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Supplementary Figure 1 | Spatial results (as for Fig. 1a) for multiple soil moisture (rows) and precip-
itation (columns) datasets. Quantile of δe(Y s) where Y s = ∆X ′ = X ′Lmax −X ′Lmin and X ′ are anomalies of (a)
surface soil moisture (Θtop) merged from AMSR-E and ASCAT (results from ref. 1), (b-j) total soil moisture stress (S)
from GLEAM with different input precipitation data, (k-m) surface soil moisture (Θtop) from AMSR-E. Horizontal
black lines (b-m) indicate the latitudes at which different months are included in the analysis (see Methods), while
all months are included for all latitudes in (a). Boxes with at least 25 events are displayed and grey shading indicates
non-significant relationships. Note that for panel (a) version 0 of CMORPH was used.
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CMORPH − GLEAMT, S ′sd TRMM − GLEAMT, S ′se PERSIANN − GLEAMT, S ′sf
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Supplementary Figure 2 | Spatial results (as for Fig. 1a and Supplementary Fig. 1) for multiple pre-
cipitation datasets (columns) and for surface soil moisture stress from GLEAM derived with multiple
precipitation datasets (rows). Quantile of δe(Y s) where Y s = ∆S′s = X ′Lmax − X ′Lmin and X ′ are anomalies of
surface soil moisture stress from GLEAM (X = Ss). Horizontal black lines indicate the latitudes at which different
months are included in the analysis (see Methods). Boxes with at least 25 events are displayed and grey shading
indicates non-significant relationships.
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0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

TRMM − GLEAMC, S ′b PERSIANN − GLEAMC, S ′c

CMORPH − GLEAMT, S ′d TRMM − GLEAMT, S ′e PERSIANN − GLEAMT, S ′f

CMORPH − GLEAMP, S ′g TRMM − GLEAMP, S ′h PERSIANN − GLEAMP, S ′i

CMORPH − AMSRE−E, Θ′topj TRMM − AMSRE−E, Θ′topk PERSIANN − AMSRE−E, Θ′topl

Supplementary Figure 3 | Temporal results (as for Fig. 1b) for multiple soil moisture (rows) and
precipitation (columns) datasets. Quantile of δe(Y t) where Y t = X ′Lmax are anomalies, at Lmax, of (a-i) total
soil moisture stress (S′) from GLEAM with different input precipitation data, (j-l) surface soil moisture (Θ′top) from
AMSR-E. Horizontal black lines indicate the latitudes at which different months are included in the analysis (see
Methods). Boxes with at least 25 events are displayed and grey shading indicates non-significant relationships.
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CMORPH − GLEAMT, S ′sd TRMM − GLEAMT, S ′se PERSIANN − GLEAMT, S ′sf

CMORPH − GLEAMP, S ′sg TRMM − GLEAMP, S ′sh PERSIANN − GLEAMP, S ′si

Supplementary Figure 4 | Temporal results (as for Fig. 1b and Supplementary Fig. 3) for multiple
precipitation datasets (columns) and for surface soil moisture stress from GLEAM derived with multiple
precipitation datasets (rows). Quantile of δe(Y t) where Y t = X ′Lmax are anomalies, at Lmax, of surface soil
moisture stress (X ′ = S′s) from GLEAM. Horizontal black lines indicate the latitudes at which different months
are included in the analysis (see Methods). Boxes with at least 25 events are displayed and grey shading indicates
non-significant relationships.
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CMORPH − GLEAMT, S ′d TRMM − GLEAMT, S ′e PERSIANN − GLEAMT, S ′f

CMORPH − GLEAMP, S ′g TRMM − GLEAMP, S ′h PERSIANN − GLEAMP, S ′i

CMORPH − AMSRE−E, Θ′topj TRMM − AMSRE−E, Θ′topk PERSIANN − AMSRE−E, Θ′topl

Supplementary Figure 5 | Temporal results using soil moisture from Levt (5× 5 grid cells surrounding
Lmax) instead of Lmax (Supplementary Fig. 3), for multiple soil moisture (rows) and precipitation
(columns) datasets. Quantile of δe(X ′Levt) where X ′Levt are anomalies, at Levt, of (a-i) total soil moisture stress
(S′) from GLEAM with different input precipitation data, (j-l) surface soil moisture (Θtop) from AMSR-E. Horizontal
black lines indicate the latitudes at which different months are included in the analysis (see Methods). Boxes with at
least 25 events are displayed and grey shading indicates non-significant relationships.
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TRMM − GLEAMC, S ′b PERSIANN − GLEAMC, S ′c

