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1 Predictions for choice probabilities

Most often, choice signals are computed in the form of choice probabilities. This first requires to compute some

temporal average r̄i of the underlying spike trains. Then, CP for every neuron i measures the area under the

ROC curve between the two distributions of r̄i, respectively conditioned on c = 0 and c = 1 [5]. With the same

assumptions as in our main text (optimal behavioral model, Gaussian statistics), Haefner et al. [6] have shown

that the CP signal for each neuron i is approximately proportional to the (Pearson) correlation between r̄i and

ŝ, that is:

CPi −
1

2
'
√

2

π

Cov[r̄i, ŝ]

σ(r̄i)σ(ŝ)
=

√
2

π

κ(Z)−1d̄i
Z σ(r̄i)

. (1)

The second equality makes the link with the notations of our article. For example, let us consider a typical

neuron from our simulations, and its spike count r̄i over w = 400 msec of stimulation (as in main text, Figure

4a). We assume a CC value d̄i = 0.1 Hz, and a Poisson-like firing rate at 20 Hz leading to σ(r̄i) =
√

20/0.4 ' 7

Hz. The JND for our “animal” is Z? ' 3 Hz, and with our chosen stimuli we have κ(Z?) ' 0.067 (eq. 46 from

the main text). In these conditions, we recover a typical value CPi ' 0.53.

In our notations, CPi is predicted to be proportional to the choice covariance d̄i, computed with the same

temporal averaging as r̄i. However, CPi is also inversely proportional to the standard deviation of the spike

counts σ(r̄i), which depends on the time window w used to compute them. For example, if we used instead an

integration of w = 40 msec, we would find σ(r̄i) =
√

20/0.04 ' 22.3 Hz, and consequently CPi ' 0.51. As a

result there is no single “reference” experimental value for CPs. Conversely, choice covariance signals di(t) used

in our article do not suffer from that complication.
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2 Sensitivity as a function of w

In the forms of the main text, it is not explicit how the value of w influences the variance of ŝ, and thus the

readout’s sensitivity. Here we show that under mild assumptions, the doubly-integrated covariance matrix ¯̄C

(eq. 40 from the main text) scales as w−1.

To allow a direct comparison between different possible choices for the shape function h(x), we impose that

it should be positive (h(x) ≥ 0), normalized (
∫
x
h(x)dx = 1), and have a unit time constant (

∫
x
h(x)2dx = 1).

Common choices could include a square kernel, a decreasing exponential, a Gaussian kernel, etc.1 For concision,

we note the integration kernel at scale w: hw(u) := w−1h(u/w). Then, let us note Gw(u, v) := hw(tR −
u)hw(tR − v). It verifies the following property:

∫
t
Gw(t, t+ τ)dt = (hw ? hw)(τ), the autocorrelation of kernel

hw. As a result, we can rewrite the variance equation (Methods, eq. 36) in the form:

Var[ŝ|s] =
∑
ij

aiaj

∫
t,τ

Gw(t, t+ τ)Cij(t, t+ τ)dt dτ

=
∑
ij

aiaj

∫
τ

(hw ? hw)(τ)
(∫

t

Gw(t, t+ τ)

hw ? hw(τ)
Cij(t, t+ τ)dt

)
dτ

= w−1
∑
ij

aiaj

∫
τ

(h ? h)(τ/w)C̃ij(τ)dτ. (2)

In the second line, the function of t defined by the fraction is positive and has an integral of 1, so it operates

as a temporal averaging on Cij(t, t+ τ). The resulting average over t, noted C̃ij(τ) in the third line, is thus a

form of cross-correlogram between neurons i and j, measuring the average covariance between the spikes from

i and j separated by a time lag τ .

Since the shape h has a unit time constant, its autocorrelation function typically has support on [−1, 1], and

verifies (h ? h)(0) = 1. On the other hand, C̃ij(τ) typically has support on some interval [−τC , τC ], where τC is

the typical time scale of noise correlations in the population. As a result, as soon as w gets bigger than τC , the

integral in eq. 2 approaches a constant value, and the variance of ŝ scales as w−1. The variance of ŝ also scales

as w−1 when w → 0, because all auto-correlograms C̃ii(τ) display a Dirac peak in τ = 0, due to the spiking

nature of the neurons [3].

This whole analysis holds similarly in the more general case of a non-deterministic tR, only with a slightly

different definition of kernel Gw(u, v) (supplementary section 6).

