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1. General Definitions
The objective of this study is to reveal the effects of eye motion
during fixational instability on the structure of the correlations of
the information streaming from the retina to the brain. The in-
formation to be processed by the retina comes in the form of the
intensity distribution over the retina surface (2D space), which
we denote Iðx; tÞ. Here x is the position of the photoreceptor on
the retina and t is time. In reality the photoreceptors have finite
size and their positions are described by a discrete set of xi.
However, in theoretical analysis we shall use the continuum
approximation (i.e., x is continuous). We describe the informa-
tion that the retina transfers upstream by the continuous re-
sponse Oðx; tÞ, where now x is the position of the retinal ganglion
cell. Again, the positions of the centers of the receptive fields are
in reality a discrete set xi, but for analytical treatment we shall
use the continuous description. The response of the cell can be
summarized by the firing rate as function of time, which is also
treated as continuous in this analysis.
As a characteristic of the synchronization of the cell responses

we use the adopted lifetime correlation coefficient. Let us assume
that we observe the retinal response during a very long time T
(lifetime). In other words, we have both input Iðx; tÞ and output
Oðx; tÞ for 0≤ t≤T (for simplicity we use one-dimensional no-
tation). We define the lifetime mean MðxÞ and SD SðxÞ in the
following way (1):

MðxÞ= 1
T

ZT

0

Oðx; tÞdt [S1]

S2ðxÞ= 1
T

ZT

0

½Oðx; tÞ−M�2dt: [S2]

Respectively, we define the lifetime correlation, covariance, and
correlation coefficient as follows:

Cðx; yÞ= 1
T

ZT

0

Oðx; tÞOðy; tÞdt [S3]

Covðx; yÞ= 1
T

ZT

0

½Oðx; tÞ−MðxÞ�½Oðy; tÞ−MðyÞ�dt

=Cðx; yÞ−MðxÞMðyÞ [S4]

CCðx; yÞ=Covðx; yÞ
SðxÞSðyÞ : [S5]

Let the whole time of observation be split in n trials of the
duration Δt each. We shall define the trial mean, correlation,
and covariance, respectively, in a similar way:

MiðxÞ= 1
Δt

Zti+Δt

ti

Oðx; tÞdt [S6]

Ciðx; yÞ= 1
Δt

Zti+Δt

ti

Oðx; tÞOðy; tÞdt [S7]

coviðx; yÞ= 1
Δt

Zti+Δt

ti

½Oðx; tÞ−MiðxÞ�½Oðy; tÞ−MiðyÞ�dt

=Ciðx; yÞ−MiðxÞMiðyÞ; [S8]

where i denotes the number of the trial starting at ti and ending
at ti +Δt.
Now let the trial correlation coefficient be

CCiðx; yÞ=COViðx; yÞ
SðxÞSðyÞ [S9]

COViðx; yÞ= 1
Δt

Zti+Δt

ti

½Oðx; tÞ−MðxÞ�½Oðy; tÞ−MðyÞ�dt [S10]

COViðx; yÞ= coviðx; yÞ+ δMiðxÞδMiðyÞ; [S11]

where δMiðxÞ=MiðxÞ−MðxÞ is the difference between the trial
mean and the lifetime mean. Note the difference between COVi
and covi. The latter is the true trial covariance, whereas the
former mixes the trial response with the lifetime mean.
From the last definition it is clear that knowledge of the lifetime

behavior is needed to determine the trial correlation coefficient
CCi defined by Eq. S9. The mean trial correlation coefficient
is then

hCCiðx; yÞi= 1
T

X
i

CCiðx; yÞΔt=Cðx; yÞ−MðxÞMðyÞ
SðxÞSðyÞ =CCðx; yÞ;

[S12]

where CCðx; yÞ is defined in Eq. S5. Here we used the identities

1
T

X Zti+Δt

ti

ð . . . Þdt= 1
T

ZT

0

ð . . . Þdt [S13]

MðxÞ= 1
T

X
i

MiðxÞΔt: [S14]

