Supporting Information

Kattah et al. 10.1073/pnas.1424796112

A DNAS

Fig. S1. U1-70 peptides form stable peptide:MHC complexes with I-E^k. Shown are histograms from flow cytometry staining of exchanged, biotinylated peptide:I-E^k complexes, incubated with streptavidin beads and stained with anti-I-E^k (PE), demonstrating that exchanged monomers are stable.

Fig. S2. Autoantibody production in MRL/lpr mice. (A) Levels of gamma globulin were measured in the serum of 3 MRL/lpr and 3 MRL/lpr ince, bled at 2-wk intervals for 12 wk, and detected by ELISA. (B) Heat map of antigens identified by SAM as having a statistically significant association with MRL/lpr serum from mice aged >15 wk vs. serum from mice aged <15 wk. Data are derived from autoantigen microarrays probed with individual mouse serum samples. The heat map represents a gradient from low (pseudocolored black) to high (pseudocolored yellow) IgG levels. (C) Levels of autoantibodies against U1-70 of various IgG isotypes, as measured by ELISA (n = 3 mice).

Fig. S3. Kinetics of U1-70:I- E^k -specific T cells and anti-U1-70 autoantibodies. Frequencies of U1-70:I- E^k -specific T cells (*Left y* axis) were determined based on the number of tetramer-positive cells detected following enrichment. The levels of IgG autoantibodies against the whole protein U1-70 in sera from MRL/*lpr* mice were measured by ELISA (*Right y* axis), and graphed alongside the frequency of U1-70:I- E^k -specific T cells.

Fig. S4. P140:I-E^k-specific T-cell phenotype. (A) Flow cytometry plots showing intracellular IL-17 and IFN γ production by MRL/*lpr* CD4⁺ T cells, stimulated with PMA/ionomycin for 3 h at 37 °C. The plots show the enrichment fraction and are gated on CD4⁺ P140:I-E^k-negative cells (*Left*), CD4⁺ P140:I-E^k-positive cells (*Middle*), and CD4⁺ P140:I-E^k-positive cells that were not stimulated (*Right*). (*B*) Histograms of ROR γ t, Tbet, and GATA3 expression from tetramer-enriched MRL/*lpr* CD4⁺ T cells, as measured by intracellular staining.

Fig. S5. P140:I-E^k-specific T cells do not express Treg markers. (*A* and *B*) Flow cytometry plots of CD4⁺ T cells from MRL/*lpr* mice at age 15 wk, stimulated with PMA/ionomycin for 3 h at 37 °C, and stained for IL-10 (*A*) and Foxp3 (*B*). Plots are representative of 10 individual mice. (*C*) Foxp3 expression was measured in 6-wk-old MRL/*lpr* (*Left*) and C3H (*Right*) mice. Five mice were pooled for each sample. As a positive control, Foxp3 expression was detected in CD4⁺ T cells from MRL/*lpr* mice that were purified by negative selection, cultured with TGF β , and gated on CD25^{hi}, CD127^{lo}.

Fig. S6. Cytokine levels in MCTD patients. (A and B) Bar graphs showing IFN γ (A) and IL-17F (B) production from MCTD patient samples in response to the U1-70 peptide, as detected by ELISPOT assays. Error bars reflect triplicate wells. Age- and sex-matched healthy controls were included. (C) Heat map of unsupervised hierarchical clustering of soluble factors identified by SAM as having a statistically significant association with MCTD patient serum vs. healthy control serum. Data are derived from a Luminex assay and are the average values from triplicate wells.

Table S1.	Candidate	peptide	panel for	I-E ^k tetramers
-----------	-----------	---------	-----------	----------------------------

Test	Protein	Amino acids	Sequence	Source
*∆♢	B2M	42–59	HPPHIEIQMLKNGKKIPK	(1)
$^{\star\Delta\diamondsuit}$	Histone H2A	84–99	HLQLAIRNDEELNKLLGKVT	(1)
$\star\Delta$	Histone H2A	84–99 E94N	HLQLAIRNDENLNKLLGKVT	Mutation made based on MHC prediction
Δ	Histone H3	20–40	RKSTFFKAPRKQLATKAARK	MHC prediction
Δ	Histone H4	60–80	VFLENVIRDAVTYTEHAKRK	MHC prediction
Δ	La	50–70	IMIKFNRLNRLTTDFNVIVE	MHC prediction
Δ	Ro52	1–20	MASAARLTMMWEEVTCPICL	MHC prediction
Δ	Ro52	210–230	LGEKEAKLAQQSQALQELIS	MHC prediction
$\star \Delta$	Ro60	272–287	LLQEMPLTALLRNLGK	MHC prediction
$\star\Delta$	Ro60	272–287 T297I	LLQEMPLIALLRNLGK	Mutation made based on MHC prediction
$\Delta \diamond$	Srp20	4–23	DSCPLDCKVYVGNLGNNGNK	(1)
$\star\Delta$	Srp20	4–23 N22K	DSCPLDCKVYVGNLGNNGKK	Mutation made based on MHC prediction
$\Delta \diamond$	U1-70	131–151	RIHMVYSKRSGKPRGYAFIE	(2)
*	U1-70	131–151 (P140)	RIHMVYSKRS(phospho) GKPRG YAFIE	(2)
Δ	U1-A	610–630	DIAFVEFDNEVQAGAARDAL	MHC prediction

Candidate peptides or whole antigens were tested for binding to I-E^k by competition assay (*), and/or for the ability to induce proliferation of CD4⁺ T cells from MRL/*lpr* mice by ³H thymidine incorporation (Δ), or the up-regulation of CD40L on CD4⁺ T cells as measured by flow cytometry (\diamond).

1. Muller S, et al. (2008) Spliceosomal peptide P140 for immunotherapy of systemic lupus erythematosus: Results of an early phase II clinical trial. Arthritis Rheum 58(12):3873–3883. 2. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121.