 
Test performance and LASSO coefficients in different regions for a linear regression 
model that associates RBP binding affinities with our splicing code features. 
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Fig. S13 
Part 1 of 4: Histogram of feature sensitivity (ΔΨ/ΔF) for the top 16 features. Top features 
were chosen by sorting the average activity of the feature-to-hidden connections in the 
Bayesian neural network ensemble. Each feature was scaled to be between -1 and 1 
before the sensitivity analysis. We observe that the sensitivities of many features (40 out 
of the top 100) are highly context-dependent and their sign switch between exons. 
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Fig. S13 
Part 2 of 4. 
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Fig. S13 
Part 3 of 4. 
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Fig. S13 
Part 4 of 4. 
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Fig. S14 
For each of the top 100 features, the degree to which the effect of the feature switches 
sign across different exons was evaluated (horizontal axis), where a score of 0.5 means 
the features effect had the same sign for 50% of exons. 40 features exhibit strong sign 
switching. 
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Figure 2. Context-dependent regulation. (a) Linear models using 
the k highest-correlating features (1 ≤ k ≤ 20) make substantially less 
accurate predictions than the nonlinear, context-dependent splicing 
code. (b) For a given cis- and trans-context, ‘feature sensitivity’ ΔΨ/
ΔF measures the signed effect that a feature has on Ψ, while holding 
other features constant. Because of tissue-specific regulatory 
mechanisms, the same feature can have quite different sensitivities in 
different tissues. For each pair of tissues, the fraction of variability in 
the sensitivities of all features that is different in the two tissues is 
plotted (1-r2). (c) Context dependence can be further examined by 
plotting the change in Ψ induced by point mutations in pairs of exons 
that have different wild type feature vectors but where the mutation-
induced changes in the feature vectors are identical. For correlation 
analysis and linear models, all points would be on the diagonal line. 
Off-diagonal points are caused by context-dependent effects of 
mutations. 
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Fig. S15 
For each pair of tissues, the fraction of variability in the sensitivities of all features that is 
different in the two tissues is plotted as (1-r2)x100 
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Fig. S16 
Scatter plots of feature sensitivity (ΔΨ/ΔF) across all held-out exons and across the top 
20 features, for every pair of tissues. Each plot is a tissue pair and each point is an exon-
feature combination. High correlations between most tissue pairs were observed, 
indicating that the sensitivity of Ψ to small changes of top features is similar for these 
tissue pairs. However, significant differences exist for some pairs. See Fig. S15 for a 
heat-map that summarizes these plots. 
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Fig. S17 
Visualization of co-regulatory effects of features. The t-SNE visualization computes an 
embedding for the features such that their distance in the figure is small when their effect 
on the predicted Ψ is similar, and the size of a feature node is proportional to its strength. 
Because dimensionality reduction introduces errors, an edge is further drawn from a 
feature to its nearest neighbour when they are not so close by. 
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Figure ZZZ. Comparison the splicing code to other methods for detecting disease variants. (a) Locations and predicted 
ΔΨ  of 100,022 disease annotated intronic SNVs and synonymous or missense exonic SNVs. (b) In every sequence region, 
the scores of disease SNVs tend to be larger than those of SNPs (Ansari-Bradley test for equal dispersion, n includes both 
types). Pie charts compare the fraction of disease SNVs detected by our splicing code to the state of the art (Spliceman and 
Skippy), using thresholds that detect 10% of SNPs. 
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Fig. S18 
Comparing the splicing code to other methods for detecting disease variants. (a) 
Locations and predicted ΔΨ of 100,022 disease annotated intronic SNVs and 
synonymous or missense exonic SNVs. (b) In every sequence region, the scores of 
disease SNVs tend to be larger than those of SNPs (Ansari-Bradley test for equal 
dispersion, n includes both types). Pie charts compare the fraction of disease SNVs 
detected by our splicing code to the state of the art (Spliceman and Skippy), using 
thresholds that detect 10% of SNPs. 
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Fig. S19 
CDF plots of regulatory scores derived from pairs of common and HGMD SNVs that are 
close to each other. 
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Fig. S20 
CDF plots of ΔΨ’s for two sets with the 25% and 10% most reliable SNVs predicted by 
Condel. 
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 Figure 2. Context-dependent regulation. (a) Linear models using 

