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Supplementary materials

Supplementary methods

Pseudocode of the MTB identification algorithms

Algorithm 1 Algorithm for identifying all type R MTBs from a miRNA-target interaction

network
1: function TypeRMTB(R, C, A) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA

. A: the adjacency matrix of the miRNA-mRNA network

2: Define MapR as a (bit string → row index set) hash map, initialized to an empty map

3: for each i ∈ R do . For each mRNA i

4: MapR.put(A[i, .], i), where A[i, .] represents the i-th row of matrix A

. Use the miRNAs targeting i as the key to get the existing set or create a new set in MapR, then add i

to this set

5: end for

6: Define MapC as a (bit string → column index set) hash map, initialized to an empty map

7: for each j ∈ C do . For each miRNA j

8: MapC.put(A[., j], j), where A[., j] represents the j-th column of matrix A

. Use j’s mRNA targets as the key to get the existing set or create a new set in MapC, then add j to this

set

9: end for

10: Define MTBs as the list of MTBs, initialized to an empty list

11: for each c ∈ MapR.keys do . For each key c of MapR, i.e., each group signature

12: Define r as a bit vector corresponding to the row indices of MapR.get(c)

. r is the members of the group, where each mRNA in r is targeted by only and all of the miRNAs in c

13: if r is a key of MapC and MapC.get(r) == c then

. The miRNAs in c also target only and all of the mRNAs in r

14: MTBs.add((r, c)) . The mRNAs and the miRNAs form an MTB

15: end if

16: end for

17: Return MTBs

18: end function
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Algorithm 2 Algorithm for identifying all maximal type Rmi MTBs from a miRNA-

target interaction network
1: function TypeRmiMTB(R, C, A) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA

. A: the adjacency matrix of the miRNA-mRNA network

2: Define Map as a (bit string → column index set) hash map, initialized to an empty map

3: for each j ∈ C do . For each miRNA j

4: Map.put(A[., j], j), where A[., j] represents the j-th column of matrix A

. Use j’s mRNA targets as the key to get the existing set or create a new set in Map, then add j to this

set

5: end for

6: Define MTBs as the list of MTBs, initialized to an empty list

7: for each r ∈ Map.keys do . For each key r of Map, i.e., each group signature

8: MTBs.add((r, Map.get(r))) . The group signature (mRNAs) and the group members (miRNAs) form

an MTB

9: end for

10: Return MTBs

11: end function
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Algorithm 3 Algorithm for identifying all maximal type Rm MTBs from a miRNA-target

interaction network
1: function TypeRmMTB(R, C, A) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA

. A: the adjacency matrix of the miRNA-mRNA network

2: Define Map as a (bit string → row index set) hash map, initialized to an empty map

3: for each i ∈ R do . For each mRNA i

4: Map.put(A[i, .], i), where A[i, .] represents the i-th row of matrix A

. Use the miRNAs targeting i as the key to get the existing set or create a new set in Map, then add i to

this set

5: end for

6: Define MTBs as the list of MTBs, initialized to an empty list

7: for each c ∈ Map.keys do . For each key c of Map, i.e., each group signature

8: MTBs.add((Map.get(c), c)) . The group members (mRNAs) and the group signature (miRNAs) form

an MTB

9: end for

10: Return MTBs

11: end function
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Algorithm 4 Algorithm for identifying all maximal type Rgen MTBs from a miRNA-

target interaction network
1: function TypeRgenMTB(R, C, A) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA

. A: the adjacency matrix of the miRNA-mRNA network

2: Preprocess A to group all rows with identical signatures together and all columns with identical signatures

together, using hash maps as in the algorithms for type R. Define the resulting matrix with no identical rows or

columns as A′, and its rows and columns as R′ and C′

3: Define MTBs, MTBsCurr and MTBsNext as the lists of all MTBs discovered, MTBs for the current

iteration and MTBs for the next iteration, respectively, all initialized to an empty list

4: for each j ∈ C′ do . For each column of the pre-processed adjacency matrix

5: MTBsNext.add((A′[., j], j)), where A′[., j] is the j-th column of A′

. (A’[.,j], j) is an MTB, but may or may not be maximal

6: end for

7: while MTBNext is not empty do . Beginning of the k-th iteration, where k starts with 1