Thus, calculation of the trial correlation coefficients CCi and
averaging it later is equivalent to calculation of the correlation
coefficient over the lifetime observation, without splitting in tri-
als. It is clear that hCCiðx; xÞi=CCðx; xÞ= 1 by construction.
The quantity of ultimate interest is the dependence of the

correlation coefficient on the distance between the cells:

CCðrÞ≡ 1
2πLxLy

Z
d2xdφCCðx; x+ rÞ; [S15]

where the spatial size of the retina, Lx ×Ly, is assumed sufficiently
large to exclude the influence of the edges. Here we restored the
2D notation to remind the additional averaging over directions (φ).
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One important point is that during the lifetime observation a
cell is exposed to a large statistical ensemble of stimuli. If the cells
are identical and there is no systematic bias of the stimuli, the lifetime
mean and SD should be the same for all cells, that is,MðxÞ=M and
SðxÞ= S. Thus, statistically, CCðrÞ= ~CðrÞ=~Cð0Þ, where

~CðrÞ= ��h½Oðx; tÞ−M�½Oðx+ r; tÞ�it
�
x

�
φ
; [S16]

where M = hOðx; tÞit and hð. . .Þi stands for averaging, for brevity,
and the corresponding index denotes over which variable the
averaging is done (time, position, or direction).
For the below theoretical treatment it is assumed that the

response can be represented as a functional of the input. We shall
also neglect any noise in the activity of the retinal ganglion cells
and assume that we are within the linear regime. That is, we
assume that the time averaged input is zero, which accounts for
the adaptation of the retina to the static illumination, and that
the relation between the input and the response can be written
as follows:

Oðx; tÞ=
Z

dt′dx′RF
�
x; x′; t; t′

�
I
�
x′; t′

�
: [S17]

Here the receptive field RFðx; x′; t; t′Þ takes into account that the
response of a cell depends on the input accumulated over some
area and on the temporal development of the intensity. In gen-
eral, there are no restrictions on RF except that RF = 0 for t< t′,
which states that the retina is a causal system. If the retinal
properties do not depend on time (e.g., no retinal adaptation)
then RFðt; t′Þ=RFðt− t′Þ, which seems reasonable because in our
analysis we measure the retinal response in relatively long ex-
periments. Furthermore, if all cells were identical and the retina
were infinite, one would have RF =RFðt− t′; x− x′Þ. This as-
sumption is of course not correct because the retina is finite
and the effect of the edges can destroy the translational invari-
ance of RF. However, the edge effects can be reduced and prob-
ably neglected by considering a sufficiently large retina part
where the densities of photoreceptors and ganglion cells are
sufficiently high.
Additional discussion should address the issue that cells in the

retina are not identical. Thus, proper analysis to be compared
with the experiment should take into account the variability of the
cellular responses. That is, in general, RF =RFðt− t′; x− x′; xÞ.
However, as a first-step approximation, here we ignore the dif-
ferences between cells. Furthermore, throughout the analysis we
take an even more simplifying approximation of using the sep-
arable kernel where RF =Tðt−′t′ÞXðx− x′Þ, with Tðt− t′Þ= 0 for
t< t′. Although this approximation is useful for our analysis, one
should keep in mind that it does not take into account the
center-surround feature of retinal ganglion cells. For the latter
one can try RF =

P
iTiðt−′t′ÞXiðx− x′Þ as a simple model.

With all above, we assume that the intensity field is transformed
to the field of the firing rates as follows:

Oðx; tÞ=
Z

dt′dx′T
�
t− t′

�
Xðx− x′ÞI�x′; t′�; [S18]

where the background is subtracted from both I andO. It is worth
noting that if the cells differ by only the amplitude of their re-
sponse and are identical by the functional form, that is, if

Oðx; tÞ=AðxÞ
Z

dt′dx′T
�
t− t′

�
Xðx− x′ÞI�x′; t′�; [S19]

the multiplicative factors AðxÞ eventually drop in all above cal-
culations and the resulting correlations have the same form as in
the case where A does not depend on x.

