
 

Modeling an enzyme’s response to an exothermic catalytic reaction  

Part 1: Introduction 

  We consider how a protein compresses neighboring solvent as a result of a turnover event. In 

general the catalytic site within a protein is off center. We assume that all of the energy 

released during the course of the catalytic reaction is used to deform the protein; this is a clear 

upper bound.  

  The energy released by the turnover event propagates outward from the reaction site through 

the protein bonds. As a result of this deformation wave, the protein expands.  

  For simplicity, we assume the wave propagates radially from the reaction site, see Figure S6. 

The protein deformation compresses the solvent, which responds by pushing back as dictated 

by Newton’s Third Law. A net reactive force is now imparted on the protein along the 

catalytic site to the center of mass axis in the direction of the center of mass. The protein 

center of mass is then translated by this reactive force, see Figure S7.  

  The protein radius is roughly 4nm and the time it takes for the deformation wave to cover the 

8nm protein diameter is 2.7ps. This time is obtained from the speed of sound in an elastic 

solid,      √    , where K is the protein bulk modulus and ρ the protein density. Using the 

bulk modulus for hemoglobin
1
 and density as found for a spherical particle of radius 4nm and 

molecular weight equal to that of catalase, we get a speed of sound value of about 3nm/ps.  

 

Part 2: Calculation of the pressure due to solvent compression 

  We first compute the pressure imparted on the solvent as the solvent compresses due to a 

protein deformation. From this pressure we will subsequently compute the directional force 

on the protein center of mass. For simplicity, we will assume that the deformation occurs only 

on the protein hemisphere in which the catalytic site is located; see Figure S6.  
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  We begin by considering pressure volume changes in a solvent related by the 

compressibility, β, defined as follows 

    
 

 

  

  
 (1)  

 

We define  ̂ as the direction from the solvent to the protein center. Since for liquids and 

solids adiabatic and isothermal compressibilities are approximately equal, we have not 

specified which variable to hold fixed in our definition for the solvent compressibility. 

Therefore we  write     
  

  
 ̂ . 

 

  We next consider the z-component for dp, dpz, in spherical coordinates where  ̂   ̂   

        θ, the polar angle, is the angle between the r- and z directions, and r is the radial 

distance from the protein center∶ 

    (     )   
 

  
                        (2)  

Integrating over   from 0 to 2π and θ from 0 to π /2 yields: 
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V was set to the volume of a hemisphere of radius R. Finally integrating from R to R + ΔR, 

where ΔR is the radial deformation, we obtain: 
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where we set β = 4.475 x10
-10

 Pa
-1

 at 25 degrees Celsius
2
 and ΔR = 1nm. This ΔR is an 

estimate from height fluctuations of the AFM tip placed atop lysozyme while it is catalyzing 

reactions.
3
 Ultimately, we will predict a ΔR from the catalytic heat evolved in the next 

section. In this way we will link the mechanical description to a thermodynamic picture. 
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  To summarize, we have made the following assumptions: a) the protein is spherical with 

uniform ρ, b) only one hemisphere of the protein deforms and c) the protein deformation 

height is uniform. 

 

Part 3: Calculation of the maximum pressure of an acoustic wave generated by a 

turnover event 

  In the previous section, we had assumed that the protein deformation did not generate an 

acoustic wave in the solvent. Here we will assume that the protein deforms and that its shape 

is not restored, all of the energy dissipating as solvent acoustic waves. We now ask what is the 

pressure of this acoustic wave? This pressure should give us an alternative estimate to an 

upper bound on the pressure the solvent can reflect back on the protein.  Here we will not 

arbitrarily assume a 1nm deformation (see Figure S8). We begin by defining the power per 

unit area, I, pumped by the protein into the solvent following a catalytic event, as follows
4
: 

   
 

 
 
  

    
              (5) 

where p is the pressure of the outgoing wave in the solvent,    is the speed of sound in the 

solvent, and ρs is the density of the solvent. In writing Eq. 5 we assume no dissipation of the 

acoustic wave. 

  The pressure from Eq. 5 is the following: 

   √
     
  

 √
         
     

              (6) 

where we have set the power, P, equal to the energy E = Q = 40kBT per time t. Here Q is the 

heat generated by a turnover event, while A was set to the area of the protein hemisphere. 

Since there is no dissipation of the acoustic wave, we have assumed that the energy flux at an 

infinitesimal distance from the protein surface is the same as it would be at its surface. Also, t 

is the time required for the deformation of the protein hemisphere. 
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  This amount of time, t, is the amount of time it takes for the deformation wave to travel from 

the catalytic site, which, for simplicity, we assume to be at the protein’s north pole, to the 

protein’s equator, and can be calculated as    √         where    = 3nm/ps is the 

previously calculated speed of the deformation wave within the protein. To clarify, this is not 

the time for heat dissipation, which can take place on a longer time scale. Using the following 

quantities: R = 4nm, the density of water ρs = 1000kg/m
3
, the speed of sound in water at 25 

degrees Celsius    ≈ 1.5 x10
3 

m/s, R = 4nm and T = 300K, we find p ≈ 51pN/nm
2
. In the 

negative z-direction, this corresponds to pz ≈ 25pN/nm
2
. Using Eq. 4, 51pN/nm

2
 corresponds 

to a radial deformation of 0.06nm, or 5% of the protein volume.  

