SUPPLEMENTARY INFORMATION

Compounds targeting disulfide bond forming enzyme DsbB of

multiple Gram-negative bacteria

Cristina Landeta_a^o, Jessica L. Blazyk_a^o, Feras Hatahet_a^o, Brian M. Meehan_a, Markus Eser_a, Alissa Myrick_b, Ludmila Bronstain_c, Shoko Minami_b, Holly Arnold_f, Na Ke_e, Eric J. Rubin_b, Barbara C. Furie_c, Bruce Furie_c, Jon Beckwith_a^{*}, Rachel Dutton_d and Dana Boyd_a

SUPPLEMENTARY RESULTS

Supplementary Figures

Supplementary Figure 1. Screening-plate example. A 384-multiwell plate filled with agar growth media plus chemical compounds and inoculated with E. coli strain expressing β -Gal^{dbs}. A strong positive hit shows up as as a dark blue well; a weak positive hit shows up as light blue and a negative hit as white. The positive control strain is an *E. coli* dsbB mutant expressing β -Gal^{dbs} (last blue-well column).

Supplementary Figure 2. Inhibition of mouse VKOR and human PDI by compound 1. (a) Effect of compound 1 on the activity of VKOR preparations from mouse liver microsomes by quantification of the reduction of vitamin K epoxide to vitamin K. Values represent the average of two independent experiments \pm SD. (b) The effect of indicated concentrations of compounds 1 (circles) and 12 (squares) on the activity of PDI was measured by the insulin reduction assay. Values represent the average of three independent experiments \pm SD.

Supplementary Figure 3. Dixon plots of DsbB activity (a)with compound 9, values represent the average of three independent experiments and (b)with compound 12, values represent the average of two independent experiments. See description of details in Online Methods.

Supplementary Figure 4. Mechanism of inhibition by compound 12. (a) In vivo accumulation of reduced DsbB when incubating cells with compound 12. Cells were grown aerobically with different concentrations of drug and precipitated proteins were treated with Maleimide-PEG2k (ME2k, 2kDa). Samples were run on reducing SDS-PAGE and immunoblotted against anti-DsbB. Dithiothreitol (DTT) was used for reducing disulfide bonds prior to alkylation. "oxidized" refers to the position of the oxidized protein which is the same as that of the protein with all four cysteines (Cys) mutated. "Reduced" refers to bands where the positions of the protein with the four or indicated number of reduced cysteines are detected due to alkylation which adds to the molecular weight. Gel shown is a representative immunoblot of two independent experiments. (b) Visible absorbance spectra of DsbB and DsbB-DsbA_{C33A} dimer. The pink color of the DsbB-ubiquinone charge-transfer complex diminishes when compound 12 is added, indicating disruption of the interaction between Cys44 of DsbB and the cofactor ubiquinone. DsbB or DsbB-DsbA_{C33A} complex (each at 100 µM) were mixed with compound 12 (or with DMSO) at 1:2 molar ratio in 50 mM Tris buffer pH 8.0 containing 300 mM NaCl and 0.05% DDM. Samples were incubated on ice for about 4 minutes before the spectra were recorded using 1 cm quarts cuvettes. (c) Summary of deconvoluted masses obtained from ESI-MS analysis of proteins treated with compound 12 (last column). (d) MS/MS fragmentation of DsbB peptide C*IYERVAL. Sequencing ions of the modified (44-51)-peptide gave information consistent with modification of Cys44 by compound 12. The calculated monoisotopic mass of modified b5 ion (residues 44-48, CIYER) is 917.293 Da and the observed mass is 917.295 Da. The calculated mass of the unmodified peptide is 664.300 Da. Thus the mass difference is 252.995 Da which is in agreement with the loss of a chloride ion from 12 upon binding to Cys44, 287.962 (mass of compound 12) - 34.969 (mass of chloride ion) =252.993 Da.

