Supplementary materials

Supplementary methods

Pseudocode of the MTB identification algorithms

$\fbox{Algorithm 1} \label{eq:algorithm} Algorithm for identifying all type R MTBs from a miRNA-target interaction$

1: fu	unction TYPERMTB (R, C, A)	\triangleright R : the set of all row indices, each representing an mRNA	
		\triangleright C: the set of all column indices, each representing a miRNA	
		$\triangleright A$: the adjacency matrix of the miRNA-mRNA network	
2:	Define $MapR$ as a (bit string $ ightarrow$ row	index set) hash map, initialized to an empty map	
3:	for each $i \in R$ do	▷ For each mRNA i	
4:	MapR.put(A[i,.],i), where $A[i,$.] represents the i -th row of matrix A	
	ho Use the miRNAs targeting i as th	he key to get the existing set or create a new set in $MapR$, then add i	
te	o this set		
5:	end for		
6:	Define $MapC$ as a (bit string $ ightarrow$ column index set) hash map, initialized to an empty map		
7:	for each $j \in C$ do	\triangleright For each miRNA j	
8:	MapC.put(A[.,j], j), where $A[.,j]$ represents the j -th column of matrix A		
	\triangleright Use j 's mRNA targets as the key to get the existing set or create a new set in $MapC$, then add j to this		
S	et		
9:	end for		
10:	Define $MTBs$ as the list of MTBs, i	initialized to an empty list	
11:	for each $c \in MapR.$ keys do	\triangleright For each key c of $MapR$, i.e., each group signature	
12:	Define r as a bit vector correspon	ding to the row indices of $MapR.get(c)$	
	$\triangleright r$ is the members of the group, where each mRNA in r is targeted by only and all of the miRNAs in a		
13:	if r is a key of $MapC$ and $MapC.get(r) == c$ then		
		\triangleright The miRNAs in c also target only and all of the mRNAs in r	
14:	MTBs.add((r, c))	▷ The mRNAs and the miRNAs form an MTB	
15:	end if		
16:	end for		
17:	Return MTBs		
18: e	end function		

Algorithm 2 Algorithm for identifying all maximal type Rmi MTBs from a miRNA-

target interaction network

1: f	function TypeRmIMTB (R, C, A)	\triangleright R: the set of all row indices, each representing an mRNA		
		\triangleright C : the set of all column indices, each representing a miRNA		
		\triangleright A: the adjacency matrix of the miRNA-mRNA network		
2:	Define Map as a (bit string $ ightarrow$ column	index set) hash map, initialized to an empty map		
3:	for each $j \in C$ do	\triangleright For each miRNA j		
4: $Map.put(A[., j], j)$, where $A[., j]$ represents the <i>j</i> -th column of matrix A				
	\triangleright Use j 's mRNA targets as the key to	get the existing set or create a new set in Map , then add j to this		
s	set			
5:	end for			
6:	Define $MTBs$ as the list of MTBs, initi	alized to an empty list		
7:	7: for each $r \in Map$.keys do \triangleright For each key r of Map , i.e., each group signal			
8:	$MTBs.add((r, Map.get(r))) \triangleright The$	e group signature (mRNAs) and the group members (miRNAs) form		
á	an MTB			
9:	end for			
10:	Return MTBs			
11:	end function			

Algorithm 3 Algorithm for identifying all maximal type Rm MTBs from a miRNA-target

1: fu	unction TYPERMMTB (R, C, A)	\triangleright R : the set of all row indices, each representing an mRNA
		\triangleright C: the set of all column indices, each representing a miRNA
		\triangleright A: the adjacency matrix of the miRNA-mRNA network
2:	Define Map as a (bit string $ ightarrow$ row ind	dex set) hash map, initialized to an empty map
3:	for each $i \in R$ do	\triangleright For each mRNA i
4:	represents the <i>i</i> -th row of matrix A	
	\triangleright Use the miRNAs targeting i as the	key to get the existing set or create a new set in ${\cal M}ap$, then add i to
tł	nis set	
5:	end for	
6:	Define $MTBs$ as the list of MTBs, ini	tialized to an empty list
7:	for each $c \in Map$.keys do	\triangleright For each key c of Map , i.e., each group signature
8:	$MTBs.add((Map.get(c), c)) \triangleright T$	he group members (mRNAs) and the group signature (miRNAs) form
a	n MTB	
9:	end for	
10:	Return MTBs	
11: e	end function	

