Supporting Information

Structure diversification of vancomycin through peptide-catalyzed, site-selective lipidation: A catalysis-based approach to combat glycopeptide-resistant pathogens

Sabesan Yoganathan^{a,b} and Scott J. Miller^{a,*}

^aDepartment of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107 ^bDepartment of Pharmaceutical Sciences, St. John's University, 8000 Utopia Pkwy, Queens, NY 11439

*To whom correspondence should be addressed. e-mail: scott.miller@yale.edu ^b current address

Supporting Information Contents:

I.	Synthesis of partially protected vancomycin derivative 3	S-2
II.	Screening of peptide catalysts for the decanoylation reaction	S-4
III.	Synthesis of G_6 -decanoyl vancomycin derivative 9a	S-7
IV.	Synthesis of G_4 -decanoyl vancomycin derivative 9b	S-10
V.	Synthesis of Z_6 -decanoyl vancomycin derivative 9 c	S-13
VI.	Synthesis of G ₄ -acyl vancomycin derivatives 10-15	S-16
VII.	Synthesis of peptide catalysts	S-19
VIII.	Acyl group migration studies	S-20
IX.	Competition experiments with Boc-Leu- ^D Ala- ^D Ala-OH	S-22
Х.	Antibacterial activity assay for determining minimum Inhibitory Concentration (MIC)	S-24
XI.	NMR spectra	S-25

I. Synthesis of partially protected vancomycin derivative 3

Partially protected vancomycin **3** was synthesized using reported literature procedures.^{1,2} Compound **3** was purified using Biotage (RP-MPLC, Method 6). RP-HPLC retention time (Method 3): 24.9 min; LC-MS (ESI⁺) for $C_{86}H_{100}Cl_2N_9O_{28}$ [M+H]⁺: Calc'd = 1776.605; found = 1776.615.

HSQC-NMR spectrum of alloc/allyl-protected vancomycin in DMSO-d₆

II. Screening of peptide catalysts for the decanoylation of 3

III. Synthesis of G₆-decanoyl vancomycin derivative 9a

HPLC Trace of G₆-selective decanoylation reaction: RP-HPLC Method 3, $\lambda = 220$ nm, t_R (4a) = 35.5 min; t_R (protected G₄-decanoyl vancomycin, 4b) = 37.6 min.

HSQC-NMR spectrum of protected G₆-decanoyl vancomycin in DMSO-d₆. [HSQC spectrum of native vancomycin is colored in green, and HSQC spectrum of decanoyl-vancomycin derivative is colored in red and blue]

HSQC-NMR spectrum of G₆-decanoyl vancomycin (9a) in DMSO-d₆. [HSQC spectrum of native vancomycin is colored in green, and HSQC spectrum of decanoyl-vancomycin derivative is colored in red and blue]

IV. Synthesis of G₄-decanoyl vancomycin derivative 9b

HPLC Trace of G_4 **-selective decanoylation reaction:** RP-HPLC Method 3, $\lambda = 220 \text{ nm}$, t_R (3) = 24.8 min; t_R (protected G_6 -decanoyl vancomycin, 4a) = 35.4 min; t_R (protected G_4 -decanoyl vancomycin, 4b) = 38.0 min.

HSQC-NMR spectrum of protected G₄-decanoyl vancomycin in DMSO-d₆. [HSQC spectrum of native vancomycin is colored in green, and HSQC spectrum of decanoyl-vancomycin derivative is colored in red and blue]

HSQC-NMR spectrum of G₄-decanoyl vancomycin (9b) in DMSO-d₆.[HSQC spectrum of native vancomycin is colored in green, and HSQC spectrum of decanoyl-vancomycin derivative is colored in red and blue]

V. Synthesis of Z₆-decanoyl vancomycin derivative 9c

HSQC-NMR spectrum of protected Z₆-decanoyl vancomycin in DMSO-d₆ [HSQC spectrum of native vancomycin is colored in green, and HSQC spectrum of decanoyl-vancomycin derivative is colored in red and blue]

HSQC-NMR spectrum of Z₆-decanoyl vancomycin in DMSO-d₆. [HSQC spectrum of native vancomycin is colored in green, and HSQC spectrum of decanoyl-vancomycin derivative is colored in red and blue]

VI. Synthesis of G₄-acyl vancomycin derivatives 10-15

VIa. G_4 -butyryl-vancomycin derivative (10): Analog 10 was synthesized using the general procedure 2 and isolated as a white solid (14.5 mg, 17% over two steps). RP-HPLC retention time (Method 3): 9.7 min; LC-MS (ESI⁺) for $C_{71}H_{84}Cl_2N_9O_{25}$ [M+H]⁺: Calc'd = 1518.479; found = 1518.469.

