Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons

Shuyan Wang^{1,2,3}, Bin Wang¹, Na Pan⁵, Linlin Fu¹, Chaodong Wang⁶, Gongru Song¹, Jing An¹, Zhongfeng Liu¹, Wanwan Zhu¹, Yunqian Guan¹, Zhi-Qing David Xu⁵, Piu Chan^{3,6}, Zhiguo Chen^{1,2,3,*}, Y. Alex Zhang^{1,4}

¹ Sanofi-Xuanwu Joint Lab for Regenerative Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China

² Center of Neural Injury and Repair, ³ Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China

⁴ China R&D Center, Sanofi, Beijing 100022, China

⁵ Department of Neurobiology, Beijing Key Laboratory of Major Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China

⁶ Department of Neurobiology, Xuanwu Hosptial, Capital Medical University, Beijing, 100053, China

*Correspondence and requests for materials should be addressed to Zhiguo Chen

Zhiguo Chen, Ph.D. Email: chenzhiguo@gmail.com

Supplemental Information

Figure S1. Generation and characterization of iPSCs. Related to Figure 1.

(A-F) Immunofluorescence staining for AP (A), Oct4 (b), SSEA-4 (C), TRA-1-81 (D), Nanog (E) and TRA-1-60 (F). Bar=100 μm.

(G) Expression of pluripotent genes detected by RT-PCR. Primers for OCT4, SOX2,KLF4 and c-MYC were specific for endogenous genes.

(H) PCR of genomic DNA confirmed that the transgenes had incorporated into the genome.

(I) The iPSC clones showed normal karyotype.

(J, K) Bisulfate sequencing of promoter regions for endogenous OCT4 and NANOG genes. Open and closed circles indicated unmethylated and methylated CpG islands, respectively.

(L) Hematoxylin and Eosin staining of terotoma following injection of iPSCs into immunodeficient mice (upper pannel) and *in vitro* differentiation of iPSCs to 3-germ layer cells (lower panel). Bar=100 μ m.

Figure S2. Neph3+ cells fail to survive or differentiate when cultured alone or with cerebellar granule cells. Related to Figure 2.

(A, B) Sorted neph3+ cells cultured on a whole membrane insert. On day 7 of differentiation, more than 80% of cells died and the surviving cells showed a round morphology (A). On day 14, less than 1% of cells survived and displayed an undifferentiated morphology (B). Bar=50 μ m.

(C) Cerebellar granule cells could survive for more than 4 weeks when cultured alone. Bar=100 μ m.

(D) In co-culture with Neph3+ cells, most granule cells died within 1 week. Bar=100

μm.

(E) After most Granule cells died, very few neph3+ cells (GFP-positive) survived and showed Purkinje cell morphology with very simple dendritic tree. Bar=50 μ m (F-H) Sorted Neph3+ cells failed to differentiate when co-cultured with cerebellar granule cells in a 3-dimentional manner. Bar=100 μ m.

CGC: cerebellar granule cells.

(A) Resting membrane potentials of recorded Purkinje cells on SD rat cerebellum slices at different time points.

(B) Sodium currents increased over the course of differentiation on SD rat cerebellum

slices.

(C) Resting membrane potentials of recorded Purkinje cells on human fetal cerebellum slice at different time points.

(D) Sodium currents increased over the course of differentiation on human fetal cerebellum slices.

(E) Immunocytochemical staining of Synaptophysin and L7 for co-culture on human fetal cerebellum slices and on SD rat cerebellum slices. Bar= $50 \mu m$.

Antigen	Company	Catalog Number	Working Dilution
Oct3/4	Millipore	MAB4401	1:200
SSEA-4	eBioscience	14-8843-80	1:200
Nanog	eBioscience	14-5769-80	1:200
TRA-1-60	eBioscience	12-8863-80	1:200
TRA-1-81	eBioscience	14-8883-80	1:200
α-SMA	Abcam	ab8207	1:100
AFP	eBioscience	14-6583-80	1:200
E-Cadherin	eBioscience	53-3249	1:400
Kirrel2 (Neph3)	R&D	BAF2564	1:400
En2	Abcam	ab28731	1:400
Ptf1a	R&D	AF6119	1:400
Ki67	Novocastra	NCL-L-Ki67-MM1	1:500
FUSSEL18	Abgent	AP11997b	1:50
(Corl2)			
L7 (PCP-2)	Santa Cruz	sc-49072	1:200
L7 (PCP-2)	Santa Cruz	sc-137064	1:200
GFP	Santa Cruz	sc-9996	1:200
GFP	Life Technologies	A11122	1:500
Ataxin2	Santa Cruz	sc-18477	1:100
Grid2	Abcam	Ab101886	1:400
Synaptophysin	Sigma	S5768	1:200
Tuj-1	Millipore	MAB1637	1:400
Calbindin	CST	2173S	1:200

Table S1. Antibodies used for immunohistochemistry analyses. Related toFigures 1 and 2.