We are interested in the comparison of the responses for two
type of stimuli. First is the scenario when the retinal output is
directly derived by the input correlation. This is obtained by
flashing and holding the image over the photoreceptors layer,
which simulates a stabilized fixation (SF) condition. Second is the
scenario where the retinal output is determined by the interplay
between fixational eye movements and image statistics (denoted
FEM) over the same statistical ensemble of images (discussed
below). The intensity distribution for both is given by

ISFðx; tÞ= I0ðxÞHðtÞ [S20]

IFEMðx; tÞ= I0ðx+ sðtÞÞ; [S21]

where I0ðxÞ is the intensity distribution of the static image, HðtÞ is
the step function, and sðtÞ represents the translational motion of
the image on the retina owing to the eye movements.

2. Analysis of the Response to the SF Condition
The response to the SF input Iðx; tÞ= I0ðxÞHðtÞ takes the form

Oðx; tÞ=LðtÞFðxÞ [S22]

LðtÞ=
Z t

0

dt′T
�
t− t′

�
[S23]

FðxÞ=
Z

dx′Xðx− x′ÞI0ðx′Þ: [S24]

Respectively,

hOiðxÞ=LFðxÞ; hLi= 1
τ

Zτ

0

LðtÞdt [S25]

~Oðx; tÞ= ðLðtÞ− hLiÞFðxÞ≡ ~LðtÞFðxÞ: [S26]

The covariance therefore takes the following form:

Covðx; yÞ=GFðxÞFðyÞ [S27]

G=
Zτ

0

dt~O
2ðtÞ [S28]

FðxÞ=
Z

dx′Xðx− x′ÞI0ðx′Þ: [S29]

Here and hereafter G will denote any unimportant constant
factor. The covariance for the SF can be easily calculated using
the Fourier transform of the spatial part:

Covðx; yÞ=G
Z

dkdk′XðkÞI0ðkÞeikxXðk′ÞI0ðk′Þeik′y [S30]

~CðrÞ=
Z

dxCðx; x+ rÞ=G
Z

dkjXðkÞj2jI0ðkÞj2eikr; [S31]

where for each f ðxÞ we define

f ðxÞ=
Z

f ðkÞeikxdk; [S32]
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retaining, for brevity, the same symbol for the function and its
Fourier transform.
Eq. S31 describes the correlation function for a particular ret-

inal response and a particular image spectrum (trial correlation).
Statistical averaging is done assuming jXðkÞj2 = jXðkÞj2 (symmet-
ric receptive fields), and average jI0ðkÞj2 = jI0ðkÞj2. When aver-
aging over the directions

~CðrÞ=
Z2π

0

~Cðr;φÞdφ [S33]

=G
Z∞

0

kdk
Z2π

0

dϕjXðkÞj2jI0ðkÞj2eikr cosϕ; [S34]

where kr= kr cosϕ. Using

eikr cosφ =
X
n

JnðkrÞeinðπ=2−φÞ [S35]

one gets

~CSFðrÞ=G
Z∞

0

kdkjXðkÞj2jI0ðkÞj2J0ðkrÞ [S36]

CCSFðrÞ=
R∞
0 kdkjXðkÞj2jI0ðkÞj2J0ðkrÞR∞

0 kdkjXðkÞj2jI0ðkÞj2
: [S37]

Eq. S37 provides the general expression for the cross-correlation
for the SF input.

3. Analysis of the Response to FEM
We shall consider the stationary response to the input from eye
movements, Iðx; tÞ= I0ðx+ sðtÞÞ. The stationarity means that
hOðx; tÞi= 0 for the measurement interval 0≤ t≤ τ. In this case
~O= 0, whereas hOðy; tÞOðx; tÞi remains finite and independent of
time. Respectively, the correlation takes the form

Cðx; yÞ= hOðy; tÞOðx; tÞi= 1
τ

Zτ

0

Oðy; tÞOðx; tÞdt: [S38]

One can write

Iðx; tÞ=
Z

dkI0ðkÞeikðx+sðtÞÞ [S39]

Oðx; tÞ=
Z

dk
Z

dx′dt′Xðx− x′ÞT�t− t′
�
I0ðkÞeikðx′+sðt′ÞÞ [S40]

