

Supplementary Figure S1. Bactericidal activity of anti-FHbp antibodies to variant group 1 (sub-family B) antigenic variants mismatched to isolates. Panel A. Anti-FHbp ID 1 titers (sequence variant in Novartis 4CMenB vaccine). Panel B. Anti-FHbp ID 55 titers (Sub-family B sequence variant in Pfizer vaccine). The isolates had sub-family B FHbp sequence variants ID 4 or 13. Data represent geometric means and ranges represent from duplicate measurements. Representative results shown from three experiments. Supplemental Figure S2. Silver stain SDS PAGE of Proteinase K treated LOS preparations. LOS from each strain (R-S) pair was normalized by DNA content (μ g/mL). See Methods for detection details.

LOS immunotype 8-1 8-1 3-7-9 3-7-9 DNA loaded µg/ml 7.04 4.03 4.53 5.2 **Supplemental Figure S3.** Alignment of amino acid sequences of NspA from isolates R1, R2, S1 and S2. In red, amino acid differences. All mutations were located outside of the exposed loops.

- R1 MKKALATLIALAIPAAALAEGASGFYVQADAAHAKASSSLGSAKGFSPRISAGYRINDLR
- R2 MKKALATLIALAIPAAALAEGASGFYVQADAAHAKASSSLGSAKGFSPRISAGYRINDLR
- S1 MKKALATLIALAIPAAALAEGASGFYVQADAAHAKASSSLGSAKGFSPRISAGYRINDLR

- R1 SQTSTGLGVLAGVSYAVTPNVDLDAGYRYNYIGKVNTVKNVRSGELSAGVRVKF
 R2 SQTSTGLGVLAGVSYAVTPNVDLDAGYRYNYIGKVNTVKNVRSGELSAGVRVKF
 S1 SQTSTGLGVLAGVSYAVTPNVDLDAGYRYNYIGKVNTVKNVRSGELSAGVRVKF
 S2 SQTSTGLGVLAGVSYAVTPNVDLDAGYRYNYIGKVNTVKNVRSGELSAGMRVKF

Supplemental Figure S3. Alignment of amino acid sequences of PorB3. Panel A isolates R1 and S1. **Panel B**, isolates R2 and S2. Amino acids shown in bold are predicted to be located on surface exposed loops. *, conserved residues.

В

Α

R1 S1	MKKSLIALTLAALPVAAMADVTLYGTIKAG VETSRSVEHNRGQVVSVETGTGI VDLGSKI 60 MKKSLIALTLAALPVAAMADVTLYGTIKAG VETSRSVAHNGAQAASVETGTGI VDLGSKI 60 ************************************	R2 S2	MKKSLIALTLAALPVAAMADVTLYGTIKAG VETSRSVEHNGGQVVSVETGTGI VDLGSKI MKKSLIALTLAALPVAAMADVTLYGTIKAG VETSRSVAHNGAQAASVETGTGI VDLGSKI ************************************	60 60
R1 S1	GFKGQEDLGNGLKAIWQVEQK ASIAGTDSGWGNR QSFIGLKGGFGKLRVGRLNSVLKD TG 120 GFKGQEDLGNGLKAIWQVEQK ASIAGTDSGWGNR QSFIGLKGGFGKLRVGRLNSVLKD TG 120 ************************************	R2 S2	GFKGQEDLGNGLKAIWQVEQK ASIAGTDSGWGNR QSFIGLKGGFGKLRVGRLNSVLKD TG GFKGQEDLGNGLKAIWQVEQK ASIAGTDSGWGNR QSFIGLKGGFGKLRVGRLNSVLKD TG ************************************	120 120
R1 S1	DINPWDSKSDYLGVNKIAEPEARLISVRYDSPEFAGLSGSVQYALNDNAGRHNSESYHAG180DINPWDSKSDYLGVNKIAEPEARLISVRYDSPEFAGLSGSVQYALNDNAGRHNSESYHAG180***********************************	R2 S2	DINPWDSKSDYLGVNKIAEPEARLISVRYDSPEFAGLSGSVQYALNDNAGKYNSESYHAG DINPWDSKSDYLGVNKIAEPEARLISVRYDSPEFAGLSGSVQYALNDNAGRHNSESYHAG ************************************	180 180
R1 S1	FNYKNGGFFVQYGGAY KRHQDV-DDVKIEK YQIHRLVSGYDNDALHASVAVQQQ DAKLVE 239 FNYKNGGFFVQYGGAY KRHHQVQEDLNIEK YQIHRLVSGYDNDALYASVAVQQQ DAKLAL 240 ************************************	R2 S2	FNYKNGGFFVQYGGAY KRHVRVDENVNIEK YQIHRLVSGYDNDALHASVAVQQQ DAKLVE FNYKNGGFFVQYGGAY KRHHQVQENVNIEK YQIHRLVSGYDNDALYASVAVQQQ DAKLVE ************************************	240 240
R1 S1	DN-YSHNSQTEVAATLAYRFGNVTPRVSYAHGFKGSFDDADLSNDYDQVVVGAEYDFSKR 298 PNDNSHNSQTEVAATLAYRFGNVTPRVSYAHGFKGSFDDADLSNDYDQVVVGAEYDFSKR 300 * *********************************	R2 S2	DNYSHNSQTEVAATLAYRFGNVTPRVSYAHGFKGSFDDADLSNDYDQVVVGAEYDFSKRT ENYSHNSQTEVAATLAYRFGNVTPRVSYAHGFKGSFDATNYNNDYDQVVVGAEYDFSKRT :************************************	300 300
R1 S1	TSALVSAGWL QEGKGENKFVST AGGVGLRHKF 330 TSALVSAGWL QEGKGENKFVST AGGVGLRHKF 332	R2 S2	SALVSAGWL QEGKGENKFVST AGGVGLRHKF 331 SALVSAGWL QEGKGESKFVST AGGVGLRHKF 331 ******	

Supplemental Figure S4. Predicted locations of amino acid differences mapped to structural models of PorB3 (PDB ID 3WI4) shown as a homotrimer. Panel A, PorB3 from R1 and S1. Panel B, PorB3 from R2 and S2. From the published coordinates of a crystal structure (Kattner C, Toussi D, Zaucha J, Wetzler L, Ruppel N et al. Crystallographic analysis of *Neisseria meningitidis* porb extracellular loops potentially implicated in TLR2 recognition. J Struct Biol 2014;185:440-447)

