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Supplemental Experimental Procedures 
 

Length constant of dissimilarity 
It has been reported previously that the correlation of neural responses depends on spatial 
distance between the recorded units (Constantinidis and Goldman-Rakic, 2002; Leavitt et 
al., 2013; Smith and Kohn, 2008). We calculated the length constant of dissimilarity by 
fitting an exponential function to the curves that relate dissimilarity between units to 
inter-electrode distance (Fig. S2): 

dij = d∞ − β exp −
Lij
τ

⎛
⎝⎜

⎞
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       Eq. S1  

where β , d∞ , and τ  are model parameters, and Lij  is the physical distance between 
recording electrodes on the array. d∞  defines the asymptotic dissimilarity for widely 
separated units. τ  is the length constant of the equation and defines the distance at which 
dij  increases by 63% of the difference between d0  and d∞ , where d0  is the expected 
dissimilarity of units recorded on the same electrode.  

 
Temporal structure of the signal that underlies the subnets 

We explored the dependence of the response dissimilarity matrix on temporal frequency 
(Fig. S6 and S7) by creating 9 different frequency bands: 0.01-0.06 Hz, 0.06-0.13 Hz, 
0.13-0.26 Hz, 0.26-0.52 Hz, 0.52-1.04 Hz, 1.04-2.08 Hz, 2.08-4.17 Hz, 4.17-8.33 Hz, 
8.33-16.67 Hz. Note that 16.67 Hz is the Nyquist frequency for our 30 ms response 
window. We calculated the dissimilarity matrix for each frequency band using two 
different methods: by applying a 3rd order Butterworth bandpass filter to the response 
vector of individual units before calculating correlations; and by performing Fourier 
transform on the response vector and zeroing coefficients outside the target band. The 
end results of the two methods were highly compatible. We present the former in this 
paper because it does not generate ‘ripples’ in the firing rate vectors. For each frequency 
band, we calculated the MDS maps for visual assessment, and we measured 
quantitatively the alignment of the filtered and unfiltered dissimilarity matrices.  

 
Physiological properties of the subnets 

Our initial visual inspections of the MDS maps indicated the presence of inhomogeneity 
in the neural population and thus the possibility that the recorded population could be 
divided into distinct sub-networks (‘subnets’) of physiologically related units. We used 
K-means clustering (MacQueen, 1967) to objectively divide the population into two 
subnets. Further, we tested the significance of this division using SigClust (Liu et al., 
2008). The significance of the divisions was tested in 2-dimensional MDS projections 
(see Results).  Our use of K-means to specify two significantly different populations was 
conservative.  In some experiments, there are indications that the recorded neural 
population may in fact comprise more than two spatially segregated clusters. Because of 
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the high dimensionality of the dataset, however, proving the existence of more than two 
clusters is statistically implausible. Demonstrating a finer grain clustering in area 8Ar 
will require higher density recording techniques. 
We compared the physiological response properties of the subnets using three different 
metrics (Fig. 6): the prediction accuracy for the monkey’s choices based on the 
population responses in each subnet, the prediction accuracy for the monkey’s reaction 
time, and the frequency of choice predictive and choice ‘postdictive’ units in each subnet. 
We employed a logistic regression model to predict the monkey’s choice based on the 
neural responses: 

logit P choice( )⎡⎣ ⎤⎦ = β0 + βiri
i=1

n

∑       Eq. S2  

where ri  is the response of unit i, n is the number of units in the subnet, and the β
coefficients are model parameters. The model was cross-validated by fitting to 90% of 
trials and predicting the remaining 10% in each session (10-fold cross-validation). To 
generate the time-varying accuracy functions in Figure 6, we first fit the model separately 
to the neural responses measured in a 150 ms window centered at each moment in time. 
Then, we averaged the temporal profiles of prediction accuracy across sessions. The p-
value for the difference of choice prediction accuracy of the two subnets was obtained by 
running a t-test in the time window immediately before the Go cue.  
We employed a linear Ridge regression model to predict the monkey’s RT: 

RT = β0 + βiri
i=1

n

∑          Eq. S3 

where, once again, ri  is the response of unit i, n is the number of units in the subnet, and 
the β  coefficients are fitted model parameters (Ridge parameter=1000).  Again, we 
employed a 10-fold cross-validation method. The predictions were performed separately 
for choices to each target location, and the goodness of the predictions was measured by 
calculating the correlation of predicted and actual RTs. A 150 ms sliding window was 
used for the time varying plots in Figure 6. To test whether one subnet predicted RT 
significantly better than the other, we performed a two-way, nested ANOVA with subnet 
and target location as main factors and the correlation of predicted and actual RTs as the 
dependent variable. The test was performed on responses measured during the time 
window immediately prior to the Go cue. 