Oðx; tÞ=
Z

dk
Z

dt′T
�
t− t′

�
XðkÞI0ðkÞeikðx+sðt′ÞÞ: [S41]

Respectively, one has

Cðx; yÞ=
Z

dtdt′dt″dx′dx″dk′dk″T
�
t− t′

�
T
�
t− t″

�

·Xðx− x′ÞXðy− x″ÞI0ðk′ÞI0ðk″Þ
· eik′ðx′+sðt′ÞÞeik″ðx″+sðt″ÞÞ

[S42]

Cðx; yÞ=
Z

dk′dk″Mðk′; k″Þeik′xeik″yFðk′ÞFðk″Þ [S43]

FðkÞ=XðkÞI0ðkÞ [S44]

Mðk′; k″Þ=
Z

dtqðk′; tÞqðk″; tÞ [S45]

qðk; tÞ=
Z

dt′T
�
t− t′

�
eiksðt′Þ [S46]

=
Z

dt′dωTðωÞeiksðt′Þ−iωðt−t′Þ: [S47]

One also has

~CðrÞ=
Z

dkeikrMðk;−kÞjFðkÞj2 [S48]

Mðk;−kÞ=
Z

dtjqðk; tÞj2 =
Z

dωjqðk;ωÞj2 [S49]

qðk;ωÞ=TðωÞ
� Z

dteiksðtÞ+iωt
�

[S50]

jqðk;ωÞj2 = jTðωÞj2Qðk;ωÞ [S51]

Qðk;ωÞ=
Z

dtdt′eikðsðtÞ−sðt′ÞÞ+iωðt−t′Þ: [S52]

Qðk;ωÞ corresponds to the attenuation factor of ref. 2. Thus,
one has

~CFEMðrÞ=G
Z

dkdωeikrjTðωÞj2Qðk;ωÞjXðkÞj2jI0ðkÞj2: [S53]

In the above expressions TðωÞ plays the role of a band-pass filter.
Indeed, we assume no response to completely static inputs. How-
ever, for any physical system the response should drop to zero
when ω→∞. Averaging over angles and statistical ensemble
with the assumption Qðk;ωÞ=Qðk;ωÞ would give

~CFEMðrÞ=G
Z∞

0

k3dkRðkÞjXðkÞj2jI0ðkÞj2J0ðkrÞ; [S54]

where

RðkÞ=
Z

dωjTðωÞj2Qðk;ωÞ: [S55]

Eq. S41 can be greatly simplified if the amplitude of the eye
movements is small compared with the receptive field size, that
is, XðkÞ is significantly nonzero only for jksj � 1. In this case,
expanding the exponent and taking into account that the re-
sponse to the static (time independent) input vanishes, one gets

Oðx; tÞ=
Z

kdkXðkÞI0ðkÞSðtÞ [S56]

SðtÞ=
Z

dt′T
�
t− t′

�
s
�
t′
�
: [S57]
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Respectively,

~CFEMðrÞ=
X
ij

G
Z

dkdωeikrkikjSijjXðkÞj2jI0ðkÞj2; [S58]

where i; j= 1; 2 denote the two orthogonal directions at the ret-
ina and

Sij =
Z

dtSiðtÞSjðtÞ: [S59]

Averaging over directions and a statistical ensemble is straightfor-
ward. Let kx = k cos α, ky = k sin α, kr= kr cosφ. Averaging over α
and φ is independent. Assuming again isotropy of the receptive
fields and average image spectra, one gets

~CFEMðrÞ=G
Z

k3dkjXðkÞj2jI0ðkÞj2J0ðkrÞ: [S60]

4. Comparison Between the Response Patterns
We are interested in the comparison of CCðrÞ= ~CðrÞ=~Cð0Þ for
both cases:

CCSFðrÞ=
R∞
0 kdkjXðkÞj2jI0ðkÞj2J0ðkrÞR∞

0 kdkjXðkÞj2jI0ðkÞj2
[S61]

CCFEMðrÞ=
R∞
0 k3dkRðkÞjXðkÞj2jI0ðkÞj2J0ðkrÞR∞

0 k3dkRðkÞjXðkÞj2jI0ðkÞj2
: [S62]