Primer Names	Primer sequences (5'-3')			
RT-PCR primers used for characterization of iPSCs				
OCT4 endo F	GACAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG			
OCt4 endo R	CTTCCCTCCAACCAGTTGCCCCAAAC			
SOX2 endo F	GGGAAATGGGAGGGGGGGGGCAAA AGAGG			
SOX2 endo R	TTGCGTGAGTGTGGATGGGAT TGGTG			
<i>KLF4</i> endo F	ACGATCGTGGCCCCGGAAAAGGACC			
<i>KLF4</i> endo R	TGATTGTAGTGCTTTCTGGCTGGGCTCC			
<i>c-MYC</i> endo F	GCGTCCTGGGAAGGGAGATCCGGAGC			
<i>c-MYC</i> endo R	TTGAGGGGCATCGTCGCGGGAGGCTG			
NANOG F	CAGCCCCGATTCTTCCACCAGTCCC			
NANOG R	CGGAAGATTCCCAGTCGGGTTCACC			
GDF3 F	CTTATGCTACGTAAAGGAGCTGGG			
GDF3 R	GTGCCAACCCAGGTCCCGGAAGTT			
REX1 F	CAGATCCTAAACAGCTCGCAGAAT			
<i>REX1</i> R	GCG TACGCAAAT TAA AGT CCAGA			
FGF4 F	CTACAACGCCTACGAGTCCTACA			
FGF4 R	GTTGCACCAGAAAAG TCAGAG TTG			
<i>ESG1</i> F	ATATCCCGCCGTGGG TGAAAG TTC			
ESG1 R	ACTCAGCCATGGACTGGAGCATCC			
DPPA4 F	GGAGCCGCCTGCCCT GGAAAATTC			
<i>DPPA4</i> R	TTTTTCCTGATATTCTATTCCCAT			
DPPA2 F	CCGTCCCCGCAATCT CCTTCCATC			
DPPA2 R	ATGATGCCAACATGGCTCCCGGTG			
Bisulfate sequencing primers				
meth OCT-4 F	GAGGTTGGAGTAGAAGGATTGTTTTGGTTT			
meth OCT-4 R	CCCCCCTAACCCATCACCTCCACCACCTAA			
meth NANOG F	TGGTTAGGTTGGTTTTAAATTTTTG			
meth NANOG R	AACCCACCCTTATAAATTCTCAATTA			
Primers for genomic DNA PCR				
OCT4 Tg genomic F	CCCCAGGGCCCCATT TTGGTACC			
SOX2 Tg genomic F	GGCACCCCTGGCATGGCTCTTGGCTC			
<i>c-MYC</i> Tg genomic	CAACAACCGAAAATGCACCAGCCCCAG			
pMXs R	TTATCGTCGACCACT GTGCTGCTG			
PMXs L-3205	CCCTTTTTCTGGAGACTAAATAAA			
RT-PCR primers used in Purkinje precursor differentiation				
EN2 F	CGGCTCCAAGACGCTCTCGC			
EN2 R	CTGGGACCTGAAGAAGGCCGGT			
FGF8 F	CCTACCAACTCTACAGCCGC			
FGF8 R	ACTCGGACTCTGCTTCCAAA			

Table S2. Sequences of primers for PCR, RT-PCR and Real-time PCR. Relatedto Figures 1 and 2.

WNT1 F	GGTTTCTGCTACGCTGCTG		
WNT1 R	TAAGCAGGTTCGTGGAGGAG		
Primers used for quantitative PCR			
18s RNA F	ACTCAACACGGGAAACCTCA		
<i>18S RNA</i> R	AACCAGACAAATCGCTCCAC		
HPRT F	GCTATAAATTCTTTGCTGACCTGCTG		
HPRT R	AATTACTTTTATGTCCCCTGTTGACTGG		
EN2 F	TACTCGGACCGGCCTTCTTC		
EN2 R	AACTCGGCCTTGAGCCTCTG		
WNT1 F	GGAACTGTCCCACTGCTCCA		
WNT1 R	GCGGAGGTGATAGCGAAGATAAAC		
LHX1 F	GCGTCCAGTGCTGTGAATGTAA		
LHX1 R	GAAGCAGTTCAGGTGAAACACTTTG		
<i>OTX1</i> F	TCGGCTTGGCCTACACATTCTATAC		
OTX1 R	GGGCTCAAACAGCGGATCA		
FGF8 F	GGCCTCTACATCTGCATGAACAA		
FGF8 R	GGGTGAAGGCCATGTACCA		
NEPH3 F	CGAGGTCCTGAAGAAGAGGAGAC		
NEPH3 R	ACACTGACTCCTCGGACCTTGT		
LHX5 F	ACGAGAACAAGTTCGTGTGCAAAG		
LHX5 R	AACTGCGGTCCGTACAGGATG		