8: MTBs.addall(MTBsNext) . Add all MTBs in MTBsNext to MTBs

9: MTBsCurr := MTBsNext

10: MTBsNext := ∅ . All MTBs newly discovered in the previous iteration are to be worked on in this

iteration

11: for each pair of MTBs (r1, c1) and (r2, c2) in MTBsCurr, such that the k − 1 smallest indexes of

both sets are the same do . Trying to merge these two MTBs to form a new MTB

12: if r1 ∪ r2 6= ∅ then . The two MTBs have some common rows

13: Define M = (r1 ∪ r2, c1 ∩ c2) as a new MTB

14: Remove any MTBs (r, c) in MTBs where r ∈ r1 ∪ r2 and c ∈ c1 ∩ c2 . Remove any

non-maximal MTBs

15: MTBsNext.add(M)

16: end if

17: end for

18: end while

19: for each MTB in MTBs do

20: Replace any grouped rows and columns with the original row and column indices in A

21: end for

22: Return MTBs

23: end function
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Algorithm 5 Algorithm for identifying all type L MTBs from a miRNA-target interaction

network
1: function TypeLMTB(R, C, A) . R: the set of all row nodes, each representing an mRNA

. C: the set of all column nodes, each representing a miRNA

. A: the miRNA-mRNA network in a (node → neighbor set) hash map format

2: Define S := R ∪ C as the set of row and column nodes not in any MTB yet

3: Define MTBs as the list of MTBs, initialized to an empty list

4: while S 6= ∅ do . While there are still row or column nodes not in any MTB

5: Get any node x from S

6: Define M as the nodes in the connected component of x, initialized to an empty set

7: Define Q as the set of newly discovered nodes in the connected component of x, initialized to {x}
8: while Q 6= ∅ do . While there may still be undiscovered members of the connected component

9: Define Q′ as the set of nodes in the connected component to be discovered, initialized to an empty

set

10: for each node y ∈ Q do

11: Q′ := Q′ ∪ A.get(y) . Add all neighbors of y to Q′

12: end for

13: M := M ∪ Q . Add all nodes discovered in the previous iterations to the MTB

14: Q := Q′ − M . Determine the set of newly discovered members of the connected component

15: end while

16: MTBs.add(M) . Add M as a new MTB

17: S := S − M . Redetermine the nodes not yet associated with any MTB

18: end while

19: Return MTBs

20: end function
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Algorithm 6 Algorithm for identifying high-scoring type Lmi MTBs from a miRNA-

target interaction network
1: function TypeLmiMTB(R, C, A, d, ρ) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA

. A: the adjacency matrix of the miRNA-mRNA network

. d: minimum distance between two initial MTBs both of which are to be kept

. ρ: minimum density of an MTB

2: Define MTBs := TypeRmiMTB(R, C, A) as the starting set of MTBs

3: for each pair of MTBs M1 = (r1, c1) and M2 = (r2, c2) in MTBs do

. Remove initial MTBs that are too similar to some others

4: if dist(M1, M2) < d then . Remove the smaller one if the two initial MTBs are too similar, checked in

the same way as in Algorithm 1 of Du et al., 2008

5: if r1 + c1 < r2 + c2 then

6: MTBs := MTBs - M1

7: else

8: MTBs := MTBs - M2

9: end if

10: end if

11: end for

12: Define R′ as the set of mRNAs not participating in any MTBs in MTBs

13: while R′ 6= ∅ do . Try adding one of the rows not in any MTBs to one of the MTBs

14: Define den as the highest density of the resulting MTB after any of the additions, initialized to 0

15: for each i ∈ R′ do

16: Define js as the columns with 1’s in A[i, .], the i-th row of A

17: for each M = (r, c) ∈ MTBs do

18: if Density((r ∪ {i}, c ∪ js)) > den then den := Density((r ∪ {i}, c ∪ js))

19: end if

20: end for

21: end for

22: if den > ρ then . Perform the addition only if the resulting density is higher than the threshold

23: Add the rows and columns to the MTB

24: Remove the rows from R′

25: if the resulting MTB is identical to another one in MTBs then

26: Remove it from MTBs

27: end if

28: else

29: Break the while loop

30: end if

31: end while

32: Return MTBs

33: end function
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Algorithm 7 Algorithm for identifying high-scoring type Lm MTBs from a miRNA-

target interaction network
1: function TypeLmMTB(R, C, A, d, ρ) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA

. A: the adjacency matrix of the miRNA-mRNA network

. d: minimum distance between two initial MTBs both of which are to be kept

. ρ: minimum density of an MTB

2: Define MTBs := TypeRmMTB(R, C, A) as the starting set of MTBs

3: for each pair of MTBs M1 = (r1, c1) and M2 = (r2, c2) in MTBs do

. Remove initial MTBs that are too similar to some others

4: if dist(M1, M2) < d then . Remove the smaller one if the two initial MTBs are too similar, checked in

the same way as in Algorithm 1 of Du et al., 2008

5: if r1 + c1 < r2 + c2 then

6: MTBs := MTBs - M1

7: else

8: MTBs := MTBs - M2

9: end if

10: end if

11: end for

12: Define C′ as the set of miRNAs not participating in any MTBs in MTBs

13: while C′ 6= ∅ do . Try adding one of the columns not in any MTBs to one of the MTBs

14: Define den as the highest density of the resulting MTB after any of the additions, initialized to 0

15: for each j ∈ C′ do

16: Define is as the rows with 1’s in A[., j], the j-th column of A

17: for each M = (r, c) ∈ MTBs do

18: if Density((r ∪ is, c ∪ {j})) > den then den := Density((r ∪ is, c ∪ {j}))
19: end if

20: end for

21: end for

22: if den > ρ then . Perform the addition only if the resulting density is higher than the threshold

23: Add the rows and columns to the MTB

24: Remove the columns from C′

25: if the resulting MTB is identical to another one in MTBs then

26: Remove it from MTBs

27: end if

28: else

29: Break the while loop

30: end if

31: end while

32: Return MTBs

33: end function
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Algorithm 8 Algorithm for identifying high-scoring type Lgen MTBs from a miRNA-

target interaction network
1: function TypeLgenMTB(R, C, A, d, ρ) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA

. A: the adjacency matrix of the miRNA-mRNA network

. d: minimum distance between two initial MTBs both of which are to be kept

. ρ: minimum density of an MTB

2: Define MTBs := TypeRgenMTB(R, C, A) as the starting set of MTBs

3: for each pair of MTBs M1 = (r1, c1) and M2 = (r2, c2) in MTBs do

. Remove initial MTBs that are too similar to some others

4: if dist(M1, M2) < d then . Remove the smaller one if the two initial MTBs are too similar, checked in

the same way as in Algorithm 1 of Du et al., 2008

5: if r1 + c1 < r2 + c2 then

6: MTBs := MTBs - M1

7: else

8: MTBs := MTBs - M2

9: end if

10: end if

11: end for

12: Define R′ as the set of mRNAs not participating in any MTBs in MTBs

13: Define C′ as the set of miRNAs not participating in any MTBs in MTBs

14: while R′ 6= ∅ or C′ 6= ∅ do . Try adding one of the rows not in any MTBs to one of the MTBs

15: Define denR as the highest density of the resulting MTB after any of the additions, initialized to 0

16: for each i ∈ R′ do

17: for each M = (r, c) ∈ MTBs do

18: if Density((r ∪ {i}, c)) > denR then denR := Density((r ∪ {i}, c))

19: end if

20: end for

21: end for

22: if denR > ρ then . Perform the addition only if the resulting density is higher than the threshold

23: Add the row to the MTB

24: Remove the row from R′

25: if the resulting MTB is identical to another one in MTBs then

26: Remove it from MTBs

27: end if

28: end if

. Try adding one of the columns not in any MTBs to one of the MTBs

29: Define denC as the highest density of the resulting MTB after any of the additions, initialized to 0

30: for each j ∈ C′ do

31: for each M = (r, c) ∈ MTBs do

32: if Density((r, c ∪ {j})) > denC then denC := Density((r, c ∪ {j}))
33: end if

34: end for

35: end for

36: if denC > ρ then . Perform the addition only if the resulting density is higher than the threshold

37: Add the column to the MTB

38: Remove the column from C′

39: if the resulting MTB is identical to another one in MTBs then

40: Remove it from MTBs

41: end if

42: end if

43: if denR ≤ ρ and denC ≤ ρ then

44: Break the while loop

45: end if

46: end while

47: Return MTBs

48: end function
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A unified general model of MTB

It is possible to generalize all eight types of MTB by one single unified model.