If the amplitude of the eye movements is substantially smaller
than the receptive field size the latter expression simplifies
to the following:

CCFEMðrÞ=
R∞
0 k3dkjXðkÞj2jI0ðkÞj2J0ðkrÞR∞

0 k3dkjXðkÞj2jI0ðkÞj2
; [S63]

which is used in themain text for the comparison with the experiment.
For the receptive field shape in the form of an isotropic

Gaussian,

XðrÞ= 1
r20
exp

�
−r2

�
2r20

�
⇒XðkÞ= exp

�
−k2

�
2k20

�
; [S64]

where k0 = 1=r0; the wave numbers well above k0 in the input
spectrum do not contribute noticeably.
The natural spectrum is believed to have the shape jI0ðkÞj2 =

1=k2 for kmin < k< kmax. There should be a cutoff or a faster drop
at k> kmax. This short wavelength range is of no importance,
though. The lower end of the spectrum, however, significantly
affects the correlations. Indeed, for k � k0 and kr � 1 one has
J0ðkrÞ≈ 1. If kmin � k0, it is the lowest end of the spectrum that
dominates in Eq. S61 and the correlation remains large up
to large distances. In particular, the presence of k= 0 (nonzero
mean of the input) would result in long-range correlations. The
presence of k2 in Eq. S63 efficiently removes this dependence on
the low wavenumber end of the spectrum, that is, on the largest
scales of the input. Fig. S1 shows the normalized covariance for
SF and eye movements for several values of kmin. Eye move-
ments effectively limit the effects on the correlation to the scales
approximately within an order of magnitude around the re-
ceptive field size. For this visualization the spectrum was as-
sumed flat jI0ðkÞj2 = jI0ðkminÞj2 for 0≤ k≤ kmin.
This can be understood as follows: let I0ðxÞ= I +~I, where I is

the spatial mean of the intensity,

I = hI0i≡ 1
LxLy

Z
I0ðxÞdx; [S65]

whereas h~Ii= 0. In other words, we decompose the input onto
full-field flash and zero mean input. The corresponding output is
O=O+ ~O, where

OðxÞ=LðtÞ
Z

Xðx− x′ÞIdx′ [S66]

~OðxÞ=LðtÞ
Z

Xðx− x′Þ~Iðx′Þdx′: [S67]

It is easy to see that h~Oi= 0 while O= const. The correlation
would be

CðrÞ= hOðxÞOðx+ rÞi=O
2
+
�
~OðxÞ~Oðx+ rÞ�: [S68]

Respectively,

CCðrÞ=O
2
+
�
~OðxÞ~Oðx+ rÞ�

O
2
+
D
~OðxÞ2

E : [S69]

Therefore, even if h~OðxÞ~Oðx+ rÞi→ 0 for jrj→∞, the normalized
correlation

CCðjrj→∞Þ⇒ O
2

O
2
+
D
~OðxÞ2

E: [S70]

The larger is ratio O
2
=h~OðxÞ2i the closer is the correlation to unity.

In other words, the long-range correlation is determined by the full-
field flash amplitude. It is worth noting that the time average output
is assumed to be zero here, whereas there are no restrictions on the
spatial mean. The center-surround antagonism reduces the output
corresponding to the full-field flash. If

R
XðxÞdx= 0 then O= 0 and

the correlations at large distances can be expected to drop to zero,
otherwise long range correlations persist.

5. Whitening and Correlations
For the totally spatially uncorrelated input (white noise)

hI0ðxÞI0ðx+ rÞi∝ δðrÞi; jI0ðkÞj2 = const [S71]

the retinal response in the case of SF induces correlations corre-
sponding to the shape of the receptive field:

~CSF;WNðrÞ=G
Z∞

0

kdkjXðkÞj2J0ðkrÞ: [S72]