Algorithm 4 Algorithm for identifying all maximal type Rgen MTBs from a miRNA-

target interaction network

1: function TypeRgenMTB(R, C, A)	\triangleright R : the set of all row indices, each representing an mRNA			
	\triangleright $C:$ the set of all column indices, each representing a miRNA			
	\triangleright A: the adjacency matrix of the miRNA-mRNA network			
Preprocess A to group all rows with identical signatures together and all columns with identical signatures				
together, using hash maps as in the algorit	hms for type $R.$ Define the resulting matrix with no identical rows or			
columns as A^\prime , and its rows and columns a	as R^\prime and C^\prime			
3: Define MTBs, MTBsCurr and MT	TBsNext as the lists of all MTBs discovered, MTBs for the current			
iteration and MTBs for the next iteration,	respectively, all initialized to an empty list			
4: for each $j \in C'$ do	▷ For each column of the pre-processed adjacency matrix			
5: $MTBsNext.add((A'[., j], j))$, where $A'[., j]$ is the <i>j</i> -th column of A'				
	\triangleright (A'[.,j], j) is an MTB, but may or may not be maximal			
6: end for				
7: while $MTBNext$ is not empty do	ho Beginning of the k -th iteration, where k starts with 1			
8: $MTBs.addall(MTBsNext)$	\triangleright Add all MTBs in $MTBsNext$ to $MTBs$			
9: $MTBsCurr := MTBsNext$				
10: $MTBsNext := \emptyset \triangleright \text{ All MTBs}$	newly discovered in the previous iteration are to be worked on in this			
iteration				
11: for each pair of MTBs (r_1, c_1) and	d (r_2, c_2) in $MTBsCurr$, such that the $k-1$ smallest indexes of			
both sets are the same do	\triangleright Trying to merge these two MTBs to form a new MTB			
12: if $r_1 \cup r_2 \neq \emptyset$ then	The two MTBs have some common rows			
13: Define $M = (r_1 \cup r_2, c_1 \cap $	(c_2) as a new MTB			
14: Remove any MTBs (r, c) in	$MTBs$ where $r \in r_1 \cup r_2$ and $c \in c_1 \cap c_2$ \triangleright Remove any			
non-maximal MTBs				
15: $MTBsNext.add(M)$				
16: end if				
17: end for				
18: end while				
19: for each MTB in MTBs do				
20: Replace any grouped rows and colu	umns with the original row and column indices in A			
21: end for				
22: Return <i>MTBs</i>				
23: end function				

1: function TYPELMTB (R, C, A)	$\triangleright R$: the set of all row nodes, each representing an mRNA		
	\triangleright C: the set of all column nodes, each representing a miRNA		
⊳	A : the miRNA-mRNA network in a (node \rightarrow neighbor set) hash map format		
2: Define $S := R \cup C$ as the set	of row and column nodes not in any MTB yet		
3: Define $MTBs$ as the list of N	TBs, initialized to an empty list		
4: while $S \neq \emptyset$ do	▷ While there are still row or column nodes not in any MTB		
5: Get any node x from S			
6: Define M as the nodes in t	he connected component of x , initialized to an empty set		
7: Define Q as the set of new	Define Q as the set of newly discovered nodes in the connected component of x , initialized to $\{x\}$		
8: while $Q \neq \emptyset$ do	While there may still be undiscovered members of the connected component		
9: Define Q' as the set of	nodes in the connected component to be discovered, initialized to an empty		
set			
10: for each node $y \in Q$ d	0		
11: $Q' := Q' \cup A.get($	$y)$ \triangleright Add all neighbors of y to Q'		
12: end for			
$13: M := M \cup Q$	\triangleright Add all nodes discovered in the previous iterations to the MTB		
$14: \qquad Q := Q' - M \qquad \triangleright$	Determine the set of newly discovered members of the connected component		
15: end while			
16: $MTBs.add(M)$	⊳ Add M as a new MTB		
$17: \qquad S := S - M$	Redetermine the nodes not yet associated with any MTB		
18: end while			
19: Return MTBs			
20: end function			

