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Supplemental Results

Endophenotype R? Correlation P-value
Sweat [CI] 0.04 0.20 0.25
P.l. 0.01 -0.08 0.64
Pseudo. 0.01 0.11 0.52
[CI] Cond. 0.06 -0.24 0.15
c/(C+B) 0.09 -0.29 0.08
FEV, %pred. 0 0.01 0.95

Table S1: Correlation of POSE score and six endophenotypes for CFTR transmembrane-
domain (TMD) variants. Sweat [CI] is the mean sweat chloride for patients with the
variant; P.I. is the percentage of patients displaying pancreatic insufficiency; Pseudo. is
the percentage of patients with Pseudomonas aeruginosa infection; [C[] Cond. is the
mean chloride conductance for cells expressing the CFTR variant; C/(C + B) estimates the
fraction of properly processed (“mature”) CFTR protein; FEV; %pred is the mean lung
function as a percent of wild type.

associated with increasing CF severity.

Increasing Sweat [Cl], P.I., and Psuedo are each
For [CI] Cond., C/(C + B), and FEV1 %pred,

decreasing values are associated with increasing CF severity.

Endophenotype R? Correlation  P-value

Sweat [CI] 0.15 (0.56) 0.38 (0.75) 2.8x103 (1.5x10%4)
P.l. 0.07 (0.41) 0.26 (0.64) 4.9x102 (2.4x103)
Pseudo. 0.04 (0.14) 0.20 (0.38) 1.3x10? (1.0x10%)
[CI'] Cond. 0.46 (0.55) -0.68 (-0.77) 3.7x10° (1.9 x 10*4)
c/(C+B) 0.13 (0.24) -0.35 (-0.49) 5.8x103 (2.7 x1072)
FEV, %pred. 0.02 (0.10) -0.14 (-0.31) 2.9x10! (1.9x10%)

Table S2: Correlation of POSE score and six endophenotypes for all CFTR variants from
this study. Values in parentheses were derived using predictions for NBD variants only,
See Table S1 for a

but where predictions resulted from training on all 59 variants.

description of each endophenotypic measurement.



Supplemental Materials and Methods

POSE implementation for this study

For this study we ran the phenotype-optimized sequence ensemble (POSE) algorithm® in
endophenotype (ePOSE) mode. POSE calculations are highly customizable, and the
parameterizations given below are defaults that can be easily changed with user-
defined arguments. The POSE algorithm is freely available for non-profit use and
includes a detailed manual with worked examples. To download the POSE algorithm
please visit: http://karchinlab.org/apps/appPose.html.
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Supplementary Figures S1 and S2: Flow chart of POSE implementation used for this
study.

POSE begins by selecting a random ensemble of 150 or fewer sequences from an initial
multiple sequence alignment (Figure S1A); see Materials and Methods, CFTR Sequences
in the main text for a description of the multiple sequence alignment (MSA) used for this
study. Next, the algorithm scores (see Score Function, below) each mutation from a
user-provided training set of mutations, where a continuous-valued endophenotypic
measurement is provided with each mutation in the training set (Figure S1B). Then,
POSE performs a linear regression of POSE scores vs. endophenotypic measurements
and computes the R? (Figures S1C and S2). This process of randomly selecting
sequences, scoring the training set of mutations, and computing R® for the linear
regression of POSE scores vs. endophenotypes is repeated for 1000 iterations (Figure
S1D). After every the 100 iterations, the top-performing 1% of sequences are appended



to the MSA (Figures S1E and F), where top-performing sequences are those belonging to
randomly selected sequence ensembles that maximized R%. Therefore, as the algorithm
progresses through many 100s of iterations, the MSA becomes enriched for sequences
that optimize the correlation between the POSE scores and endophenotypes. Once
1000 iterations are complete, the top-performing sequence ensemble that was sampled
during this iterative optimization process is saved for use of scoring new, holdout
mutations. In contrast to classic MSAs used in missense mutation function prediction,
these POSEs can contain as many as 100+ copies of a single ortholog or paralog
sequence (i.e., the influence of individual sequences on mutation discrimination is
differentially weighted).

For this work, the POSE algorithm trained using 19 of 20 CFTR mutations, and prediction
was made on the remaining mutation; this process was repeated for each mutation.
This leave-one-out cross-validation strategy was applied to each of the six
endophenotypes separately. See Materials and Methods, Endophenotypic Data in the
main text for a description of each endophenotype considered in this study.

Score Function

The POSE score function considers both biophysical molecular properties and
evolutionary distance of related proteins to a target disease protein. The score (S) for a
specific amino acid residue at a specific position in the alignment is calculated as the
sum of an amino acid conservation score (S,,), biophysical properties conservation
score (Sprop), and molecular weight conservation score (S,,,,; Equation S1). A score can
be calculated for any amino acid residue at any alignment column, regardless of
whether the amino acid appears in that column.

S = Saa+ Sprop + Smw (Equation S1)

We weight the contribution of each sequence in the alignment by an estimate of its
evolutionary distance from the target sequence. Each sequence contributes an amount
proportional to its sequence identity, relative to the target. Thus, to calculate the amino
acid conservation score (S,,) for a specific amino acid, the algorithm sums the sequence
identities (1) of all sequences in the alignment that harbor that specific amino acid
(ngq), at the position being scored (Equation S2).