Finally, we compared ‘postdictive’ encoding of target choice by the two subnets.  
‘Postdictive’ encoding refers to signals that arise during the temporal interval after the 
operant choice is made but before the reward is delivered.  These signals, which appear to 
comprise a memory trace of the recently made eye movement, have been described 
previously by other groups (Tsujimoto et al., 2010) and in these prearcuate data by 
Reppas and colleagues (Reppas and Newsome, 2008).  Postdictive responses are 
frequently the strongest signals carried by the prearcuate neurons. We assessed 
postdictive selectivity during a 250 ms window after the operant saccade and 
immediately before reward delivery (t-test, p<0.05). A χ2-test was used to test the 
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difference in the distribution of choice-related units in the two subnets. The statistical 
tests in this paper assume independence across sessions. The sessions from different 
subjects are indeed independent of each other but the sessions from the same subject 
overlap because some of the units are likely to be the same from session to session. This 
overlap violates the independence assumption and calls for development of new 
techniques for quantifying overlap and upward correction of p-values. However, due to 
the strength of our results and their consistency across the three animals, such a 
correction is highly unlikely to influence our conclusions. 

Some care must be taken to distinguish predictive and postdictive responses. A predictive 
cell whose activity is informative about an upcoming saccade (t-test, p<0.05 for firing 
rates in a 250 ms window immediately before the operant saccade) can appear to encode 
saccade direction postdictively if it also generates predictive activity before the ‘exit’ 
saccade that follows reward delivery at the end of the trial.  Exit saccades at the end of 
the trial typically return the animal’s gaze to the location of the fixation point—a saccade 
exactly opposite in direction and amplitude to the operant saccade.  Thus the signal 
during the postdictive interval will appear to change polarity, or ‘flip’, in comparison to 
the selectivity immediately prior to the operant saccade.  Following the conservative 
procedure of Reppas and colleagues (Reppas and Newsome, 2008), we excluded all 
‘flipper’ cells from our population analysis of postdictive signals.  For units exhibiting 
postdictive signals, we quantified the size of the effect by measuring the area under the 
ROC curve (Green and Swets, 1966) computed from responses following saccades to 
each of the two targets. 

 
Supplemental Results 

 
The signal that underlies subnets is temporally broadband 

Results presented in the main text show that the subnets do not arise primarily from task-
related events or processes, nor from task engagement per se (the subnets exist during the 
inter-trial interval as well). We can also rule out trivial factors such as spiking noise, 
which results primarily from failures of transmission at individual synapses and is 
therefore independent across neurons (Rieke et al., 1997).  The driving factor underlying 
the subnets must be some fundamental aspect of neuronal circuitry within the prearcuate 
gyrus, intrinsic connectivity being a prime candidate (Barnett et al., 2009; Galan, 2008; 
Pernice et al., 2012; Robinson, 2012; Sporns, 2011; Sporns et al., 2000).  We cannot, 
however, rule out a priori a role for slower processes such as hemodynamic (Moore and 
Cao, 2008) or neuromodulatory differences between subnets.  To shed light on these 
possibilities, we explored how response dissimilarities vary across temporal frequency 
bands. 

We recalculated the dissimilarities within nine temporal frequency bands, from 0.01 Hz 
to 16.7 Hz (see Supplemental Experimental Procedures; 16.7 Hz is the Nyquist frequency 
for our 30 ms response window), and measured their alignment to whole-session 
response dissimilarities.  The MDS plots for different temporal frequency bands reveal 
clustering that is similar to whole-session clustering (Fig. S6A), an impression that is 
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confirmed quantitatively by the alignment scores (Fig. S6B).  Although the best 
alignment with whole-session data was obtained for 1-4 Hz (roughly delta-band), the 
alignments were generally good across all frequencies.  Note that the magnitude of 
correlation of pairs of neurons was dependent on temporal frequency (Fig. S10), as 
expected from past research (e.g. He et al., 2010b; Smith and Kohn, 2008), even though 
the structure of the correlation matrix across the population was largely independent of 
temporal frequency (Fig. S6, S7, and S10). The magnitude of the pairwise correlations 
can vary between frequency bands while the overall pattern of pairwise correlations is 
maintained. That is, if pair A is more strongly correlated than pair B, that order is 
maintained across frequency bands even if the absolute magnitude of the correlations 
change.  Preservation of high alignment scores and color clusters in the MDS plots means 
that, within each frequency band, spatial topography on the array resembles the whole-
session topography illustrated in Figure 2F (Fig. S7).  
The peak alignment in the delta band was not due to an overabundance of signal power in 
that band. The power spectrum of response magnitudes (in 30 ms bins across an entire 
experiment) had a 1/fβ shape with greatest power at the lowest frequencies, as expected 
from prior results (Bedard et al., 2006; He et al., 2010a; Leopold and Logothetis, 2003; 
Teich et al., 1997).  

