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Supplementary Figure 1. Comparison of the simple and nested CV on the quantitative kinase 

disassociation constant (Kd) dataset under the experimental settings S1-S4. Concordance index 

(CI) is plotted as a function of the increasing regularization parameter  . The dotted vertical line 

indicates the default parameter value of    . Upper panel, pooled LOO, LDO and LTO CV in 

settings S1-S3, and 10×10-fold pooled CV in setting S4; Lower panel, averaged 5-fold CV in 

settings S1-S3 and 3×3 averaged CV in setting S4.  
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Supplementary Figure 2. Comparison of the simple and nested CV on the quantitative kinase 

inhibition constant (Ki) dataset under the experimental settings S1-S4. Concordance index (CI) is 

plotted as a function of the increasing regularization parameter  . The y-axis corresponds here to 

the default parameter value of    . Upper panel, pooled LOO, LDO and LTO CV in settings 

S1-S3, and 10×10-fold pooled CV in setting S4; Lower panel, averaged 5-fold CV in settings S1-

S3 and 3×3 averaged CV in setting S4.  
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Supplementary Figure 3. Comparison of the simple and nested CV on the binary G protein 

coupled receptor (GPCR) dataset under the experimental settings S1-S4. Area under the curve 

(AUC) is plotted as a function of the increasing regularization parameter  . The dotted vertical 

line indicates the default parameter value of    . Upper panel, pooled LOO, LDO and LTO 

CV in settings S1-S3, and 10×10-fold pooled CV in setting S4; Lower panel, averaged 5-fold CV 

in settings S1-S3 and 3×3 averaged CV in setting S4.  
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Supplementary Figure 4. Comparison of the simple and nested CV on the binary ion channel 

(IC) dataset under the experimental settings S1-S4. Area under the curve (AUC) is plotted as a 

function of the increasing regularization parameter  . The dotted vertical line indicates the 

default parameter value of    . Upper panel, pooled LOO, LDO and LTO CV in settings S1-

S3, and 10×10-fold pooled CV in setting S4; Lower panel, averaged 5-fold CV in settings S1-S3 

and 3×3 averaged CV in setting S4.  
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Supplementary Figure 5. Comparison of the simple and nested CV on the binary nuclear 

receptor (NR) dataset under the experimental settings S1-S4. Area under the curve (AUC) is 

plotted as a function of the increasing regularization parameter  . The dotted vertical line 

indicates the default parameter value of    . Upper panel, pooled LOO, LDO and LTO CV in 

settings S1-S3, and 10×10-fold pooled CV in setting S4; Lower panel, averaged 5-fold CV in 

settings S1-S3 and 3×3 averaged CV in setting S4.  
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Supplementary Figure 6. Comparison of the simple and nested CV on the binary enzyme (E) 

dataset under the experimental settings S1-S4. Area under the curve (AUC) is plotted as a 

function of the increasing regularization parameter  . The dotted vertical line indicates the 

default parameter value of    . Upper panel, pooled LOO, LDO and LTO CV in settings S1-

S3, and 10×10-fold pooled CV in setting S4; Lower panel, averaged 5-fold CV in settings S1-S3 

and 3×3 averaged CV in setting S4.  
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Supplementary Figure 7. Area under the curve (AUC) as a function of the cut-off threshold in 

the quantitative kinase disassociation constant (Kd) dataset under the setting S1 and leave-one-

out cross-validation (LOO-CV). In the binary classification formulation, the quantitative drug-

target binding affinity data is divided into two classes, interaction and non-interaction, using a 

varying cut-off threshold for Kd, with lower values denoting true interactions and higher value 

non-interacting drug-target pairs. As expected, the prediction accuracies start to increase when 

increasingly smaller sets of drug-target pairs with low Kd values are treated as true positive 

interactions only. However, we note that the prediction accuracy remains pretty constant with 

higher cut-off threshold levels, and importantly, the relative differences between the different 

similarity measures remain the same across the spectrum of threshold levels. The effects of 

varying the cut-off threshold showed similar trends also in the other experimental settings. 