  To summarize, we have made the following assumptions: a) the protein is spherical with 

uniform ρ, b) only one hemisphere of the protein deforms and c) all the energy is transferred 

in 2 ps into the solvent as an unattenuated acoustic wave. 

   Finally, we would like to stress that local heating of the solvent surrounding the enzyme 

cannot account for the observed diffusion increase. We calculate the local solvent temperature 

increase assuming all the reaction energy is poured into a 1 nm thick layer of solvent 

surrounding catalase (which we assume is a sphere with a radius of approximately 4 nm). We 

then use the total reaction heat for catalase of 40 kBT, the shell volume and outer area, the 

volumetric heat capacity of water C = 4.18 J/Kcm
3
, and the definition of volumetric heat 

capacity C = Q/VΔT to find that the solvent shell temperature increases by at most 0.15 K. 

This solvent heating does not account for the observed diffusion coefficient increase of the 

enzymes. 

 

 

 

A stochastic theory for protein diffusion 
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  We consider the evolution of the center of mass of the protein, x(t), which diffuses according 

to two diffusion coefficients: D0 and D1. D0 denotes the diffusion coefficient in the absence of 

a chemical reaction and D1 denotes the diffusion coefficient following a chemical reaction. 

  We will assume that the center of mass of the protein experiences enhanced diffusion during 

a time interval δt. 

  The reaction rate is V. Thus the probability of a reaction -and thus the probability of 

experiencing a diffusion coefficient rise within δt- is Vδt. For simplicity of calculation only, 

we will assume that Vδt << 1. This is a reasonable assumption given that V can be 5 x10
4
 s

-1
 

at large substrate concentration for catalase, while we will find that a typical value of δt can 

be of the order of ns. 

  The protein center of mass diffusion is isotropic. For this reason, we consider the x-

component of the center of mass of the protein which satisfies the following expression 

          √         (    )  √            (1) 

where we have introduced two random variables:    and   .    is a Bernoulli random variable. 

It has a mean of <αt> = Vδt and a variance <αt
2
>-<αt>

2 
= Vδt (1- Vδt) ~ Vδt + O(V

2
δt

2
).    is 

a Gaussian random variable with mean 0 and variance 1. 

  To be clear, δt defines the rough timescale during which the center of mass experiences the 

enhanced diffusion coefficient.  

  We can use the center of mass of the protein to define a new effective diffusion coefficient 

as follows 

   
〈(        )

 〉

   
 (2) 

where the x component of xt is given by Eq. (1). We obtain 

     (      )        (3) 
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Eq. (3) is easy to understand. It is the equilibrium average of the two different diffusion 

coefficients in the limit that the time between reactions 1/V exceeds δt which, as noted earlier, 

is a reasonable assumption here. 

 We now express D1 using measurable constants. We assume that the velocity, v(t), of the 

protein’s center of mass following a catalytic event at the heart of the protein dissipates 

according to 

  
  ( )

  
      ( )    ( ) (4) 

where m is the mass of the protein, δF is an uncorrelated frictional force with zero mean and 

fixed variance, and   sets the effective relaxation time scale that can be thought of as an 

apparent friction coefficient. We reemphasize that the solvent surrounding the protein is not 

locally heated but that the protein center of mass displaces following a reaction because of the 

mechanistic interpretation given in the previous section.  

  The enzyme’s trajectory over an interval δt is a segment whose jump size is either 

determined by D0 or D1 and is independent of all other segments.   

  Expressing the diffusion coefficient as a time integral over the velocity-time autocorrelation 

function we obtain
5
 

    
 

 
∫   〈 ( )   ( )〉
 

 

 
 

  
〈 ( )   ( )〉  

 

  
   (5) 

where in writing the final equality, we have assumed that the protein center of mass kinetic 

energy is γQ. Here Q is the total heat released by a single catalytic event and γ is the fraction 

of heat mechanically imparted to the protein's center of mass. 

Inserting Eq. (5) into Eq. (3) we get 

      
  

   
    (6) 
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where we have replaced δt with m/ . The second term on the right hand side is purely 

mechanical in origin and is easy to understand. Just like the regular diffusion coefficient is 

kBT/ , here,     is proportional to γQ/ .  

 

  Now, by assumption 0 < γ < 1. As an upper bound, we take γ= 1 and ask what is  ? We then 

use this   taken from Eq. 6 to estimate δt assuming a catalase mass of 240 kDa and a reaction 

heat of 40 kT and we find δt can be anywhere from 1 ns upwards.  

 

 

Heme excitation experiment 

    Catalase’s heme strongly absorbs light at 405 nm (Soret peak).
6
 Most of the energy 

absorbed by the heme is released as heat
7
 and the timescale has been investigated by both MD 

and ultrafast spectroscopy
8
. The details of this dissipation are tied to both protein topology 

and function
9,10

. In agreement with our heating hypothesis, we find that the diffusion 

coefficient of heme containing catalase increases with laser power. A quantitative comparison 

between the effect of the heat evolved by the catalytic reaction and the heat evolved by the de-

excitation of the heme will depend on the dominant mechanisms of heat dissipation at the 

relevant timescale. 
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