A general MTB is defined as a submatrix of the input matrix of miRNA-mRNA

interactions. Each MTB is associated with a score indicating its proximity to the

ideal case. Specifically, let R and C be respectively the sets of all rows (mRNAs)

and all columns (miRNAs) in the input matrix, r and c be the rows and columns

involved in an MTB, aij represents the element at row i and column j of the matrix,

and k0, k1 and k2 are parameters with non-negative values. The score of an MTB

(r, c), f(r, c), is defined by the following formula:

f(r, c) = 1− k0

∑
i∈r,j∈c(1− aij)

|r||c|
− k1

∑
p∈(R−r),j∈c apj

|R− r||c|
− k2

∑
i∈r,q∈(C−c) aiq

|r||C − c|

The scoring formula consists of four parts. The first part is the constant value 1,

which represents the maximum score of an MTB. The other three parts are penalty

terms for missing 1’s in the MTB, extra 1’s on the same columns outside the MTB,

and extra 1’s on the same rows outside the MTB, respectively. The three parameters

determine which penalty terms to apply and their relative weights. For the eight

MTB types defined, the algorithms we used to identify the corresponding MTBs can

be considered as algorithms for finding top-scoring MTBs, defined as some specific

instantiations of this general model with different sets of parameter values, as shown

in Table S1.

Table S1 Relationships between the unified general model and the MTBs identified by our algorithms

for the eight types of MTB. *: For the L, Lmi, Lm and Lgen types, we also have an additional

connectedness requirement between the rows and columns.

MTB type k0 k1 k2

R ∞ ∞ ∞
Rmi ∞ ∞ 0

Rm ∞ 0 ∞
Rgen ∞ 0 0

L 0* ∞ ∞
Lmi 1* ∞ 0

Lm 1* 0 ∞
Lgen 1* 0 0

For type R MTB, having any missing 1’s in a submatrix or extra 1’s on the

same rows or columns outside the submatrix would result in a negative infinity

score, which disqualifies it as a valid MTB. For type Rmi, the penalty terms for
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missing 1’s in a submatrix and extra 1’s on the same columns outside it still apply,

but the penalty for extra 1’s on the same rows outside the submatrix is waived.

Similarly, for type Rm, extra 1’s on the same rows are penalized, but extra 1’s on

the same columns are not. For type Rgen, both are not penalized and any submatrix

having only 1’s is qualified as a MTB. For type L, extra 1’s on the same rows and

columns outside a submatrix are penalized, but missing 1’s within it is not. Similar

arguments apply for types Lmi, Lm and Lgen, except that in these cases the within-

MTB density of 1’s is used to evaluate the quality of a MTB, but the allowed extra

1’s on the same rows or columns are simply ignored.

In addition to the eight standard types, new types of MTB can be defined by

using different combinations of values for the parameters k0, k1 and k2. High-scoring

MTBs can be found by heuristic optimization algorithms. In some special cases, as

with some of the eight standard types, it is also possible to derive efficient algorithms

to return all MTBs or all maximal MTBs.

The scoring formula can also be written in another way. Suppose now r is a binary

vector with |R| entries in total, where an entry is 1 if the corresponding row is a

member of the MTB of interest and 0 if not. Similarly, we redefine c as the binary

vector with |C| entries in total, where an entry is 1 if the corresponding column is

a member of the MTB and 0 if not. The scoring formula can then be written in

terms of these vectors and the whole miRNA-mRNA interaction matrix A:

f(r, c) = 1− k0
rtrctc− rtAc

rtrctc
− k1

(1− r)tAc

(R− r)t(R− r)ctc
− k2

rtA(1− c)
rtr(C − c)t(C − c)

,

where 1 represents the binary vector of all 1’s (with a length depending on the

context).

The main reason to write the scoring formula using the vector and matrix rep-

resentations is that the general MTB model can then be extended to handle non-

binary interaction matrices, in which each element aij takes on a continuous value

between 0 and 1 that represents the confidence of the miRNA targeting the mRNA.