CMORPH − GLEAMT, S ′d TRMM − GLEAMT, S ′e PERSIANN − GLEAMT, S ′f

CMORPH − GLEAMP, S ′g TRMM − GLEAMP, S ′h PERSIANN − GLEAMP, S ′i

CMORPH − AMSRE−E, Θ′topj TRMM − AMSRE−E, Θ′topk PERSIANN − AMSRE−E, Θ′topl

Supplementary Figure 6 | Temporal results using soil moisture from Lmin (location of rainfall minimum
within Levt) instead of Lmax, for multiple soil moisture (rows) and precipitation (columns) datasets.
Quantile of δe(X ′Lmin) where X ′Lmin are anomalies, at Lmin, of (a-i) total soil moisture stress (S′) from GLEAM with
different input precipitation data, (j-l) surface soil moisture (Θ′top) from AMSR-E. Horizontal black lines indicate the
latitudes at which different months are included in the analysis (see Methods). Boxes with at least 25 events are
displayed and grey shading indicates non-significant relationships.
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CMORPH − GLEAMT, S ′d TRMM − GLEAMT, S ′e PERSIANN − GLEAMT, S ′f
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CMORPH − AMSRE−E, Θ′topj TRMM − AMSRE−E, Θ′topk PERSIANN − AMSRE−E, Θ′topl

Supplementary Figure 7 | Temporal results using soil moisture heterogeneity (as for Fig. 1c), for
multiple soil moisture (rows) and precipitation (columns) datasets. Quantile of δe(Y h) where Y h = σsp

X′ is
the spatial standard deviation, using the 25 grid cells within Levt, of X ′. X ′ are anomalies of (a-i) total soil moisture
stress (S′) from GLEAM with different input precipitation data, (j-l) surface soil moisture (Θ′top) from AMSR-E.
Horizontal black lines indicate the latitudes at which different months are included in the analysis (see Methods).
Boxes with at least 25 events are displayed and grey shading indicates non-significant relationships.
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Supplementary Figure 8 | Temporal results using soil moisture heterogeneity (as for Fig. 1c and Sup-
plementary Fig. 7) for multiple precipitation datasets (columns) and for surface soil moisture stress
from GLEAM derived with multiple precipitation datasets (rows). Quantile of δe(Y h) where Y h = σsp

X′ is
the spatial standard deviation, using the 25 grid cells within Levt, of X ′. X ′ are anomalies of surface soil moisture
stress (X ′ = S′s) from GLEAM. Horizontal black lines indicate the latitudes at which different months are included
in the analysis (see Methods). Boxes with at least 25 events are displayed and grey shading indicates non-significant
relationships.
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Supplementary Figure 9 | Properties of S from GLEAM. (a) Mean S and (b) standard deviation of S′ from
GLEAMC. GLEAMT and GLEAMP display similar patterns.
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Supplementary Figure 10 | Example events in West Africa, on June 28, 2006. Background color indicates
total afternoon precipitation in mm (12:00−24:00), black symbols indicate grid cells excluded because of (crosses)
morning precipitation (> 1 mm), (triangle) topography gradients and (circles) water bodies. Events included in
(excluded from) the computations are denoted by black (grey) squares. The center of each event (Lmax) is denoted
with a letter; grey dots indicate Lmin. When two or more event boxes overlap, only the event with largest precipitation
at Lmax is retained. Thus, a number of maxima are not interpreted as events. A total of six events are detected, four
of which are included in the computation. Events “A” and “B” are not included as they include topography features
or water body, respectively.
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Supplementary Figure 11 | Seasonality in the coupling metrics for CMORPH precipitation and total
soil moisture stress (S′) from GLEAMC. (a,d,g,j) spatial metric δe(Y s) (as in Fig. 1a), (b,e,h,k) temporal
metric at Lmax δe(Y t) (as in Fig. 1b), (c,f,i,l) heterogeneity metric δe(Y h) (as in Fig. 1c). A reduced threshold of 15
events is adopted.
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Supplementary Figure 12 | For each 5◦ box, number of events included in the analysis (i.e., after re-
moval of events with morning precipitation, topography or water bodies) for the CMORPH−GLEAMC

combination. Horizontal black lines indicate the latitudes at which different months are included in the analysis (see
Methods). White boxes indicate no event, mostly related to strong topography features. A similar number of events
is detected in other datasets.
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Supplementary Figure 13 | Sensitivity of the metrics to the time definition of afternoon rainfall, for
CMORPH−GLEAMC. (a,b,c) 12:00−24:00, (d,e,f) 12:00−21:00. (a,d) Spatial metric from Fig. 1a, (b,e) tem-
poral metric from Fig. 1b, (c,f) heterogeneity sensitivity metric from Fig. 1c.
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Supplementary Figure 14 | Scaled, simplified triggering feedback strength (sTFS) for
CMORPH−GLEAMC. (a) sTFS(S′), (b) p-value (significance). The definition of sTFS is provided in the Sup-
plementary Discussion. Horizontal black lines indicate the latitudes at which different months are included in the
analysis (see Methods).
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Supplementary Figure 15 | Scaled, simplified amplification feedback strength (sAFS) for
CMORPH−GLEAMC. (a) sAFS(S′), (b) p-value (significance). The definition of sAFS is provided in the Sup-
plementary Discussion. Horizontal black lines indicate the latitudes at which different months are included in the
analysis (see Methods).
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Variables Dataset Temporal resolution Spatial
resolution