VIb. G_4 -pentanoyl vancomycin derivative (11): Analog 11 was synthesized using the general procedure 2 and isolated as a white solid (10 mg, 23% over two steps). RP-HPLC retention time (Method 3): 9.8 min; LC-MS (ESI⁺) for $C_{71}H_{84}Cl_2N_9O_{25}$ [M+H]⁺: Calc'd = 1532.495; found = 1532.526.

VIc. G_4 -hexanoyl vancomycin derivative (12): Analog 12 was synthesized using the general procedure 2 and isolated as a white solid (11 mg, 25% over two steps). RP-HPLC retention time (Method 3): 11.2 min; LC-MS (ESI⁺) for $C_{72}H_{86}Cl_2N_9O_{25}$ [M+H]⁺: Calc'd = 1546.511; found = 1546.510.

VId. G_4 -octanoyl vancomycin derivative (13): Analog 13 was synthesized using the general procedure 2 and isolated as a white solid (14 mg, 32% over two steps). RP-HPLC retention time (Method 3): 13.2 min; LC-MS (ESI⁺) for $C_{74}H_{90}Cl_2N_9O_{25}$ [M+H]⁺: Calc'd = 1574.542; found = 1574.540.

VIe. G₄-pentenoyl-vancomycin derivative (14): Analog 14 was synthesized using the general procedure 2 and isolated as a white solid (18 mg, 21% over two steps). RP-HPLC retention time (Method 3): 10.2 min; LC-MS (ESI⁺) for $C_{71}H_{82}Cl_2N_9O_{25}$ [M+H]⁺: Calc'd = 1530.479; found =1530.476.

VIf. G_4 -methyladipoyl-vancomycin derivative (15): Analog 15 was synthesized using the general procedure 2 and isolated as a white solid. RP-HPLC retention time (Method 3): 10.1 min; LC-MS (ESI⁺) for $C_{73}H_{86}Cl_2N_9O_{27}$ [M+H]⁺: Calc'd = 1590.500; found = 1590.529.

VII. Synthesis of peptide catalysts: Previously reported peptide catalysts were synthesized using either an Fmoc-based solid phase peptide synthetic strategy using commercially available Wang resin or 2-chlorotrityl resins, or a Boc-based solution phase peptide synthetic strategy. Please see original reports for details.²

Synthesis of catalyst C-1 using solution phase peptide synthesis:

Boc-Pmh-Asn(Trt)-His(Bn)-^D**Ala-**^D**Ala-OMe (C-1):** white solid, 400 mg, 76%. ¹**H NMR:** (500 MHz, Chloroform-*d*) δ 8.10 (d, J = 6.7 Hz, 1H), 7.74 (d, J = 6.5 Hz, 1H), 7.39 – 7.07 (m, 22 H), 6.76 (s, 1H), 6.62 (d, J = 1.3 Hz, 1H), 5.26 (d, J = 8.1 Hz, 1H), 4.93 (s, 2H), 4.59 (m, 1H), 4.53 – 4.44 (m, 2H), 4.35 (m, 1H), 3.67 (s, 3H), 3.66 (m, 1H), 3.51 (s, 3H), 3.09 (dd, J = 15.4, 5.6 Hz, 1H), 3.04 – 2.90 (m, 2H), 2.93 – 2.82 (m, 4H), 1.46 – 1.30 (m, 2H), 1.34 (s, 9H), 1.29 (d, J = 7.3 Hz, 3H), 1.15 (d, J = 7.2 Hz, 3H). ¹³**C NMR:** (126 MHz, Chloroform-*d*) δ 171.87, 170.99, 170.41, 169.70, 155.40, 144.26, 138.45, 137.87, 136.97, 129.03, 128.72, 128.36, 128.28, 128.00, 127.96, 127.49, 127.18, 117.60, 80.48, 70.93, 54.42, 53.82, 52.30, 50.88, 50.81, 49.42, 47.81, 38.05, 31.43, 28.97, 28.26, 26.91, 17.95, 16.78. **LC-MS:** (ESI) calculated for C₅₅H₆₅N₁₀O₉ [M+H]⁺ 1009.40, observed 1009.46.