Correspondingly, one may also allow fractional values in the r and c vectors to

represent fussy MTB memberships. With these changes, a whole series of other
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well-established optimization methods can be applied to identify MTBs of high

scores.
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Supplementary figures
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Figure S1 Workflow for studying (a) expression correlations between members of same MTBs and

(b) functional relationships between genes in same MTBs.
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Figure S2 Statistical significance of the negative correlations between the expression levels of

miRNAs and mRNAs in the same MTBs. The p-values were computed based on the expressed

union sets without TarBase interactions, for (a) the high-confidence set and (b) the high-coverage

set as compared to a random background sampled from all expressed mRNAs and miRNAs; and

(c) the high-confidence set and (d) the high-coverage set as compared to a background consisting

of miRNA-mRNA pairs with interactions in the input network but are not in same MTBs. In the

figures, 1E-16 represents the smallest p-value that could be outputted by our program. MTB

types with no identified MTBs are omitted.
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Figure S3 Statistical significance of the negative correlations between the expression levels of

miRNAs and mRNAs in the same MTBs, when related miRNAs were grouped. The p-values were

computed based on the expressed union sets with TarBase interactions, for (a) the high-confidence

set and (b) the high-coverage set as compared to a random background sampled from all

expressed mRNAs and miRNAs; and (c) the high-confidence set and (d) the high-coverage set as

compared to a background consisting of miRNA-mRNA pairs with interactions in the input

network but are not in same MTBs. In the figures, 1E-16 represents the smallest p-value that

could be outputted by our program. MTB types with no identified MTBs are omitted.



Yip et al. Page S15 of S17

1.0E-16 

1.0E-14 

1.0E-12 

1.0E-10 

1.0E-08 

1.0E-06 

1.0E-04 

1.0E-02 

1.0E+00 
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

p-
va

lu
e 

Correlation threshold, t 

Rmi 

Rm 

Rgen 

L 

Lmi 

Lm 

Lgen 

(a)

1.0E-16 

1.0E-14 

1.0E-12 

1.0E-10 

1.0E-08 

1.0E-06 

1.0E-04 

1.0E-02 

1.0E+00 
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

p-
va

lu
e 

Correlation threshold, t 

Rm 

Rgen 

Lm 

Lgen 

(b)

1.0E-16 

1.0E-14 

1.0E-12 

1.0E-10 

1.0E-08 

1.0E-06 

1.0E-04 

1.0E-02 

1.0E+00 
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

p-
va

lu
e 

Correlation threshold, t 

Rmi 

Rm 

Rgen 

L 

Lmi 

Lm 

Lgen 

(c)

1.0E-16 

1.0E-14 

1.0E-12 

1.0E-10 

1.0E-08 

1.0E-06 

1.0E-04 

1.0E-02 

1.0E+00 
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

p-
va

lu
e 

Correlation threshold, t 

Rm 

Rgen 

Lm 

Lgen 

(d)

Figure S4 Statistical significance of the negative correlations between the expression levels of

miRNAs and mRNAs in the same MTBs, when related miRNAs were grouped. The p-values were

computed based on the expressed union sets without TarBase interactions, for (a) the

high-confidence set and (b) the high-coverage set as compared to a random background sampled

from all expressed mRNAs and miRNAs; and (c) the high-confidence set and (d) the high-coverage

set as compared to a background consisting of miRNA-mRNA pairs with interactions in the input

network but are not in same MTBs. In the figures, 1E-16 represents the smallest p-value that

could be outputted by our program. MTB types with no identified MTBs are omitted.
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Figure S5 Statistics of the MTBs identified from the high-confidence expressed union set without

TarBase interactions. For each type of MTB, the average number of mRNAs per MTB, average

number of miRNAs per MTB and the number of MTBs identified by our algorithm are shown.
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Figure S6 Statistics of the MTBs identified from the high-coverage integrated expressed union set

with TarBase interactions. For each type of MTB, the average number of mRNAs per MTB,

average number of miRNAs per MTB and the number of MTBs identified by our algorithm are

shown.
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Figure S7 Statistics of the MTBs identified from the high-coverage integrated expressed union set

without TarBase interactions. For each type of MTB, the average number of mRNAs per MTB,

average number of miRNAs per MTB and the number of MTBs identified by our algorithm are

shown.
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Figure S8 Statistical significance of the functional enrichment scores of the genes from same type

Lgen MTBs. The p-values were computed based on the expressed union sets without TarBase

interactions, for (a) the high-confidence set and (b) the high-coverage set. In the figures, 1E-16

represents the smallest p-value that could be outputted by our program.