Algorithm 5 Algorithm for identifying all type L MTBs from a miRNA-target interaction

1: fur	nction TypeLmIMTB (R, C, A, d, ρ) \triangleright R : the set of all row indices, each representing an m	RNA
	\triangleright C : the set of all column indices, each representing a mi	RNA
	\triangleright A: the adjacency matrix of the miRNA-mRNA net	work
	\triangleright d: minimum distance between two initial MTBs both of which are to be	kept
	$\triangleright \rho$: minimum density of an I	ИТВ
2:	DefineMTBs:=TypeRmiMTB(R,C,A) as the starting set of MTBs	
3:	for each pair of MTBs $M_1=(r_1,c_1)$ and $M_2=(r_2,c_2)$ in $MTBs$ do	
	▷ Remove initial MTBs that are too similar to some o	
4:	if $dist(M_1, M_2) < d$ then \triangleright Remove the smaller one if the two initial MTBs are too similar, check	ed in
the	e same way as in Algorithm 1 of Du et al., 2008	
5:	if $r_1 + c_1 < r_2 + c_2$ then	
6:	$MTBs := MTBs - M_1$	
7:	else	
8:	$MTBs := MTBs - M_2$	
9:	end if	
10:	end if	
11:	end for	
12:	Define R^\prime as the set of mRNAs not participating in any MTBs in $MTBs$	
13:	while $R' \neq \emptyset$ do \triangleright Try adding one of the rows not in any MTBs to one of the N	ITBs
14:	Define den as the highest density of the resulting MTB after any of the additions, initialized to 0	
15:	for each $i \in R'$ do	
16:	Define js as the columns with 1's in $A[i, .]$, the <i>i</i> -th row of A	
17:	for each $M = (r, c) \in MTBs$ do	
18:	if $Density((r \cup \{i\}, c \cup js)) > den$ then $den := Density((r \cup \{i\}, c \cup js))$	
19:	end if	
20:	end for	
21:	end for	
22:	if $den > \rho$ then \triangleright Perform the addition only if the resulting density is higher than the three	shold
23:	Add the rows and columns to the MTB	
24:	Remove the rows from R'	
25:	if the resulting MTB is identical to another one in $MTBs$ then	
26:	Remove it from MTBs	
27:	end if	
28:	else	
29: 20:	Break the while loop	
30: 21.	end if	
31: 20.	end while	
32:	Return $MTBs$ nd function	