1Square : h(x) = 1[0,1](x). Exponential : h(x) = 1
R+ (x)2e−2x. Gaussian : h(x) =

√
2e−2πx2 .
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3 Encoding neural network

We detail here the architecture of the artificial encoding network used to test our method. This ad-hoc network

was designed to display some classic features of sensory cortical neurons involved in perceptual decision-making

tasks (e.g, V2, MT, S1, S2, etc.). To reproduce the diversity of response naturally observed at the population

level [7], neurons in our network have broadly distributed firing rates and pairwise noise correlations (main text,

Figure 4a). We also wished to reproduce the continuum of stimulus tuning observed in real populations, where

some neurons have positive tuning (rate increase when s increases), and other neurons have negative tuning.

The network consists of two distinct layers of spiking neurons, of which only the second layer (encoding

layer) is “visible” to the experimenter (Figure 1). The first layer (L1) consists of 2000 = 2× 1000 independent

Poisson neurons, whose firing intensity s constitutes the stimulus encoded by the second layer. On each trial,

s takes one of three possible values 25, 30 and 35 Hz. All neurons in L1 are equivalent, but segregated in two

distinct populations according to their projections on the second layer. The Poisson firing constitutes the only

source of randomness in the network from trial to trial.

The second layer (L2) consists of 5000 leaky integrate-and-fire (LIF) neurons, some of which receive input

from L1, and who are all coupled through a sparse, balanced connectivity. The neurons are modeled according

to the following differential equations for their voltages,

τ
dV

(y)
i

dt
= −V (y)

i (t) + Vrest + I(y) +
∑
j∈L1

W
(1,y)
ji δ(t− tj) +

∑
k∈L2

W
(2)
ki δ(t− tk −∆ki).

The neuron emits a spike at each time ti when V
(y)
i reaches threshold Vthr, after what the neuron’s potential is

reinitialized at resting value Vrest, and held there during a refractory period of 3 msec. All neurons share the

same membrane time constant τ = 20 msec, threshold Vthr = −50 mV, and resting potential Vrest = −60 mV.

Upper index y denotes one of three possible subtypes of neurons in L2: Positively-biased neurons (y = p, 1000

neurons), negatively-biased neurons (y = n, 1000 neurons) and unbiased neurons (y = u, 3000 neurons).

Positively-biased neurons receive sparse excitatory connections from 1000 neurons in L1 (W
(1,p)
ji ≥ 0),

whereas negatively-biased neurons receive sparse inhibitory connections from the 1000 other neurons in L1

(W
(1,n)
ji ≤ 0). Unbiased neurons receive no direct input from L1 (W

(1,u)
ji = 0). The connection matrices W(1,y)

are sparse with (Erdös-Renyi) connection probability p = 0.01. As these asymmetries create biases in the total

synaptic inputs to each type of cell, the intrinsic currents I(p), I(n) and I(u) also vary depending on neuron

subtype, to ensure homogeneous firing properties inside the three populations (see Table 1).

Then, all L2 neurons are connected through a single matrix W(2) of recurrent connections with (Erdös-

Renyi) connection probability p = 0.03—independently of their subtype. Non-zero connection strengths are

picked uniformly in an interval [wmin, wmax]: see Table 1. Note that L2 recurrent connections can be both

excitatory and inhibitory, a departure from biology allowing for an easier implementation. Finally, the re-

current connections in L2 are associated to synaptic delays: for each pair (i, k) of connected L2 neurons, the

random delay ∆ki is drawn uniformly between 0 and 5 msec. This substantially increases the diversity of

neural responses in the population, particularly at the level of JPSTHs (Figure 4d from the main text). This

is interesting because our method is specifically designed to analyze generic, heterogeneous population activities.
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Subtype I(y) w
(1,y)
min w

(1,y)
max w

(2)
min w

(2)
max

Pos. biased (p) 0 0 2 -2 2
Neg. biased (n) 14 -4 0 -2 2

Unbiased (u) 5 0 0 -2 2

Table 1: Connectivity parameters in the three subtypes of L2 neurons. All values are expressed in millivolts.

We implemented and simulated the network using Brian, a spiking neural network simulator in Python [4].

Our simulation consisted of many successive epochs of 300 msec with all possible successions of the three stim-

ulus values s (as in Figure 1a from the main text). Since the input Poisson neurons were always firing close to

30 Hz, there was no strong transient at stimulus onset as is often observed in real sensory neurons. In our case,

the change of activity between two successive stimuli was always only differential, and rather weak (see Figure

4b from the main text).