с.	Protein(s)	Theoretical calculated mass (Da)₄	DMSO CONTROL Observed mass (Da)	COMPOUND Observed mass (Da)	12 (Mw 289.54) Mass difference (Da)
	DsbB	21168.17 (4 cys, disulfide bonded)	21200.6 (+2 ох ь)	No change	-
	DsbAсзза	22111.04	21984.7 (initiation methionine cleavage)	No change	-
	DsbB-DsbAc33A Dimer	43279.21	43187.1 (initiation methionine cleavage)	43440.7	253.6
	DsbA reduced	22143.16	22012.6 (initiation methionine cleavage)	No change	-
	a Masses are +/- 2 Da b Ox stands for addition	on of 16 Da oxidation.			

Supplementary Figure 5. Inhibition of *Pseudomonas aeruginosa* twitching motility by compound 12. Motility of *P. aeruginosa* on a hard and thin-layer of M63 minimal media was tested in the absence (left) or presence (right) of compound 12. The picture shows 10 cm-petri plates and is representative of three independent experiments.

Supplementary analysis of compound 12 purity.

Purity of compound 12: 95%, assessed by HPLC-MS (Vendor and ICCB) and NMR (Vendor).

Inj.Date 2/26/2014 L P2-B-09 -5- Acq. Method C:\CHEM32\-> ->

Acq. Operator	:		Seq. Line : 6	
Acq. Instrument	:	Instrument 1	Location : Vial 6	
Injection Date	:	5/23/2013 4:53:34 PM	Inj: 1	
			Inj Volume : 2.0 μl	
Acq. Method	:	C:\CHEM32\1\DATA\GRAY GR	OUP\KLEE 2013-05-23 15-45-30\KL_6MIN.M	
Last changed	:	5/1/2013 1:16:51 PM by C	hang	
Analysis Method	:	C:\CHEM32\1\DATA\KLEE\KL	EE 2013-05-20 11-11-11\KL_6MIN.M	
Last changed	:	5/1/2013 1:16:51 PM by C	hang	
Method Info	:	KL-6min		

Instrument 1 5/24/2013 9:26:38 AM

Page 1 of 5

MS Signal: MSD1 TIC, MS File, ES-API, Pos, Scan, Frag: 70
Spectra averaged over upper half of peaks.
Noise Cutoff: 1000 counts.
Reportable Ion Abundance: > 10%.

Retention		Mol. Weight
Time (MS)	MS Area	or Ion
0.5/1	252420	1/8.95 1
		157.00 I
		101.00 I
0.749	18509582	157.00 I
		137.05 I
		101.00 I
	2000404	170 00 7
2.090	3092101	1/9.00 1
		157.00 1
		137.00 1
		101.00 I
2.681	272354	325.20 I
		324.20 I
		179.05 I
		157.00 I
		137.00 I
		101.05 I
3.001	1674163	178.95 I
		157.00 I
		137.00 I
		101.00 I
3,426	262883	179.00 T
51120	202005	157.00 T
		137 00 T
		101 00 T
		101.00 1
3.688	59491	386.95 I
		179.00 I
		157.00 I
		137.00 I
		101.00 I
E 050	7634007	157 00 7
5.052	1034087	137.00 1
		137.00 1
		130.20 1
		101.00 1
5.354	3175239	598.75 I
		418.95 I
		416.95 I
		397.00 I
		395.00 I
		314.95 I
		312.90 I

Instrument 1 5/24/2013 9:26:38 AM

Page 2 of 5

		310.90	Ι
		293.00	I
		291.95	Ι
		290.90	Ι
		290.00	I
		288.90	Ι
		157.00	Ι
		137.10	I
		101.05	Ι
5.718	222423	159.10	I
		157.00	Ι
		137.00	Ι
		101.00	I
5.834	282075	385.20	Ι
		364.20	Ι
		363.20	Ι
		159.05	Ι
		157.05	Ι
		137.00	Ι
		101.00	Ι
6.056	35750	157.00	I
		101.00	Ι
6.239	27223	157.00	I
		101.10	Ι

Instrument 1 5/24/2013 9:26:38 AM

Page 3 of 5

Page 4 of 5

*** End of Report ***

Supplementary analysis of proteins purity.