Algorithm 6 Algorithm for identifying high-scoring type Lmi MTBs from a miRNA-

1: function	n TYPELMMTB (R, C, A, d, ρ) \triangleright R : the set of all row indices, each representing an mRNA		
	\triangleright C: the set of all column indices, each representing a miRNA		
	$\triangleright A$: the adjacency matrix of the miRNA-mRNA network		
	ho d : minimum distance between two initial MTBs both of which are to be kep		
	$\triangleright \rho$: minimum density of an MTE		
2: Defi	ine $MTBs:=TypeRmMTB(R,C,A)$ as the starting set of MTBs		
3: for	for each pair of MTBs $M_1=(r_1,c_1)$ and $M_2=(r_2,c_2)$ in $MTBs$ do		
	> Remove initial MTBs that are too similar to some other		
4:	if $dist(M_1, M_2) < d$ then \triangleright Remove the smaller one if the two initial MTBs are too similar, checked in		
the sam	ne way as in Algorithm 1 of Du et al., 2008		
5:	if $r_1 + c_1 < r_2 + c_2$ then		
6:	$MTBs := MTBs - M_1$		
7:	else		
8:	$MTBs := MTBs - M_2$		
9:	end if		
10:	end if		
11: enc	1 for		
12: Def	fine C^\prime as the set of miRNAs not participating in any MTBs in $MTBs$		
13: wh	ile $C' \neq \emptyset$ do \triangleright Try adding one of the columns not in any MTBs to one of the MTBs		
14:	Define den as the highest density of the resulting MTB after any of the additions, initialized to 0		
15:	for each $j \in C'$ do		
16:	Define is as the rows with 1's in $A[., j]$, the j -th column of A		
17:	for each $M = (r, c) \in MTBs$ do		
18:	if $Density((r \cup is, c \cup \{j\})) > den$ then $den := Density((r \cup is, c \cup \{j\}))$		
19:	end if		
20:	end for		
21:	end for		
22:	if $den > \rho$ then \triangleright Perform the addition only if the resulting density is higher than the threshold		
23:	Add the rows and columns to the MTB		
24:	Remove the columns from C^\prime		
25:	if the resulting MTB is identical to another one in $MTBs$ then		
26:	Remove it from <i>MTBs</i>		
27:	end if		
28:	else		
29:	Break the while loop		
30:	end if		
	1 while		
32: Ret	turn MTBs		
33: end fu	nction		

Algorithm 7 Algorithm for identifying high-scoring type Lm MTBs from a miRNA-

target interaction network 1: function TYPELGENMTB (R, C, A, d, ρ) \triangleright R: the set of all row indices, each representing an mRNA \triangleright C: the set of all column indices, each representing a miRNA \triangleright A: the adjacency matrix of the miRNA-mRNA network \triangleright d: minimum distance between two initial MTBs both of which are to be kept $\triangleright \rho$: minimum density of an MTB 2: Define MTBs := TypeRgenMTB(R, C, A) as the starting set of MTBs 3: for each pair of MTBs $M_1 = (r_1, c_1)$ and $M_2 = (r_2, c_2)$ in MTBs do > Remove initial MTBs that are too similar to some others 4: if $dist(M_1, M_2) < d$ then \triangleright Remove the smaller one if the two initial MTBs are too similar, checked in the same way as in Algorithm 1 of Du et al., 2008 5: if $r_1 + c_1 < r_2 + c_2$ then 6: $MTBs := MTBs - M_1$ 7: else 8. $MTBs := MTBs - M_2$ ٩· end if 10: end if 11: end for 12. Define R' as the set of mRNAs not participating in any MTBs in MTBs13 Define C' as the set of miRNAs not participating in any MTBs in MTBs14: while $R' \neq \emptyset$ or $C' \neq \emptyset$ do > Try adding one of the rows not in any MTBs to one of the MTBs 15: Define denR as the highest density of the resulting MTB after any of the additions, initialized to 0 16: for each $i \in R'$ do 17. for each $M = (r, c) \in MTBs$ do 18. if $Density((r \cup \{i\}, c)) > denR$ then $denR := Density((r \cup \{i\}, c))$ 19: end if 20: end for 21. end for 22. if $denR > \rho$ then > Perform the addition only if the resulting density is higher than the threshold 23: Add the row to the MTB 24: Remove the row from R^\prime 25: if the resulting MTB is identical to another one in MTBs then 26: Remove it from MTBs27: end if 28: end if > Try adding one of the columns not in any MTBs to one of the MTBs 29. Define denC as the highest density of the resulting MTB after any of the additions, initialized to 0 30: for each $j \in C'$ do 31: for each $M = (r, c) \in MTBs$ do 32: if $Density((r, c \cup \{j\})) > denC$ then $denC := Density((r, c \cup \{j\}))$ 33: end if 34 end for 35: end for 36: if $denC > \rho$ then > Perform the addition only if the resulting density is higher than the threshold 37: Add the column to the MTB 38: Remove the column from C39: if the resulting MTB is identical to another one in MTBs then 40: Remove it from MTBs41: end if 42. end if 43: if $denR \leq \rho$ and $denC \leq \rho$ then 44: Break the while loop 45: end if 46: end while 47: Return MTBs