Reference

Surface soil moisture NASA-LPRM (AMSR-E) night-time overpass 0.25◦ Ref. 2

Vegetation optical depth NASA-LPRM (AMSR-E) daily 0.25◦ Ref. 2

Precipitation CMORPH v1.0 3 h 0.25◦ Methods and ref. 3

Precipitation PERSIANN 3 h 0.25◦ Methods and ref. 4

Precipitation TRMM 3B42 v7 3 h 0.25◦ Methods and ref. 5

Net radiation CERES SYN1deg Ed3A 3 h 1◦ Ref. 6

Air temperature ERA-Interim 3 h (incl. forecast) 0.75◦ Ref. 7

Supplementary Table 1 | Forcing datasets for GLEAM. Daily aggregates are computed locally to match the
before-noon estimate (i.e., from 09:00 on previous day to 09:00 at present day to get 09:00 S and Ss).

Variables Dataset Temporal resolution Spatial
resolution

Reference

Precipitation GPCP 1DD v1.2 daily 1◦ Ref. 8

Precipitation
(when GPCP missing)

ERA-Interim 3 h (incl. forecast) 0.75◦ Ref. 7

Net radiation ERA-Interim 3 h (incl. forecast) 0.75◦ Ref. 7

Supplementary Table 2 | Datasets used to fill GLEAM input from Supplementary Table 1. Note that
temperature data from ERA-Interim does not contain any gap.
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Supplementary Discussion

Results with alternative datasets

A total of 12 dataset combinations are used for the analysis, combining three precipitation datasets (CMORPH,
TRMM, PERSIANN) and four soil moisture datasets (GLEAM driven by our three precipitation datasets, and AMSR-
E). For GLEAM soil moisture estimates, surface soil moisture stress over the bare soil fraction (Ss) is also included (in
addition to total soil moisture stress S), since these may more directly relate to satellite soil moisture from AMSR-E.
Results for all 12 dataset combinations are presented for our three metrics (δe(Y s), δe(Y t), δe(Y h)).

Spatial metric Supplementary Fig. 1 displays the results for the spatial metric from ref. 1, δe(Y s) where Y s =
S′Lmax − S′Lmin, as well as our results with S from GLEAM (see also Fig. 1a) and with Θtop from AMSR-E, while
Supplementary Fig. 2 displays the same results for Ss from GLEAM.

The patterns are sensitive to both the soil moisture and precipitation datasets. The signal is strongest with TRMM
and weakest with PERSIANN, consistently with ref. 1. The stronger signal with TRMM is due to larger soil moisture
differences between event and non-event days. GLEAMT also leads to a stronger signal than the other two GLEAM
estimates. AMSR-E leads to a weak signal, likely because of data quality issues, while the assimilation procedure in
GLEAM filters out unrealistic AMSR-E data (see also ref. 1, who apply strict data quality filter). For GLEAM, results
with Ss (Supplementary Fig. 2) are less statistically significant than with S (Supplementary Fig. 1), emphasizing that
Ss is not always representative of the actual soil moisture stress. This might also explain part of the differences with
ref. 1 and highlights the advantage of considering the whole root zone.

Temporal metric The multi-dataset temporal results at Lmax (δe(Y t)) are displayed in Supplementary Fig. 3 for S
from GLEAM (see also Fig. 1b) and Θtop from AMSR-E, and in Supplementary Fig. 4 for Ss from GLEAM. Similarly
to the spatial metrics results, the patterns exhibit some variability as a response to the choice of dataset, but the
dominance of positive temporal relationships remains in all combinations. The various combinations also display some
agreement in the few regions with negative relationships.

Heterogeneity metric The multi-dataset results for the sensitivity of rainfall to soil moisture heterogeneity (δe(Y h))
are displayed in Supplementary Fig. 7 for S from GLEAM (see also Fig. 1c) and Θtop from AMSR-E, and in Supple-
mentary Fig. 8 for Ss from GLEAM.

All dataset combinations show a clear dominance of more heterogeneous conditions than expected for precipitation
events, although with slightly different patterns from different dataset combinations. This suggests that precipitation
events might generate following events via the spatial feedback mechanism, and thereby leading, on a large scale, to
a positive feedback, as previously proposed by ref. 9.

