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Exact computation of variance of K-function due to random subsampling

The randomness in the estimate of K(r) due to subsampling arises due to the Bernoulli random variables
B1, B2, . . . , BN . The mean and variance of K(r) can be estimated using the first and second moments of
K(r).
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Since Bi are i.i.d. and B2
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The last expression can be directly computed or approximated with an integral.

Exact computation of K-function in the presence of localization uncertainty

For example, if Wi are assumed to be independently drawn zero mean Gaussian random vectors, the vector
Xi −Xj +Wi −Wj is a Gaussian random vector with mean Xi −Xj , and covariance equal to the sum of



the covariances of Wi and Wj , and hence ‖Xi−Xj +Wi−Wj‖2 is a non-central χ2 random variable, with
known distribution. The expected value of K ′(r) is given by
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The expected value inside the summation is nothing but the complementary cumulative distribution func-
tion of a non-central χ2 random variable, which is easily computed using the Marcum Q-function.

Justification for the choice of estimator of true locations

In the Methods section of main text, the following estimators are defined.
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The estimate of (3) can be justified under the assumption that estimates of the x-coordinate of the cluster
center in (4) and cluster spread of the x-coordinate in (5) are accurate. Let
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denote the estimate of (3) when the cluster center and spread are accurate. It is easy to verify that
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This suggests that by using the estimates of (3), the estimate of the squared distance between any pair of
points in the cluster is unbiased, and thus the K-function computed using distances between the estimated
points is expected to be accurate. This is the main reason for using the estimate of (3). It is to be noted
here that if one were interested in minimising the squared error E[‖X̂i − Xi‖2] in the position of each
molecule, then one would use the MMSE estimator of

x+
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in (3). However, it was observed that in practice this leads to a shrinking of the reconstructed clusters. The
current estimator does not have this drawback and has the added advantage of accurately approximating
distances between points in the cluster.



Effect of clustering of localizations on reconstruction

The reconstruction method presented in the paper works on a cluster-by-cluster basis, and therefore the
SMLM localizations must be first preprocessed by means of clustering algorithms like DBSCAN [1] or oth-
ers [2], before applying the method. The method presented assumes that the clustering errors are minimal.
Example reconstructions after including clustering by DBSCAN is shown in Figure S5, which provided
satisfactory results. The user is recommended to try out different clustering methods and parameters for
a given dataset, so as to minimize the clustering errors. There are obvious limitations to this approach:
in a case where the clusters are overlapping, it might be difficult for clustering algorithms to identify true
clusters.

For the reconstruction method, since the X and Y coordinates are estimated separately, the method works
best if the clusters are elliptical if not circular. As mentioned already, it is best if the clusters are well
separated. Also, if a cluster with an arbitrarily complicated shape is clustered into multiple small symmetric
clusters by the clustering algorithm, since the reconstruction method works on the basis of shrinking the
clusters about a central point for each cluster, it might introduce artifacts, since each of the small clusters
will be shrinked about their centers rather than the center of the true cluster. Therefore, the user must be
careful to make sure that the clustering step does not introduce major errors or artifacts.

If the clusters are expected to have other specific parametric shapes, e.g., polygonal, helical etc., it might
be possible to adapt the reconstruction method proposed in this paper to these alternate cluster shapes.
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