Therefore, we chose to report the binary prediction results based on a single threshold only in 

this data (Kd = 30nM), since these are the most potent and clinically feasible targets of kinase 

inhibitors, yet showing relatively high degree of kinase inhibitor promiscuity (see Table 1).  
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Supplementary Fig. 8. 

Schematic illustration 

of the nested cross-

validation procedure 

under the setting S4. 

(continued, next page) 
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Supplementary Fig. 8. (continued) 

The original dataset is here depicted as a drug-target matrix, where the entries index the training 

data points, each consisting of a drug, target, and a real-valued label indicating the binding 

affinity of the interaction. In cross-validation under the setting S4, the data is split into folds both 

drug-wise and target-wise simultaneously, so that each fold consists of all the training points that 

are associated with certain subsets of drugs and targets. During the outer cross-validation, each 

of the m × n folds is kept as a test set at a time (the test fold is colored with grey), and the folds 

containing points that are associated neither with the drugs nor with the targets indexing the test 

set are used as a training set (colored white), during the outer cross-validation (CV). The folds 

colored in black cannot be used neither in the test nor the training set, because the points in these 

contain either drugs or targets indexing the test set. The training sets of outer CV are further split 

into training and validation sets in the same fashion as in the outer CV that are, in turn, used for 

selecting a suitable combination of the hyper-parameters for the learning algorithm. This inner 

CV is separately performed during each round of the outer CV. Note also that the hyper 

parameter combination can vary between different rounds of the outer CV, due to the variance 

caused by the different training sets, and hence the nested CV does not provide an optimal 

parameter combination; rather it is a tool for measuring the prediction performance. The training 

sets of the outer CV are finally used to train models using the hyper-parameter combinations 

found during the corresponding inner CV rounds, and the test sets are then used for evaluating 

the prediction performance, which is averaged over the test sets of the outer CV loop. For the 

other settings S1-S3, the nested CV workflow is somewhat simpler, since it does not involve the 

folds colored in black, that is, the ones suitable neither for training nor testing. The standard CV 

corresponds to the situation, in which one ignores the inner CV, and instead uses the outer CV 

test sets to evaluate each hyper-parameter combination. This simple approach, while being 

appropriate for selecting an optimal hyper-parameter combination for the model trained with the 

whole data, if the number of combinations is reasonably small, may provide biased performance 

estimates when the number of possible combinations becomes larger. This problem is 

particularly severe with the greedy feature selection methods as illustrated in Figure 5. 

 



10 
 

 

Supplementary Fig. 9. Density histograms for the Kd and Ki datasets by Davis et al. (2011) and 

Metz et al. (2011). The histograms illustrate the distributions of logarithmic interaction binding 

affinity values:              and             . These histograms are drawn so that 

there is one bar per each distinct interaction affinity value and the bar height indicates the 

number of those values. It can be noticed that the Kd and Ki datasets represent with certain 

distinct characteristics, which may partly explain the observed differences in their predictive 

performances. For example, in the Kd dataset, almost half of the values equal to the largest tested 

concentration, 10000 nM, that is,      . These correspond to compound-protein pairs that 

were tested in the assay, but for which binding was either very weak (Kd > 10000 nM) or not 

detected in the primary screen (replaced with Kd = 10000 nM). Such true negative drug-target 

pairs have a dominant role in the Kd data. In the Ki data, on the contrary, there are non-measured 

pairs (i.e. missing data pairs), which were mean-imputed before training the predictive models 

(using average           . Note that the prediction performance was evaluated in both datasets 

using the measured interaction pairs only in the testing phase. Another difference between the Kd 

and Ki datasets is the number of distinct affinity values, which is considerably larger in the Kd 

data, because of its gradually increasing logarithmic concentration range. The histogram bars are 

equally wide in the pKi data, where these affinity values range from 4.0 to 10.3 with 0.1 step, 

while the step (and bar) width varies in the pKd data, because the compound-protein binding tests 

were originally performed on the linear Kd scale. 

 