The purity of the enzymes used in this study is over 95% for the three of them and was assessed by SDS-PAGE (12% acrylamide gels and Coomassie Briliant Blue staining). A representative image is shown below. The sequences of all of them are also indicated.

DsbB sequence (2 non-catalytic cysteines mutated) MLRFLNQASQGRGAWLLMAFTALALELTALWFQHVMLLKPCVLCIYERVALFG VLGAALIGAIAPKTPLRYVAMVIWLYSAFRGVQLTYEHTMLQLYPSPFATCDFMV RFPEWLPLDKWVPQVFVASGDCAERQWDFLGLEMPQWLLGIFIAYLIVAVLVVI SQPFKAKKRDLFGRRSHHHHHH DsbA sequence MGHHHHHAQYEDGKQYTTLEKPVAGAPQVLEFFSFFCPHCYQFEEVLHISDN VKKKLPEGVKMTKYHVNFMGGDLGKDLTQAWAVAMALGVEDKVTVPLFEGVQ KTQTIRSASDIRDVFINAGIKGEEYDAAWNSFVVKSLVAQQEKAAADVQLRGVP AMFVNGKYQLNPQGMDTSNMDVFVQQYADTVKYLSEKK DsbA_{C33A} sequence MGHHHHHAQYEDGKQYTTLEKPVAGAPQVLEFFSFFCPHAYQFEEVLHISDN VKKKLPEGVKMTKYHVNFMGGDLGKDLTQAWAVAMALGVEDKVTVPLFEGVQ

KTQTIRSASDIRDVFINAGIKGEEYDAAWNSFVVKSLVAQQEKAAADVQLRGVP AMFVNGKYQLNPQGMDTSNMDVFVQQYADTVKYLSEKK

Original and complete pictures of western blots (taken with ChemiDoc of Image Lab 5.2, BIORAD) used to make Figure 2b.

TOP: cells treated with compound 9

BOTTOM: cells treated with compound 12

Supplementary Tables Supplementary Table 1. *M. tuberculosis* growth inhibition by compounds found as *Mtb*VKOR and *Ec*DsbB candidate inhibitors in the HTS.

ID	Structure	Mycobacteriu	<i>m tuberculosis</i> g	rowth (MIC in
NO.		μM) in three different media*		nedia*
<i>Mtb</i> VK	OR candidate inhibitors	7H9	7H9+OADC	Sauton's
1		128	510	1000
2		1100	>1100	>1100
3	CI N NH2 CI NH2	>980	>980	>980
4		62	120	120
<i>Ec</i> Dsb	B candidate inhibitors			
5		470	>940	940
6		900	>900	900
7		500	1000	1000

8	450	910	910
9	250	490	490
10	>1000	>1000	>1000
11	57	110	110

* Minimal inhibitory concentrations are reported from two independent experiments with three replicas each. The MIC was exactly the same in the two independent experiments, except for compound 1 in Sauton's media that was 2 fold different between the two experiments so the highest MIC was reported.

ID No.	Structure	<i>In vitr</i> o IC50 (μM)*		
EcDsbB inhibitors				
5		9.12 to 15.99		
6		6.69 to 10.29		
7		5.62 to 7.911		
8		7.16 to 9.71		
10		4.87 to 6.12		
11		5.01 to 7.68		

Supplementary Table 2. IC50s of candidate inhibitors determined on purified *Ec*DsbB.

*Results are the 95% confidence intervals of three independent experiments, with exception of compound 11 obtained from two independent experiments.