 
Additional differences in physiological properties of subnets 

Not only were the responses of subnet-1 better predictors of choice and RT (see main 
text), subnet-1 also exhibited a more distributed neural representation of choice 
information. For each subnet, we tested whether choice predictive power was spread 
across many units, or was dependent on a select few predictive units.  To test this, we 
excluded each unit from the population one-by-one in descending order of predictive 
power, and used the logistic model to predict the monkey’s choice from the rest of the 
population. For this analysis we focused on the 150 ms window immediately before the 
Go cue. Exclusion of a small number of units from subnet-2 caused choice predictive 
accuracy to drop rapidly, whereas subnet-1 was significantly more resilient to the 
exclusion of its best units (Fig. 6F). Moreover, subnet-1 yielded better predictive activity 
with its 10 best units excluded than did subnet-2 with no units excluded (arrow, Fig. 6F).  
In addition to assessing choice predictive activity, we also measured choice ‘postdictive’ 
activity— a retrospective coding of choice during an interval that follows the operant 
saccade but precedes the time of potential reward delivery (Tsujimoto et al., 2009, 2010) 
(see Supplemental Experimental Procedures).  Choice-related neurons were distributed 
differentially across the subnets. More than half of the units of subnet-1 (51%) exhibited 
choice-related responses (either predictive or postdictive), whereas only 26% of the units 
in subnet-2 yielded choice-related responses (χ2-test, p<10−8).  However, a larger fraction 
of choice-related units in subnet-2 showed postdictive selectivity as compared to subnet-1 
(78% vs. 68%; χ2-test, p=8×10-6). 
 

Additional control analyses of neural data 
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We performed additional control analyses to test whether the structure of the dissimilarity 
matrix for a given experiment could be explained simply by differences in overall firing 
rates across units or the recorded cortical layers within an experiment. The first concern 
is that if firing rates vary considerably across the array, the known relationship between 
firing rates and the magnitude of correlated variability between neurons (de la Rocha et 
al., 2007) might provide a trivial explanation for the structure of dissimilarity matrix. 
This was not the case.  For the example experiment in Figs. 2C-F, 3 and 4 we calculated a 
matrix of the difference in average firing rate between all pairs of units on the array, and 
used our alignment score to compare the matrix of firing rate differences to the matrix of 
correlation dissimilarities. For all trial epochs, the alignment score was very small (< 
0.06, data not shown), demonstrating that variation in firing rate, per se, cannot explain 
the structure in the dissimilarity matrix.  

The data from monkey V allow us to reject an alternative interpretation of the subnet 
analysis, related to laminar organization.  The arrays were implanted on relatively flat 
cortex of the prearcuate gyrus, and the 1.5 mm long electrodes would generally be 
expected to sample cells from lower layer 3, layer 4, and upper layer 5.  Along the edge 
of the array nearest to the arcuate sulcus, however, some electrodes may have 
preferentially sampled layer 2 and upper layer 3 due to the changing orientation of the 
cortex as it folds into the arcuate sulcus.  If the upper layers have different noise 
characteristics than the lower layers, the pattern of subnets observed in monkeys T and C 
might result from this differential sampling.  However, the subnet boundary in monkey 
V, which lies squarely atop the prearcuate gyrus, argues strongly against this 
interpretation.   
This conclusion is further supported by similarity of indices that have been suggested to 
depend on laminar location of recorded neurons: overall firing rates (see above) and 
magnitude of pairwise correlations. If different parts of the array are recording from 
different layers of cortex one might expect to see a topographical organization because 
neurons in different layers show different levels of noise correlation (Hansen et al., 
2012). The overall level of correlation was comparable across the two subnets (Fig. 7B), 
making it unlikely that the topography on the array is a simple byproduct of different 
recording depths across the array.  
 