Figure 2 displays additional information (in complement to main text, Figure 4) regarding noise correlations

in the network. Panel (a) displays the joint distribution of signal and noise correlations in the network. Here,

signal correlation is defined over only three numbers per neuron, namely, the neuron’s mean firing rate for each

of the three stimuli. As a result of this simplistic definition, most neural pairs have correlations close to 1 (same

tuning polarity) or -1 (opposite tuning polarities). The red curve is the average value of the noise correlation,

conditioned on the signal correlation. It stays at zero, indicating that noise correlations in the population are

balanced, and essentially decoupled from signal correlations.

Panel (b) summarizes the temporal structure of noise correlations in the network. It is constructed as

in [1] (their Figure 5D) : for each temporal offset τ , we counted the proportion of neural pairs (i, j) having a

significantly non-null value for their cross-correlogram CCGij(τ). 2 The typical correlation times range from

0 to a few tens of msec. Bair et al. 01 [1] find very similar time scales in area MT. On the other hand, they

observe a larger proportion of the cells with significant correlations (around 70% of tested pairs, at time lag

τ = 0 msec).

2We deemed “significant” any value |CCGij(τ)| exceeding 3σij(τ), where σ2
ij(τ) is the expected variance for the measure

CCGij(τ) under the hypothesis that the two neurons are independent. If CCGij(τ) is estimated from T (discrete, contiguous) time
bins over N trial repetitions, and we assume stationary firing for the neurons, then one can show that

σ2
ij(τ) =

1

NT 2

T∑
∆=−T

CCGii(∆)CCGjj(∆)
(
T − |∆|

)
.

As a result, σ2
ij(τ) can be estimated experimentally from the neurons’ auto-correlograms CCGii(∆) and CCGjj(∆).
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Figure 1: Simulated neural network for testing the inference method (see text for details).

Figure 2: Supplementary information about noise correlations in the network. (a) Joint distribution
of signal and noise correlations (for spike counts over 300 ms after stimulus onset). (b) Percentage of neural
pairs with a significantly non-null value of the cross-correlogram CCGij(τ), as a function of time lag τ . See the
text for details.
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4 Bayesian regularization of the optimal readout

The regularization procedure aims to counteract overfitting effects that may appear in Fisher’s linear discrim-

inant (main text, eq. 12) when the computation is based on too little data points. Our procedure is directly

inspired by Bayesian linear regression, as exposed in Bishop 2006 [2], chapter 3. We refer the reader to this

book for additional details.

We start with our notations—mostly similar to those introduced in the main text. We directly consider the

time-integrated versions of the spike trains, with some fixed parameters w and tR, and focus on some candidate

readout ensemble E of size K. Then, our experimental data consist of the recorded spike counts r̄iq, where

i = 1 . . .K runs over neurons in E , and q = 1 . . . T represents the set of recorded trials. We will note r̄q for the

vector of neural activities on trial q, and sq for the stimulus value used on trial q.

We will generally note E[X] = T−1
∑T
q=1Xq for the (empirical) average of quantity Xq over trials. Without

loss of generality, we make the offset r̄q ← r̄q−E[r̄] and sq ← sq−E[s]. This will simplify the following formulas

by removing cumbersome constant terms. As in the main text, we introduce the following (empirical) statistics:

A := E[r̄r̄>]

σ2
s := E[s2]

b̄ := σ−2
s E[sr̄].

Matrix A is the total covariance matrix, b̄ is the tuning vector, and σ2
s is the variance of the tested stimuli.

Note the simplified definitions as compared to the main text, because we now have E[r̄] = 0 and E[s] = 0.

The goal of Fisher’s linear discriminant is to find a vector a maximizing the signal-to-noise ratio (SNR) of

variable a>r̄, with respect to the stimulus s. Under our assumption that the system depends linearly on s, the

signal term writes σ2
s(a>b̄)2 (main text, eq. 51). Mathematically, the simplest option is to fix this signal term

once and for all. Then, the SNR will simply be maximized by minimizing the total covariance, a>Aa (main

text, eq. 53). The logical choice for the signal term is to assume a>b̄ = 1 (unbiased percept). This imposes

that vector a lie in a certain hyperplane, of dimension K − 1. We hard-code this constraint by the following

reparametrization:

a =
b̄

‖b̄‖2
+ Mc, (3)

where M is a (K ×K − 1) matrix whose columns constitute an orthogonal basis of {b̄}⊥, the orthogonal space

of vector b̄. Vector c ∈ RK−1 constitutes our reparametrization of vector a.

At this point, we can make the link with classic linear regression. Indeed, the mean square error of a>r̄ as
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an estimator of stimulus s writes:

Fdata(a) : =

T∑
q=1

(sq − a>r̄q)
2

=
( T∑
q=1

s2
q

)
− 2a>

( T∑
q=1

sq r̄q

)
+ a>

( T∑
q=1

r̄q r̄
>
q

)
a

= T
(
σ2
s − 2σ2

s a>b̄ + a>Aa
)
.