Strain	Genotype	Reference
Escherichia	coli strains	
HK295	MC1000 ∆ <i>ara</i> 714 <i>leu</i> ⁺	45
HK320	HK295 ∆dsbB	45
HK314	HK295	H. Kadokura
HK325	HK295 ∆dsbB λ <i>att∷malF-lacZ</i> 102 (Km ^r)	H. Kadokura
MER672	HK295 λ <i>att::malF-lacZ</i> 102 (Km ^r) pTrc99a (Amp ^r) <i>recA::</i> Cm	This study
DHB7657	HK295 ∆dsbB	This study
DHB7658	HK295 ∆dsbB λ:: <i>malF-lacZ</i> 102 (Km ^r) pTrc99a (Amp ^r) <i>recA::</i> Cm ^r	This study
DHB7935	HK295 ∆dsbB λ <i>att∷malF-lacZ</i> 102 (Km ^r) φ80::pDSW206dsbB (Amp ^r)	This study
DHB7936	HK295 ∆dsbB λ <i>att∷malF-lacZ</i> 102 (Km ^r) φ80::pDSW206 (Amp ^r)	This study
CL315	HK295 λ <i>att::malF-lacZ</i> 102 (Km ^r) ΔdsbB::Trc204promoter-Pa <i>dsbB</i> (Amp ^r)	This study
CL320	HK295 λ <i>att::malF-lacZ</i> 102 (Km ^r) AdsbB::Trc204promoter-Kp <i>dsbB</i> (Amp ^r)	This study
CL377	HK295 ΔdsbB λ <i>att::malF-lacZ</i> 102 (Km ^r) pDSW204Pa <i>dsbH</i> (Amp ^r)	This study
CL378	HK295 ∆dsbB λ <i>att∷malF-lacZ</i> 102 (Km ^r) pDSW204Ab <i>dsbB</i> (Amp ^r)	This study
CL369	HK295 ∆dsbB λ <i>att∷malF-lacZ</i> 102 (Km ^r) pDSW204St <i>dsbB</i> (Amp ^r)	This study
CL368	HK295 ∆dsbB λ <i>att∷malF-lacZ</i> 102 (Km ^r) pDSW204St <i>dsbI</i> (Amp ^r)	This study
CL373	HK295 ∆dsbB λ <i>att∷malF-lacZ</i> 102 (Km ^r) pDSW204Vc <i>dsbB</i> (Amp ^r)	This study
CL370	HK295 ∆dsbB λ <i>att∷malF-lacZ</i> 102 (Km ^r) pDSW204Ft <i>dsbB</i> (Amp ^r)	This study
CL371	HK295 ∆dsbB λ <i>att∷malF-lacZ</i> 102 (Km ^r) pDSW204Hi <i>dsbB</i> (Amp ^r)	This study
CL379	HK295 ∆dsbB λ <i>att∷malF-lacZ</i> 102 (Km ^r) pDSW204	This study
CL396	HK320 pCL68 (Sp ^r)	This study
CL397	HK320 pCL75 (Sp ^r)	This study

Supplementary Table 3. Strains used in this work.