Shared visual and motor response fields contribute to, but do not fully explain, 
topography based on dissimilarity 

Visuomotor topography has been previously reported for area 8Ar, with central RF’s 
situated ventrally on the prearcuate gyrus and peripheral RF’s situated dorsally (Robinson 
and Fuchs, 1969; Suzuki and Azuma, 1983). Although we were not able to reliably detect 
this trend within the 4x4 mm patches of cortex beneath our arrays (data not shown), we 
nevertheless explored the possibility that shared RF location might contribute to our 
measured dissimilarity matrices (Fig. S9). In the delayed saccade task, we measured the 
visual and motor response fields of each unit (when possible).  Visual responses were 
calculated as firing rate in a 150 ms window that started 50 ms after target onset, minus a 
baseline firing rate measured in a 150 ms window immediately before target onset. Peri-
saccadic motor responses were calculated as firing rate in a 150 ms window that started 
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100 ms before saccade initiation, minus a baseline firing rate measured in a 150 ms 
window starting 400 ms before the saccade. We defined the center of the visual RF of 
each unit to be the target location that elicited the largest visual response, and the center 
of the motor RF to be the target location associated with the largest peri-saccadic 
response. Although our delayed saccades included target eccentricities up to 25 degrees, 
we were unable to locate the RF center for some units because they did not elicit robust 
visual or motor responses—presumably, in some cases, because their RFs lay beyond the 
tested region. For this analysis, we focused only on units that showed significant visual or 
motor activity relative to the baseline (t-test, p < 0.05 for the best target location, 
Bonferroni corrected). We calculated a matrix of distances between RF centers for all 
pairs of neurons with well defined RFs in a given experiment, and then calculated the 
alignment of this matrix with the matrix of response dissimilarities for the same pairs 
(Fig. S9C). The analysis was performed separately for visual and motor RFs. The RF 
distances were weakly but significantly correlated with the response dissimilarities. The 
significance of this correlation suggests that shared RFs contribute modestly to the 
structure of the subnets. However, the small size of the effect suggests that overlapping 
RFs, like task-related events (Fig. 4C), explain only a small portion of the total subnet 
structure. 
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Figure S1, related to Fig. 2 and 3. Prearcuate units exhibit diverse responses during the 
direction discrimination task. Responses of six example units from the session of Fig. 2C are 
shown. The responses are aligned to different task events and are grouped based on the 
chosen target (T1 or T2). A-B) Two units that preferred T1 choices and were predictive of the 
monkey’s choice during the motion viewing epoch. Unit A had a sharp phasic visual response to 
target onset and a sharp motor response prior to and immediately after the operant saccade. 
Unit B exhibited a more tonic visual response to target onset and was inhibited below baseline 
on trials in which the monkey ultimately chose T2. C-D) Two units that preferred T2 choices and 
were predictive of the upcoming choice during motion viewing. Unit C lacked visual responses 
to target onset but responded strongly around the time of the saccade. In contrast, unit D 
exhibited a strong visual response but lacked a motor response. E-F) Two units that were not 
predictive of the monkey’s upcoming choice but, nonetheless, exhibited strong modulation of 
responses in different task epochs. Unit F is an example of a choice-postdictive unit (see 
Supplemental Experimental Procedures), which encodes the direction of the recently made 
operant saccade during the temporal interval between the saccade and receipt (or not) of the 
reward. The shaded areas represent SEM across trials.
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between recording electrodes and the size of the time window used for the measurement 
of responses. Response dissimilarity of a pair of units is defined as one minus the 
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Figure S3, related to Fig. 2. Spatial topography is stable across sessions. All direction-discrimination sessions are 
depicted for each monkey. Conventions are similar to Fig. 2F-H. The sessions in which the recorded population could 
not be explained as a single cluster are marked with asterisks (SigClust p<0.05). The red asterisk marks the example 
session that is used in Figures 2C, 3, 4, and 7.  Session-to-session similarity of the spatial maps is evident 
qualitatively, even for sessions in which the clustering was not statistically significant (no asterisks).  Precise 
quantitative comparison of these trends across sessions (using our alignment score) is not feasible because the units 
on the array frequently differed across sessions, due presumably to slight shifts in the position of the array over time. 
However, we can calculate a coarser measure—the average dissimilarity across recording sessions of all units 
recorded by particular pairs of electrodes within sessions. This measure is still suboptimal because the number of 
electrodes that actually recorded some signal could vary from day to day. Nonetheless, the alignment scores of these 
electrode-averaged dissimilarities are 0.5±0.1 (mean±s.d.) for monkey T, 0.5±0.2 for monkey V, and 0.4±0.2 for 
monkey C, indicating strong consistency of the maps across sessions.