Synthesis of catalyst C-9 using solution phase peptide synthesis:^{2c}

Catalyst C-9 was synthesized using reported literature procedure.^{2c} Cbz-Lys(Cbz)-DAla-DPmh-OMe (C-9a): white solid, 139 mg, 87%. ¹H NMR: (500 MHz, Chloroform-*d*) δ 7.32 – 7.28 (m, 10H), 6.95 (d, *J* = 7.9 Hz, 1H), 6.68 (s, 1H), 6.28 (d, *J* = 8.0 Hz, 1H), 5.15 (s, 1H), 5.09 (s, 2H), 5.06 (s, 2H), 4.76 (m, 1H), 4.47 (m, 1H), 4.15 (dd, *J* = 7.0, 7.0 Hz, 1H), 3.74 (s, 3H), 3.49 (s, 3H), 3.17 – 3.06 (m, 3H), 2.93 (dd, *J* = 15.6, 8.9 Hz, 1H), 1.97 – 1.86 (m, 4H), 1.51 (m, 2H), 1.38 (m, 2H), 1.25 (d, *J* = 6.8 Hz, 3H).¹³C NMR: (126 MHz, Chloroform-*d*) δ 172.01, 171.94, 171.29, 156.85, 156.67, 138.46, 136.68, 136.32, 128.58, 128.52, 128.42, 128.23, 128.11, 128.07, 126.53, 67.10, 66.63, 54.81, 52.73, 50.92, 48.70, 40.45, 31.35, 29.36, 26.68, 22.59, 17.30. LC-MS: (ESI) calculated for C₃₃H₄₃N₆O₈ [M+H]⁺ 651.31, observed 651.34.

VIII. Evaluation of acyl-migration

Protected G₄-decanoyl vancomycin derivative (**4b**)

VIIIa: Treatment of 4b under reaction condition:

In a flame-dried vial containing a stir bar, compound **4b** (5.4 mg, 2.79 μ mol, 1 equiv) was dissolved in THF (100 μ L), and then CH₂Cl₂ (300 μ L) was added to the vial. To the solution, PEMP (1.0 μ L, 5.58 μ mol, 2 equiv) was added and reaction was monitored using RP-HPLC (Method 3). Compound **4b** was stable at t = 5 h; however after 20 h, **4b** is converted to **4a** (1:1 mixture, see HPLC traces below). The results indicate that acyl migration occurs from G₄-position to G₆-position only under strong basic conditions with prolonged reaction time.

HPLC Trace of 4b in the presence of PEMP (2 equiv) after 5 h: RP-HPLC Method 3, $\lambda = 220$ nm, t_R (4b) = 38.1 min.

HPLC Trace of 4b in the presence of PEMP (2 equiv) after 20 h: RP-HPLC Method 3, $\lambda = 220$ nm, t_R (4b) = 38.1 min t_R (4a) = 35.7 min.

In a flame-dried glass vial containing a stir bar, compound **4b** (4.5 mg, 2.33 μ mol, 1 equiv) was dissolved in THF (100 μ L), and then CH₂Cl₂ (300 μ L) was added to the vial. To the solution, PEMP (0.2 μ L, 1.16 μ mol, 0.5 equiv) was added and reaction was monitored using RP-HPLC (Method 3). Compound **4b** was stable up to 23 h (see HPLC traces below). The observations suggest that under mild basic conditions protected G₄-decanoyl-vancomycin derivative does not undergo acyl migration.

HPLC Trace of 4b in the presence of PEMP (0.5 equiv) after 5 h: RP-HPLC Method 3, $\lambda = 220$ nm, t_R (4b) = 38.2 min.

HPLC Trace of 4b in the presence of PEMP (0.5 equiv) after 23 h: RP-HPLC Method 3, $\lambda = 220 \text{ nm}$, t_R (4b) = 38.2 min.

VIIIb: Treatment of 4a under reaction condition:

In a flame-dried glass vial containing a stir bar, compound **4a** (4.5 mg, 2.33 μ mol, 1 equiv) was dissolved in THF (100 μ L) and then CH₂Cl₂ (300 μ L) was added to the vial. To the solution, PEMP (0.85 μ L, 4.66 μ mol, 2 equiv) was added and reaction was monitored using RP-HPLC (Method 3). Compound **4a** was stable up to 20 h (see RP-HPLC traces below). The results indicate that there is no acyl-migration from G₆-position to G₄-position occurring under basic conditions. This supports our hypothesis that the formation of G₄-acyl product is exclusively assisted by the catalyst, and not due to an internal acyl migration.