CL398 CL399	HK320 pCL73 (Sp') HK320 pCL74 (Sp ^r)	This study This study
<i>Pseudomon</i> PA14	as aeruginosa strain Pseudomonas aeruginosa UCBPP-PA14	S. Lory Lab
		collection
Mycobacteri	<i>ium smegmatis</i> strains	
RD263	<i>M. smegmatis</i> D <i>vkor</i> transformed with pRD43 (pTetG- <i>E. coli dsbB</i>)	12
RD265	<i>M. smegmatis</i> D <i>vkor</i> transformed with pRD42 (pTetG- <i>Mtb vkor</i>)	12
Plasmids		
pTrc99a	Expression vector, Amp ^r	46
pDSW206	Promoter down mutation in -10 and -35 of pTrc99A	42
pDSW204	Promoter down mutation in -35 of pTrc99A	42
pHK517	pAM238 with <i>dsbB</i> -his ₆ -c-myc (DsbB _{C9A,C49V}), Sp ^r	45
pKD46	Encodes lambda Red genes under arabinose promoter, Amp ^r	47
pNG102	malF-lacZ102 fusion, Kan ^r	14
pRD33	pTrc99a-his <i>Mtb</i> VKOR	12
pDHB7933	, pDSW206- <i>dsbB</i> -his₀-c-myc	This study
pCL58	pKD46 Ampicillin cassette replaced by Chloramphenicol cassette, Cm ^r	This study
pCL25	pDSW204Pa <i>dsbB</i> (<i>Pseudomonas aeruginosa</i> PA14 <i>dsbB</i> gene, PA14_07000)	This study
pCL26	pDSW204PadsbH (<i>Pseudomonas aeruginosa</i> PA14 <i>dsbH</i> gene, PA14 69400)	This study
pCL24	pDSW204Kp <i>dsbB (Klebsiella pneumoniae</i> W63917 <i>dsbB</i> gene)	This study
pCL27	pDSW204Ab <i>dsbB</i> (<i>Acinetobacter baumannii</i> A118 <i>dsbB</i> gene)	This study
pCL62	pDSW204St <i>dsbB</i> (<i>Salmonella typhimurium</i> LT2 <i>dsbB</i> gene, STM1807)	This study
pCL61	pDSW204St <i>dsbI (Salmonella typhimurium</i> LT2 <i>dsbI</i> gene, STM3194)	This study
pCL66	pDSW204Vc <i>dsbB</i> (<i>Vibrio cholerae</i> N16961 <i>dsbB</i> gene, VC1902)	This study
pCL63	pDSW204Ft <i>dsbB (Francisella tularensis</i> 1670 <i>dsbB</i> gene, FTL1670)	This study

pCL64	pDSW204Hi <i>dsbB (Haemophilus influenzae</i> RdKW20 <i>dsbB</i> gene, HI0428)	This study
pCL68	pHK517 <i>dsbB</i> -C41S	This study
pCL75	pHK517 <i>dsbB</i> -C41S,C44S	This study
pCL73	pHK517	This study
pCL74	pHK517	This study

Name	Gene	Sequence	Restriction sites
CI16	KpdsbB-1	gcgttcatgatgttgcaatatttaaaccagtgctca	BspHI
CI17	KpdsbB-2	cg <u>gagctc</u> ttaacgaccaaacagatcgcgtt	Sacl
CI3	PadsbB-1	tcgaagctttcaggcggtgcggcggcc	HindIII
CI10	PadsbB-2	gctg <u>tcatga</u> gcagcgctctcctcaa	BspHI
CL5	PadsbH-1	cag <u>aagctt</u> tcaggcacgtcggaggaac	HindIII
CI9	PadsbH-2	ct <u>ccatgg</u> tgcccctggccagcccc	Ncol
CI19	AbdsbB-1	ct <u>ccatgg</u> tgcgattaagttaccgtttggt	Ncol
CI20	AbdsbB-2	cggagctcttactttttagccgtcttaa	Sacl
Cl92	StdsbB-1	gact <u>ccatgg</u> gccattatttcatttcccgctagtggcg	Ncol
CI93	StdsbB-2	cgtcggatccgatgtatttaatatacaccttttaatcact ggc	BamHI
CI90	Stdsbl-1	gact <u>ccatggg</u> ctcaacggcaagtaccttatctatac ca	Ncol
CI91	Stdsbl-2	cgtcggatcctcgttcagtttcaaagaacgacgaata	BamHI
CI94	VcdsbB-1	gact <u>ccatggg</u> catttcaattgaaactgaaactaatcc a	Ncol
CI95	VcdsbB-2	cgtc <u>ggatcc</u> taaacagcagaaacaacaaaagta a	BamHI
CI100	FtdsbB-1	gact <u>ccatgg</u> gcaaactcagaaacacgctaaagca gc	Ncol
CI101	FtdsbB-2	cgtcggatccagtttcttttgcttgagtttatttttgtttaa	BamHI
CI96	HidsbB-1	gact <u>ccatgg</u> gcctggctattgaatttattttaccag	Ncol
CI97	HidsbB-2	cgtcggatcctagcaaaatcagttaccgttgaata	BamHI
Cl65	Ins ∆dsbB-1	attccggggatccgtcgacctgcagttcgaagttccta ttctcatctaaagtatatatgagtaaacttggt	-
CI66	lns ∆dsbB-2	ttagtgtaggctggagctgcttcgaagttcctatactttc taccgggagctgcatgtgtcagaggttttc	-