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Figure S4, related to Fig. 3. Spatial topography on the array is stable across task epochs. 
Panels A-F show the array projections of the MDS maps for the same experiment and task 
epochs illustrated in Fig. 3A-F. However, unlike Fig. 3 where the units inherited their color from 
the whole session MDS map (Fig. 2C), in this figure the units are assigned new colors based on 
the circular color map of Fig. 2 and then projected onto the array. The similarity of the array 
projection with that in Fig. 2F indicates that the topography is largely invariant across task 
epochs.
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Figure S5, related to Fig. 4. Spatial topography on the array stems from response fluctuations 
around task-evoked means. The six panels show the array projection of the residual and 
task-evoked MDS maps in Fig. 4A. The units are recolored according to the circular color map of 
Fig. 2 before projection on the array.  Spatial topography is evident in the residuals (top row) but 
not in the task-evoked means (bottom row).
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Figure S6, related to temporal frequency analysis. The signal underlying subnet structure is temporally 
broadband (see the corresponding sections in Results and Supplemental Information). A) Two-
dimensional MDS plots based on band-pass filtered neural responses for the example session of Fig. 
2C. The neural responses across the session were band-pass filtered with nine different frequency 
bands, four of which are illustrated by MDS plots. The filters spanned three orders of magnitude, 
ranging from 0.01 Hz to 16.67 Hz, which is the Nyquist frequency for our 30 ms analysis window. B) 
The alignment score of the band-pass filtered response dissimilarities with the whole-session response 
dissimilarity. The bars show the average alignment across all 25 experimental sessions. Error bars 
represent 95% confidence intervals.
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Figure S7, related to temporal frquency analysis. Spatial topography on the array is broadband 
(see the corresponding sections in Results and Supplemental Information). The four panels show 
the array projection of band-pass filtered MDS maps in Fig. S6A. The units are recolored 
according to the circular color map of Fig. 2 before projection on the array.
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Figure S8, related to Fig. 5. The spatial topography in the delayed saccade task is best 
explained by common noise rather than task-evoked responses. A) Two-dimensional MDS plot of 
an example session (same as Fig. 5B). B) MDS plots based on task-evoked and residual 
responses in three different task epochs. Conventions are similar to those in Fig. 4A. C-D) 
Alignment of residual and task-evoked response dissimilarities to the whole-session response 
dissimilarities. Conventions are similar to those in Fig. 4B-C.
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Figure S9, related to Fig. 5. Shared visual and motor response fields contribute to, but do not fully 
explain, topography based on dissimilarity. A) Several target locations (mostly contralateral) were 
tested in the delayed saccade task, enabling us to measure the response fields of the recorded 
units. The blue points show the target locations for the example session of Fig. 5. Only one target 
was shown in each trial. B) The magnitudes of visual and motor responses of two example units are 
depicted for various target locations. Visual responses were calculated as firing rate in a 150 ms 
window that started 50 ms after target onset, minus a baseline firing rate measured in a 150 ms 
window immediately before target onset. Peri-saccadic motor responses were calculated as firing 
rate in a 150 ms window that started 100 ms before saccade initiation, minus a baseline firing rate 
measured in a 150 ms window starting 400 ms before the saccade. For some target locations the 
unit responses go below baseline, hence the negative numbers. The RF center, defined as the 
target location associated with the highest response, is marked with a black asterisk. C) The 
distances between RF centers were calculated to create a RF distance matrix (see Supplemental 
Information). The alignment of this distance matrix with the whole-session response dissimilarity 
matrix is shown for the three monkeys. Only units with significant visual or motor responses 
contributed to the analysis. Error bars represent 95% confidence intervals.
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Figure S10, related to Fig. 7. Spike-spike coherence of neighboring units that belong to the same 
subnet (green) and to different subnets (magenta). Shaded areas indicate standard errors across 
sessions. The results are compatible with those of Fig. 7 and indicate that subnet identities persist 
across all epochs and temporal frequencies.
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Rest

Task-engaged

Session 1                Session 2                      Session 3                  Session 4                  Session 5               Session 6               Session 7

Figure S11, related to Fig. 8. MDS maps of the seven simultaneous recording sessions from the M1 and 
PMd arrays. M1 and PMd units segregate from each other both during the direction discrimination task 
(bottom row) and in rest periods between the task-engaged blocks (top row). In the rest periods (15-60 
min) the monkey sat calmly in his chair in front of a blank monitor in a semi-dark room. Session 1 is the 
example depicted in Fig. 8B.

PMd
M1
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