IX. Competition studies using Boc-Leu-^DAla-^DAla-OH, a tripeptide ligand for vancomyin

HPLC Trace of reaction with C-8 and ligand: RP-HPLC Method 3, $\lambda = 220$ nm, t_R of protected Z₆-decanoyl-vancomycin (4c) = 39.2 min.

HPLC Trace of reaction with C-9 and ligand: RP-HPLC Method 3, $\lambda = 220$ nm, t_R (**4a**) = 35.6 min, t_R (**4b**) = 37.6 min.

X. Antimicrobial evaluation of acyl-vancomycin derivatives & Minimum inhibitory concentration (MIC) data:

MSSA = methicillin-susceptible *S. aureus*; **MRSA** = methicillin-resistant *S. aureus*; **VSE** = vancomycin- susceptible enterococci (*E. faecalis*); **VRE** (**VanB**) = vancomycin-resistant enterococci (*E. faecalis*, teicoplanin susceptible); **VRE** (**VanA**) = vancomycin-resistant enterococcus (*E. faecalis*, teicoplanin resistant). **ATCC #:** American Type Culture Collection isolate. **MMX #:** Micromyx, LLC isolate. Minimum inhibitory concentrations (MICs) were determined by Micromyx, LLC (Kalamazoo, MI) in accordance with CLSI guidelines.

Compound	S. aureus	S. aureus	E. faecalis	E. faecalis	E. faecalis
	(MSSA)	(MRSA)	(Van S)	(Van B)	(Van A)
	ATCC	ATCC	ATCC	ATCC	MMX
	29213	43300	29212	51299	486 ^a
9a	0.25	0.25	0.5	1	16
9b	0.12	0.12	0.25	0.25	16
9c	0.25	0.5	0.25	0.5	16
10	4	4	8	32	>64
11	2	4	4	32	>32
12	2	2	4	16	>64
13	0.5	0.5	1	8	>64
14	4	4	8	32	>32
15	4	4	8	64	>64
Vancomycin	1	1	2	16	>64 ^b
Teicoplanin	1	0.5	0.25	0.25	>64 ^b
Linezolid	4	4	2	2	2

^aMMX: Micromyx isolate number. ^bVancomycin exhibits an MIC of 512 μ g/mL and teicoplanin A₂-2 exhibits an MIC of 128 μ g/mL against Van A phenotype VRE strain, based on a literature report.³

XI. NMR Spectra

NMR spectra of catalyst Cbz-Lys(Cbz)-^DAla-^DPmh-OMe:

NMR spectra of catalyst Boc-Pmh-Asn(Trt)-His(Bn)-^DAla-^DAla-OMe:

² Fowler, B. S.; Laemmerhold, K. M.; Miller, S. J. Catalytic Site-Selective Thiocarbonylations and Deoxygenations of Vancomycin Reveal Hydroxyl-Dependent Conformational Effects. *J. Am. Chem. Soc.* **2012**, *134*, 9755.; Fowler, B. S.; Mikochik, P. J.; Miller, S. J. Peptide-Catalyzed Kinetic Resolution of Formamides and Thioformamides as an Entry to Nonracemic Amines. *J. Am. Chem. Soc.* **2010**, *132*, 2870.; Sculimbrene, B. R.; Morgan, A. J.; Miller, S. J. Enantiodivergence in small-molecule catalysis of asymmetric phosphorylation: Concise total syntheses of the enantiomeric D-myo-inositol-1-phosphate and D-myo-inositol-3-phosphate. *J. Am. Chem. Soc.* **2002**, *124*, 11653.; Fiori, K. W.; Puchlopek, A. L. A.; Miller, S. J. Enantioselective sulfonylation reactions mediated by a tetrapeptide catalyst. *Nat. Chem.* **2009**, *1*, 630.

³ Kerns, R.; Dong, S. D.; Fukuzawa, S.; Carbeck, J.; Kohler, J.; Silver, L.; Kahne, D. The role of hydrophobic substituents in the biological activity of glycopeptide antibiotics. *J. Am. Chem. Soc.* **2000**, *122*, 12608.

¹ (a) Thompson, C.; Ge, M.; Kahne, D. Synthesis of vancomycin from the aglycon. *J. Am. Chem. Soc.* 1999, *121*, 1237.
(b) Griffith, B. R.; Krepel, C.; Fu, X.; Blanchard, S.; Ahmed, A.; Edmiston, C. E.; Thorson, J. S. Model for antibiotic optimization via neoglycosylation: Synthesis of liponeoglycopeptides active against VRE. *J. Am. Chem. Soc.* 2007, *129*, 8150.