48: end function

Algorithm 8 Algorithm for identifying high-scoring type Lgen MTBs from a miRNA-

A unified general model of MTB

It is possible to generalize all eight types of MTB by one single unified model. A general MTB is defined as a submatrix of the input matrix of miRNA-mRNA interactions. Each MTB is associated with a score indicating its proximity to the ideal case. Specifically, let R and C be respectively the sets of all rows (mRNAs) and all columns (miRNAs) in the input matrix, r and c be the rows and columns involved in an MTB, a_{ij} represents the element at row i and column j of the matrix, and k_0 , k_1 and k_2 are parameters with non-negative values. The score of an MTB (r, c), f(r, c), is defined by the following formula:

$$f(r,c) = 1 - k_0 \frac{\sum_{i \in r, j \in c} (1 - a_{ij})}{|r||c|} - k_1 \frac{\sum_{p \in (R-r), j \in c} a_{pj}}{|R - r||c|} - k_2 \frac{\sum_{i \in r, q \in (C-c)} a_{iq}}{|r||C - c|} + k_2 \frac{\sum_{i \in (C-c)} a_{iq}}{|r|$$

The scoring formula consists of four parts. The first part is the constant value 1, which represents the maximum score of an MTB. The other three parts are penalty terms for missing 1's in the MTB, extra 1's on the same columns outside the MTB, and extra 1's on the same rows outside the MTB, respectively. The three parameters determine which penalty terms to apply and their relative weights. For the eight MTB types defined, the algorithms we used to identify the corresponding MTBs can be considered as algorithms for finding top-scoring MTBs, defined as some specific instantiations of this general model with different sets of parameter values, as shown in Table S1.

Table S1 Relationships between the unified general model and the MTBs identified by our algorithms for the eight types of MTB. *: For the L, Lmi, Lm and Lgen types, we also have an additional connectedness requirement between the rows and columns.

MTB type	k_0	k_1	k_2
R	∞	∞	∞
Rmi	∞	∞	0
Rm	∞	0	∞
Rgen	∞	0	0
L	0*	∞	∞
Lmi	1*	∞	0
Lm	1*	0	∞
Lgen	1*	0	0

For type R MTB, having any missing 1's in a submatrix or extra 1's on the same rows or columns outside the submatrix would result in a negative infinity score, which disqualifies it as a valid MTB. For type Rmi, the penalty terms for missing 1's in a submatrix and extra 1's on the same columns outside it still apply, but the penalty for extra 1's on the same rows outside the submatrix is waived. Similarly, for type Rm, extra 1's on the same rows are penalized, but extra 1's on the same columns are not. For type Rgen, both are not penalized and any submatrix having only 1's is qualified as a MTB. For type L, extra 1's on the same rows and columns outside a submatrix are penalized, but missing 1's within it is not. Similar arguments apply for types Lmi, Lm and Lgen, except that in these cases the within-MTB density of 1's is used to evaluate the quality of a MTB, but the allowed extra 1's on the same rows or columns are simply ignored.

In addition to the eight standard types, new types of MTB can be defined by using different combinations of values for the parameters k_0 , k_1 and k_2 . High-scoring MTBs can be found by heuristic optimization algorithms. In some special cases, as with some of the eight standard types, it is also possible to derive efficient algorithms to return all MTBs or all maximal MTBs.