Temporal analysis from different locations

For temporal results, we have used soil moisture at Lmax (Fig. 1b). However, the overall soil moisture conditions
in a larger area might be more representative of processes such as moisture recycling. Therefore, we here repeat the
temporal analysis but using soil moisture averaged over Levt, the 5 × 5 grid cells (i.e., 1.25◦) surrounding Lmax (see
Methods), instead of soil moisture at Lmax. Supplementary Figure 5 displays the corresponding results for the 12
dataset combinations and can be compared to Supplementary Fig. 3. Results are roughly similar, indicating that
the overall soil moisture conditions, rather than the condition at Lmax alone, might relate to afternoon precipitation.
This supports the hypothesis of moisture recycling, although the various effects are difficult to explicitly disentangle,
in particular the role of precipitation persistence. Note that moisture recycling is expected to act on time scales of
days, not investigated here. Nonetheless, analyses using S′ from the previous day (not shown) leads to similar (though
weaker) results, supporting this mechanism.

Similarly, Supplementary Fig. 6 displays results using S′ at Lmin, the location of rainfall minimum within Levt.
Soil moisture at this location is clearly wetter for event cases than for non-event cases. This can be expected, since it
is the case for S′Lmax and since the spatial metric shows that S′Lmax tends to be smaller than S′Lmin on event days, but
it again highlights that the conditions before precipitation events are often wet.

Seasonality in spatial and temporal metrics

The seasonality in the metrics is presented in Supplementary Fig. 11 for CMORPH-GLEAMC, and highlights some
season-dependent patterns. In particular, more negative temporal relationships are found in some regions for some
seasons, typically rainy seasons with a larger number of events available compared to the seasons merged in the
remaining of our analysis.
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Properties of soil moisture data

Supplementary Figure 9 displays the mean and standard deviation of the evaporative stress (S) from GLEAM. Re-
gions with large variability correspond to transitional regions between wet and dry climates (high and low mean S,
respectively), where soil moisture is limiting but there is enough moisture supply to allow substantial variability.

Alternative temporal metric: the simplified triggering feedback strength

Our temporal metric based on precipitation event detection differs from traditional, time-series based analyses. Here,
we display such a metric, the triggering feedback strength from ref. 10, which quantifies the relationship between

before-noon EF and afternoon precipitation occurrence as TFS = σEF
∂Γ(r)
∂EF , where Γ(r) is the probability of afternoon

rainfall (r > 1 mm) and EF is before-noon (09:00−12:00) evaporative fraction (EF = λE/(H + λE) where H and λE
are surface sensible and latent heat fluxes, respectively). We replace EF by S and we use anomalies from the seasonal
cycle (S′). In addition, we scale TFS by the mean afternoon precipitation occurrence (Γ(r)) to allow for comparison
between regions with different precipitation regimes. Thus, we define a simplified triggering feedback strength,

sTFS(S′) =
σS′

Γ(r)

∂Γ(r)

∂S′
, (1)

where σS′ is the standard deviation of S′ (using 09:00−12:00 values from each day), and Γ(r) is the probability
of afternoon rainfall (r > 1 mm for the 12:00−24:00 time period). The numeric computation uses two bins, and
significance is tested by means of 1000 bootstraps samples as in ref. 11. In addition, the original computation from
ref. 10, binned on variables relating to atmospheric humidity and stability, is replaced by the simpler computation from
Eq. 1. Days with morning precipitation exceeding 1 mm in any neighbouring grid cells in a box of 1.25◦ surrounding
each grid cell are excluded from the computation. Supplementary Fig. 14 displays sTFS(S′) and its p-values relative
to the null distribution obtained from bootstrapping. Note that no topography- or water-related filter is applied.
Comparing these results with our temporal metric (e.g., Fig. 1b from the main text), it is interesting to note that the
significance (p-values) depicts similar regions of positive and negative temporal relationships.

While our methodology focuses on the impact of soil moisture on precipitation occurrence, ref. 10 also introduced
a metric quantifying the relationship between before-noon EF and afternoon precipitation amounts: The amplification
feedback strength (AFS), restricted to days with afternoon rain (> 1 mm). Supplementary Figure 15 displays sAFS, a
simplified AFS formulation similar to what sTFS is to TFS. No strong relationship is found anywhere, suggesting that
the local impact of soil moisture on rainfall amounts is negligible and consistently with the findings from ref. 10 over
North America. Nonetheless, we note that the accuracy of rainfall amounts has been shown to be low relative to the
accuracy of rainfall occurrence [12], which may prevent the exclusion of such local impacts on precipitation amounts.
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