That is, uncorrelated input is transformed in a correlated signal
transferred further to the brain. These correlations are known to
the brain because they depend only on the retina design. Thus,
ignoring these correlations is easy and can be done using a single
built-in algorithm.
For the natural images, in the case of SF, the output sent to

the brain would have correlations that mix the retina design
and the intrinsic image correlations corresponding to the spec-
trum jI0ðkÞj2 ∝ k−2 (here, to simplify the discussion we assume
that jI0ðkÞj2 = 0 outside kmin < k< kmax):

~CSF;naturalðrÞ=G
Zkmax

kmin

k−2kdkjXðkÞj2J0ðkrÞ: [S73]
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Thus, decoding would require taking into account this mixture.
Small-amplitude eye movements essentially convert the spectrum
of the natural images into the (truncated) white noise spectrum.
Thus, eye movements remove the correlations due to the image
and retain only the correlations due to the receptive fields (com-
pare (37) with jI0ðkÞj2 = const with (60) with jI0ðkÞj2 ∝ k−2). When
doing so the finite size of the receptive field kills the shortest
scales and the eye movements kill the largest scales of the image.

6. Beyond the Linear Model
The above theory clearly shows that correlations drop more
quickly with the distance for eye movements than for SF. How-
ever, the theory makes use of a number of approximations that are
broken when we deal with real cells: infinite retina, identical cells,
continuum description, and linearity of the response. At this stage
we have no analytical approach that would allow us to get rid of
these approximations, in particular linearity of the response, and
calculate the correlations. To access the effects of finiteness of the
retina, discreteness of the cells, and nonlinearity we develop a
simple numerical model. This model should be considered as an
extension of the theoretical analysis and not as modeling of real
cells measured in the described experiment. In what follows we
show the lifetime correlation coefficient, calculated in accordance
with Eqs. S12 and S15.
Input for the model is given on the grid of the size Lgrid ×Lgrid

pixels, Lgrid = 400, when each 200 × 200 quadrant is a natural
image. Each image is randomly chosen from a large set of nat-
ural images and rotated by n× 90°, n= 0; 1; 2; 3, according to the
position of the quadrant. In this way averaging over natural
images and directions is achieved. The input is changed so that
10 trials are combined in the lifetime observation. Identical cells
(total number ncells = 212) are first positioned on a subgrid with
the spacing 15 pixels and then randomly shifted (uniform dis-
tribution with a maximum shift of about 20 pixels). Spatial shape
of the receptive field is taken as a difference of two Gaussians
(center and surround):

RFðrÞ= 1
L2
c
exp

�
−r2

�
2L2

c

�
− a

1
L2
s
exp

�
−r2

�
2L2

s

�
: [S74]

The coefficient a controls the integral
R
RFðrÞdr over the whole

plane. For a= 1 this integral vanishes, which corresponds to no
response to a uniform intensity. Fig. S2 shows the distribution of
the receptive fields on the grid. Hereafter all results are for
Lc = 10 if not specified otherwise. This value of the center width
is chosen to ensure substantial overlap of the receptive fields for
neighboring cells.
Fig. S3 shows the number of cells vs. distance between the cells

normalized on the RF center size Lc. The number or cells grows
linearly up to about the distance of 10 receptive fields. Beyond
this distance the effects of the finite size and edges may become
substantial.
The linear output of each cell is taken instantaneous for SF:

OLðx; tÞ=
Z

RFðx− y; tÞIðy; tÞdt: [S75]

For identical cells the temporal response is not important in the
case of SF. Nonlinearity can be implemented in a number of sim-
ple ways:

i) The actual nonlinear output is made positive for both pos-
itive and negative linear output (75) but taking absolute
values ONL = jOLj (absolute value).

ii) The negative values of the linear output are converted to
zeroes but the positive values are unchanged: ONL = 0 if
OL > 0 and ONL =OL if OL < 0.

iii) The positive values of the linear output are converted to
zeroes but the positive values are unchanged: ONL = 0 if
OL < 0 and ONL =OL if OL > 0 (rectifying function).