1

Suq = zZ?ff 0 (Equation S2)

L=YN,q (Equation S3)



In Equation S2, L is a normalizing constant, which is the sum of sequence identities for
all N sequences in the alignment (Equation S3). Similarly, to calculate the biophysical
properties conservation score for a specific amino acid, the algorithm sums the
sequence identities of all sequences in the alignment that harbor that specific property,
at the position being scored (Equation S4; see below and Table S1); the biophysical
properties conservation score is calculated for each property that defines the amino
acid being scored (m,,,,). This score is additionally normalized by the total number of
properties defining the amino acid being scored (n,,,,). The additional normalization
constant assures that amino acids with a greater number of properties are not
artificially favored relative to amino acids with fewer properties. The molecular-weight
conservation score (S,,,,) is calculated as the probability of observing the molecular
weight of the amino acid being scored, given the probability distribution function
defined by the identity-weighted molecular weights from all other amino acids in the
column (Equation S5). The score for an amino acid substitution (Ss,;; Equation S6) is
this difference between the wild type (Sy,r) and mutant amino acids scores (Suut),
where Sy, and Sy, are each calculated from Equation 1.

-1 Mprop 1 ywMprop Equation S4
Sprop T nprop Si=1 sz=1 Qij (Eq )

Smw = Pr [mwy,|PDF (mean,,,, std,,,,)] (Equation S5), where
mw,, is the molecular weight of the amino acid being scored, and mean,,,, and std,,»

are the identity-weighted mean and standard deviation of molecular weights for the column

Ssup = Swr — Smut  (Equation S6)

Each component of a scored amino acid (Sgq, Sprop, and Sp,,,; see Equation S1) can take
on a value between 0 and 1.0, where an increasing value means increasing similarity
between the amino acid being scored and those in the corresponding column in the
alignment. Therefore, 3.0 is the maximum score any amino acid can have for Equation
S1. Thus, Equation S6 can vary from -3.0 to 3.0, where a score of -3.0 indicates the most
favorable substitution possible (i.e., mutant has a higher score than the wild-type amino
acid) and 3.0 is the most disfavored substitution possible (i.e., wild-type amino acid
scores higher than the mutant); a score of 0.0 is equivalent to wild type.

When available, 3D coordinates for the protein of interest can also be included for
scoring mutations. POSE estimates the normalized degree of burial at each residue in a



protein structure using a novel calculation. This is accomplished by calculating all
pairwise residue-residue distances, and for each residue counting the number of
neighboring residues within 10 A; distances are calculated from each residue’s center of
geometry (based on atomic coordinates). Then, a relative degree of burial is calculated
by normalizing all residues relative to the residue with the greatest number of neighbors
(i.e., max degree of burial = 1.0, with decreasing values corresponding to decreasing
burial). Figure S3 illustrates the normalized residue-burial calculation for the CFTR
homology model used in this study. If POSE is provided a 3D protein structure, Equation
S7 gives the final POSE score for any given amino acid substitution. Here, y is the
normalized residue burial, and modulates the strength of effect calculated in Equation
S6.

Ssub = Y(Swr — Smue)  (Equation S7)
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Figure S3: POSE-calculated normalized residue burial for the CFTR homology model. In A,
POSE normalized residue burial is superimposed on a 3D homology model of CFTR. B shows the
same structure “clipped” so that the core residues are visible, showing the expected increasing
burial in the core of the protein. The CFTR homology was published in Mornon et al.”



Amino acid Chemistry Weight

ALA Aliphatic 89.0

CYS Cysteine 121.0
ASP Acceptor, Negative 132.0
GLU Acceptor, Negative 147.0
PHE Aromatic 165.0
GLY Glycine 75.0

HIS Donor, Positive 155.0
ILE Aliphatic 131.0
LYS Donor, Positive 146.0
LEU Aliphatic 131.0
MET Aliphatic 149.0
ASN Donor, Acceptor 132.0
PRO Proline 115.0
GLN Donor, Acceptor 146.0
ARG Donor, Positive 174.0
SER Donor 105.0
THR Donor 119.0
VAL Aliphatic 117.0
TRP Aromatic 204.0
TYR Aromatic, Donor 181.0

Table S1: Complete list of attributes used for scoring. The score function considers Amino acid
conservation, the conservation of specific biochemical Properties, and conservation of molecular
Weight (g/mol).

Supplementary Table S1 shows the amino acid properties and molecular weights used
by the score function. The properties include standard biophysical properties
associated with the side chains of each of the 20 naturally occurring amino acids
(hydrogen bond donating or accepting, negatively or positively charged, etc.). Histidine
is unique because the side chain titrates at physiological pH, resulting in an
environment-dependent charge and hydrogen bond capacity; therefore, we define
histidine uniquely (see Table S1). Similarly, cysteine is unique in its ability to form inter-
side chain covalent bonds and glycine is unique because it lacks a side chain; therefore,
we define cysteine and glycine uniquely. And, proline mutation has a unique capacity to
perturb well-defined protein secondary structure because it lacks a backbone amide
proton and has a restricted backbone @ torsion angle; therefore, we define proline
uniquely. Molecular weights are in units of g/mol.
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