Supplementary Table 4. Primers used in this work.

Category	Parameter	Description
Assay	Type of assay Target	Organism cell-based assay. <i>Escherichia coli</i> DsbB enzyme (UniProtKB ID: P0A6M2). <i>Mycobacterium tuberculosis</i> VKOB enzyme
	Primary measurement	Detection of β -galactosidase activity using X-Gal.
	Key reagents	384-well tissue culture-treated plates (BD Falcon #353961).
		M63 medium containing 0.2% glucose and 0.9% agar, supplemented with kanamycin (40 µg/mL), ampicillin (50 µg/mL), IPTG (1 mM), and X-Gal (120 µg/mL).Breathable sealing film (Axygen BF- 400).
	Assay protocol Additional comments	See Agar Screening in Online Methods. The medium was maintained at 57 °C by a water bath throughout the pouring process. The Wellmate tubing was pre-warmed by washing with sterile hot water immediately prior to loading the agar medium. The plates were incubated in humidified boxes (i.e, plastic boxes with small containers of water and paper towels) and were not stacked.
Library	Library size	Complete ICCB-library: 663,363 small-molecule compounds. Screened ICCB-library: 50,374 compounds. Screened NIAID-library: 1,113 compounds.
	Library composition	The ICCB-library used in the screening contained mostly commercial libraries and small libraries of known bioactive and natural product extracts. See Online Methods
	Source	Institute for Chemistry and Chemical Biology (ICCB) Longwood. Harvard Medical School. National Institute of Allergy and Infectious Diseases (NIAID).
Screen	Additional comments Format	http://iccb.med.harvard.edu/libraries/compound- libraries/ 384-well plate format.

Supplementary Table 5. Small molecule screening data

Post-HTS analysis	Concentration(s) tested	Concentration of library: 5 mg/mL (\approx 10-20 mM) Amount of compound used: 0.5 µg (0.1 µL) Estimated final concentration of compound 8.3 ng/ µL (\approx 16.7 µM) Final concentration of DMSO: 0.16%
	Plate controls	Positive control: <i>Escherichia coli</i> DsbB mutant. Negative control: DMSO.
	Reagent/ compound dispensing system	EPSON compound transfer robot.
	Detection instrument and software	The readout of the assay is a blue-color well; the detection is done by eye.
	Assay	NA
	Correction	NA
	Normalization Additional comments	NA
	Hit criteria	Hits were categorized as strong (dark blue), medium (medium blue), weak (light blue) and very weak (very light blue).
	Hit rate	0.29% for VKOR inhibitors and 0.021% for DsbB inhibitors.
	Additional assav(s)	Compounds were re-tested in a cherry pick assay.
	Confirmation of hit purity and structure	Compounds were purchased from ChemBridge (San Diego, CA); Asinex Ltd. (Moscow,Russia); Sequoia Research Products Ltd. (Pangbourne, UK); Key Organics Ltd. (Camelford, UK); AK Scientific (Union City, CA); Ambinter (Orleans, France); Ryan Scientific (Mt. Pleasant, SC); Enamine (Ukraine). All purchased compounds were analyzed by mass spectrometry to verify the molecular weights and to estimate purity (ICCB-Longwood). See compound resupply section in Online Methods.
	Additional comments	EcDsbB data.csv
		MtbVKOR data.csv