These implementations take into account that the firing rate is
always positive, although the input may be both positive and
negative. Cases ii and iii roughly describe only off or only on
cells. In what follows we show the numerical results for the off
case, because it resembles more closely the experimentally found
cell features. The differences with other nonlinearities are only
quantitative (the value of the correlation at large distances) but
not qualitative. For the SF mode the retina starts firing after ad-
aptation to the gray background (we follow the experimental setup),
so that the actual input is the intensity with the gray background
subtracted. In the case of eye movements the retina adapts to the
still image. Eye movements are simulated with 30 random circular
shifts, in the range −10:+10 in each direction, of the whole grid. The
walk of an image on the retina is shown in Fig. S4.
Fig. S5 shows the scatter plots for the cross-correlation. The left

panel compares SF (black points) and FEM (red circles) obtained
in the numerical model. The middle panel compares the model
obtained (black) and experimentally found (red circles) correlations
for SF, and the right panel shows similar comparison for FEM.
Fig. S6 shows the cross-correlation for SF (blue curves) and

FEM (black curves). The cross-correlations are obtained within
the numerical model described above. In both cases (SF and
FEM) the response is nonlinear (off only). For SF the active time
is only a part of the trial time. All means are calculated here with
the ratio of SF active-to-trial time of 0.2. The lower blue curve
corresponds to a= 1, when the center-surround antagonism
cancels the response to a uniform background, and the upper
blue curve corresponds to a= 0:9. The long-range correlations
grow with the decrease of a. The cross-correlations for FEM are
not sensitive to the surround-to-center amplitude ratio a. Pitkow
and Meister (3) note that the center-surround antagonism does
not have to be ideal, that is, a≠ 1, in general. We see that the
amplitude affects the baseline for SF but does not affect the
correlation for eye movements. Thus, eye movements effectively
cancel the sensitivity to the relative strength of the center and
surround. To show that different forms of nonlinearities do not
change the above results we present in Fig. S7 the results of the
numerical model for the two choices of nonlinearities: absolute
value and rectifying function (discussed above). Although the
values of the correlation at large distances are affected, the FEM
correlations are always lower than SF correlations.

7. Experimentally Determined Correlation Patterns
Fig. S8 shows the mean values of correlation for pairs of cells with
similar receptive field spacing. The correlation for SF decreased
slowly with increasing distance and remained significant for distant
cells. In the presence of fixational eye movements the level of cor-
relations dropped, as proposed by the theory. Only pairs of the same
type (Off–Off) were used. The vertical line represents the mean
receptive field size in all panels. The correlation pattern when we
use only time windows of 1 s to 2 s of both the SF and FEM segment
was calculated. We found that in the SF segment the retina fires
spontaneously and the activity is not derived by the stimulus.
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Fig. S1. Correlation coefficient CCðrÞ for stabilized fixation (black) and eye movements (blue) for several values of kmin=k0 = 0:0001,0:001,0:01,0:1. The lower
kmin=k0 the longer is the correlation range for stabilized fixation. In the case of eye movements there is no effect.

Fig. S2. Cells on the grid. Each circle represents the half-height contour corresponding to an individual cell.
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Fig. S3. Distribution of the distances between the cells normalized on the RF center size Lc .

Fig. S4. Walk of an image on the retina: pseudorandom walk with randomly changing step.
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Fig. S5. Scatter plots for correlation coefficients. (A) Model obtained SF (black) and FEM (red). (B) Model SF (black) and experimental SF (red). (C) Model FEM
(black) and experimental FEM (red).

Fig. S6. Cross-correlation as a function of the distance for various a= 0:9− 1:0. Blue curves are for stabilized fixation and black curves are for eye movements.
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Fig. S7. Cross-correlation as a function of the distance for various for the absolute value nonlinearity (triangles) and for the rectifying function nonlinearity
(circles). Blue curves are for stabilized fixation and black curves are for eye movements.

Fig. S8. Mean values of correlation for pairs of cells with similar receptive field spacing. The correlation for stabilized fixation decreased slowly with increasing
distance, and remained significant for distant cells. In the presence of fixational eye movements, the level of correlations dropped, as proposed by the theory.
Only pairs of the same type (Off–Off) were used. The vertical line represents the mean receptive field size in all panels. In the stable fixation segment the retina
fires spontaneously and the activity is not derived by the stimulus.
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