the k highest-correlating features (1 ≤ k ≤ 20) make substantially less 
accurate predictions than the nonlinear, context-dependent splicing 
code. (b) For a given cis- and trans-context, ‘feature sensitivity’ ΔΨ/
ΔF measures the signed effect that a feature has on Ψ, while holding 
other features constant. Because of tissue-specific regulatory 
mechanisms, the same feature can have quite different sensitivities in 
different tissues. For each pair of tissues, the fraction of variability in 
the sensitivities of all features that is different in the two tissues is
plotted (1-r2). (c) Context dependence can be further examined by 
plotting the change in Ψ induced by point mutations in pairs of exons
that have different wild type feature vectors but where the mutation-
induced changes in the feature vectors are identical. For correlation 
analysis and linear models, all points would be on the diagonal line. 
Off-diagonal points are caused by context-dependent effects of 
mutations. 
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Fig. S21 
Context dependence can be further examined by plotting the change in Ψ induced by 
point mutations in pairs of exons that have different wild type feature vectors but where 
the mutation-induced changes in the feature vectors are identical. For correlation analysis 
and linear models, all points would be on the diagonal line. Off-diagonal points are 
caused by context-dependent effects of SNVs. 
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Fig. S22 
Predicted ΔΨ for SMN1 exon 7 in vivo selection. (a) in vivo selection of the first 6nt of 
exon 7 as performed in (73), with the same order as listed in Fig. 2(B) of the original 
paper. (b) in vivo selection of the entire exon 7 as performed in (74), with the same order 
as listed in Fig. 5 of the original paper. Blue bars indicate the magnitude of predicted 
ΔΨ's while red error bars show their sample standard deviation. For all mutations, the 
correct sign of ΔΨ should be positive. 
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Fig. S23 
Mutations in the 5’ Exinct region of exon 7 as listed in Table 1 of (75). (a) Code-
predicted ΔΨ (blue bars) and sample standard deviations (red error bars). (b) RT-PCR 
measured ΔΨ in the original study. 
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Fig. S24 
Mutations in the middle conserved tract of exon 7 as shown in Fig. 8 of (74). (a) Code-
predicted ΔΨ (blue bars) and sample standard deviations (red error bars). (b) RT-PCR 
measured ΔΨ in the original study. 
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Fig. S25 
Mutations in the 3’-cluster of exon 7 as listed in Table 1 of (76). (a) Code-predicted ΔΨ 
(blue bars) and sample standard deviations (red error bars). (b) RT-PCR measured ΔΨ in 
the original study. 
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Fig. S26 
Mutations that disrupt the intron 7 ISS at +10 to +24 as shown in Fig. 3 of (24). (a) Code-
predicted ΔΨ (blue bars) and sample standard deviations (red error bars). (b) RT-PCR 
measured ΔΨ in the original study. 
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1. We took the union of all high quality SNVs from 29 subjects (12 used in the study and 17 for checking the 
biases) in chromosomes 1 to 22 (~12.6M SNVs in total).  

2. If   a   subject’s   SNVs   did   not   include   a   SNV   in   the   union of all SNVs, we assumed its alleles match the 
reference alleles. 

3. For any two subjects, we summed the Manhattan distance across all 12.6M SNVs in the union, such that 
that the distance between matching homozygotes is zero, the distance between heterozygote and 
homozygote is one, and the distance between two different homozygotes is two. 

A dendrogram formed by genomic distances between all subjects shows clear separation between Caucasians and 
non-Caucasians, while no discernable bias is observed between ASD subjects and other Caucasian subjects; see Fig. 
SY1. 

Fig. SY1. A dendrogram formed from genomic distances between subjects using UPGMA algorithm. 

Analysis 
Splicing Code Analysis 

For the 5 cases and 12 controls, we mapped their high-quality SNVs onto canonical Ensemble 72 transcripts and 
used the splicing code to predict the variant-induced change in splicing. As the majority of SNVs are inergenic or 
deep intronic, only a fraction of variants were analyzed (median number of SNVs analyzed per subject: 1035). 
Tables SX3.1-SX3.4 list the predicted ΔΨ for the subjects in each of the four sets (one case and three control sets), 
in addition to all other pertinent information about the affected transcripts and so on. 

Enrichment Analysis  

To identify the biological significance of the genes affected by variant-induced aberrant splicing, we tested for 
functional enrichment in gene sets predicted by the splicing code to alter splicing patterns. To pick only the most-
affected genes, we used different percentiles (1% to 5%) from the variant-induced predicted ΔΨ of ~300K common 
SNPs. 

 

Fig. S27 
A dendrogram formed from genomic distances between subjects by running the UPGMA 
algorithm. 
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Fig. S28 
Enrichment ratios for enrichment analysis in genes with absolute value of ΔΨ  larger than 
first to fifth percentiles of common SNPs in ASD vs. control groups. The five bars from 
left to right correspond to: DevCNS, Synaptic, NeuroPh, BrainExpr_HI and 
BrainExpr_AL. A dark red border indicates p-value < 0.05 and a yellow border indicates 
0.05 < p-value < 0.1. The numbers below bars denote the number of control genes used in 
the enrichment analysis. 
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Fig. S29 
Enrichment ratios for enrichment analysis in genes with ΔΨ  less than first to fifth 
percentiles of common SNPs in ASD vs. control groups.  The five bars from left to right 
correspond to: DevCNS, Synaptic, NeuroPh, BrainExpr_HI and BrainExpr_AL. A dark 
red border indicates p-value < 0.05 and a yellow border indicates 0.05 < p-value < 0.1. 
The numbers below bars denote the number of control genes used in the enrichment 
analysis. 
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Fig. S30 
Screenshot for part of the job submission page of the mutation analysis web tool. 
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Fig. S31 
Screenshot for the global result page of the mutation analysis web tool. 
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Fig. S32 
Screenshot for the detailed result page of the mutation analysis web tool. 
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