The scoring formula can also be written in another way. Suppose now r is a binary vector with |R| entries in total, where an entry is 1 if the corresponding row is a member of the MTB of interest and 0 if not. Similarly, we redefine c as the binary vector with |C| entries in total, where an entry is 1 if the corresponding column is a member of the MTB and 0 if not. The scoring formula can then be written in terms of these vectors and the whole miRNA-mRNA interaction matrix A:

$$f(r,c) = 1 - k_0 \frac{r^t r c^t c - r^t A c}{r^t r c^t c} - k_1 \frac{(1-r)^t A c}{(R-r)^t (R-r) c^t c} - k_2 \frac{r^t A (1-c)}{r^t r (C-c)^t (C-c)}$$

where **1** represents the binary vector of all 1's (with a length depending on the context).

The main reason to write the scoring formula using the vector and matrix representations is that the general MTB model can then be extended to handle nonbinary interaction matrices, in which each element a_{ij} takes on a continuous value between 0 and 1 that represents the confidence of the miRNA targeting the mRNA. Correspondingly, one may also allow fractional values in the r and c vectors to represent fussy MTB memberships. With these changes, a whole series of other well-established optimization methods can be applied to identify MTBs of high

scores.

Supplementary figures

Figure S1 Workflow for studying (a) expression correlations between members of same MTBs and (b) functional relationships between genes in same MTBs.

Figure S2 Statistical significance of the negative correlations between the expression levels of miRNAs and mRNAs in the same MTBs. The p-values were computed based on the expressed union sets without TarBase interactions, for (a) the high-confidence set and (b) the high-coverage set as compared to a random background sampled from all expressed mRNAs and miRNAs; and (c) the high-confidence set and (d) the high-coverage set as compared to a background consisting of miRNA-mRNA pairs with interactions in the input network but are not in same MTBs. In the figures, 1E-16 represents the smallest p-value that could be outputted by our program. MTB types with no identified MTBs are omitted.

Figure S3 Statistical significance of the negative correlations between the expression levels of miRNAs and mRNAs in the same MTBs, when related miRNAs were grouped. The p-values were computed based on the expressed union sets with TarBase interactions, for (a) the high-confidence set and (b) the high-coverage set as compared to a random background sampled from all expressed mRNAs and miRNAs; and (c) the high-confidence set and (d) the high-coverage set as compared to a background consisting of miRNA-mRNA pairs with interactions in the input network but are not in same MTBs. In the figures, 1E-16 represents the smallest p-value that could be outputted by our program. MTB types with no identified MTBs are omitted.

Figure S4 Statistical significance of the negative correlations between the expression levels of miRNAs and mRNAs in the same MTBs, when related miRNAs were grouped. The p-values were computed based on the expressed union sets without TarBase interactions, for (a) the high-confidence set and (b) the high-coverage set as compared to a random background sampled from all expressed mRNAs and miRNAs; and (c) the high-confidence set and (d) the high-coverage set as compared to a background consisting of miRNA-mRNA pairs with interactions in the input network but are not in same MTBs. In the figures, 1E-16 represents the smallest p-value that could be outputted by our program. MTB types with no identified MTBs are omitted.

Figure S6 Statistics of the MTBs identified from the high-coverage integrated expressed union set with TarBase interactions. For each type of MTB, the average number of mRNAs per MTB, average number of miRNAs per MTB and the number of MTBs identified by our algorithm are shown.

Figure S7 Statistics of the MTBs identified from the high-coverage integrated expressed union set without TarBase interactions. For each type of MTB, the average number of mRNAs per MTB, average number of miRNAs per MTB and the number of MTBs identified by our algorithm are shown.

Yip et al.

Figure S8 Statistical significance of the functional enrichment scores of the genes from same type Lgen MTBs. The p-values were computed based on the expressed union sets without TarBase interactions, for (a) the high-confidence set and (b) the high-coverage set. In the figures, 1E-16 represents the smallest p-value that could be outputted by our program.