Having imposed a>b̄ = 1, we are left with Fdata(a) = T (a>Aa − σ2
s). In turn, a>Aa is the total covariance.

So ultimately, maximizing the SNR is equivalent to minimizing Fdata(a) under the constraint that a>b̄ = 1.

In Bayesian linear regression, one does not simply minimize Fdata(a), but uses it to derive a full distribution

a posteriori for vector a given the data [2]. One first considers a (Gaussian) generative model for the data given

a, depending on a hyperparameter named β:

P(sq|a, r̄q, β) =
( β

2π

) 1
2

exp
(
− β (sq − a>r̄q)

2

2

)
.

On the other hand, one requires that the inferred vector a be regular : its entries ai should not take too big

values, because this is typically a mark of overfitting, see [2]. We thus impose a regularization prior on a,

depending on a hyperparameter named α:

P(a|α) =
( α

2π

)K
2

exp
(
− α‖a‖

2

2

)
.

This gives rise to the overall generative model for the data:

P({sq}q=1...T , c|α, β) =
( β

2π

)T
2
( α

2π

)K−1
2

exp
(
− β

2
Fdata

( b̄

‖b̄‖2
+ Mc

)
− α

2
‖c‖2

)
. (4)

Note the reparametrization of vector a with vector c (eq. 3), to account for the fact that a>b̄ = 1. Just as in

classic Bayesian regression, the log-probability in eq. 4 is a quadratic function of vector c.

The regularization procedure per se consists of finding the hyperparameters (α, β) which maximize the

overall likelihood of the data, when marginalizing over the readout vector c. In other words, we seek (α, β) that

maximize the so-called evidence function:

P({sq}q=1...T |α, β) =

∫
c∈RK−1

P({sq}q=1...T , c|α, β)dc. (5)

This maximization is often referred to as empirical Bayes. It can be performed based on an EM algorithm,

where c is the latent variable. We refer to [2] for details, and only provide here the algorithm. We note

c ∼ N (mT ,ΣT ) for the posterior distribution of vector c. In the E step, we deduce the values of mT and ΣT
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from eq. 4, assuming a fixed value of α and β:

ΣT =
(
αId + βTM>AM

)−1
,

mT = −βTΣTM>A
b̄

‖b̄‖2
,

aT =
b̄

‖b̄‖2
+ MmT .

(Vector aT is directly obtained from mT with eq. 3.) In the M step, we find the hyperparameters α and β which

maximize the likelihood in eq. 4, marginalized over c assuming the distribution c ∼ N (mT ,ΣT ):

α =
K − 1

‖mT ‖2 + tr(ΣT )
,

β =
(
a>TAaT + tr(M>AMΣT )

)−1

.

By iterating these two steps, the EM algorithm is guaranteed to converge to a (local) maximum for the evidence

function in eq. 5.

At convergence, we obtain a solution to our original problem of regularization. The hyperparameters α

and β implement the optimal trade-off between minimizing a>Aa (maximizing the SNR), and minimizing ‖a‖2

(regularization). This optimal trade-off will mostly depend on T , the number of trials entering the computation

of A and b̄. The final vector aT is the maximum a posteriori estimate for vector a. A simple computation

shows that M>(βTA + αId)aT = 0, meaning that (βTA + αId)aT is proportional to b̄. Hence, as stated in

the main text, one has

aT =
(A + λId)−1b̄

b̄>(A + λId)−1b̄
,

with the strength of regularization given by λ = α/(βT ). (We have not investigated whether the optimal λ

found by our procedure coincides with the one that would be found in classic Bayesian regularization, without

imposing a>b̄ = 1. In general, they are probably of comparable magnitude.)

We define the corrected JND, Z, as the expected value for the noise variance a> ¯̄Ca under the posterior

distribution for a (plus the potential decision noise, σ2
d). One can show that it verifies : Z2 = β−1 − σ2

s + σ2
d

(see main text, eq. 53). Similarly, we define CC curves (main text, eq. 9) as the expected value for C̄(t)a under

the posterior distribution for a. By linearity, this is simply C̄(t)aT .

Naturally, Bayesian linear regression is just a model-based inference from the data, so it is not guaranteed

to always counteract overfitting in the optimal fashion. In our empirical tests, the JNDs recovered after reg-

ularization were still somewhat smaller than their true values (as can be seen in the main text, Figure 5d-e),

meaning that there was some residual overfitting. Nonetheless, the situation was much improved compared to

when the correction was not applied, and we would strongly recommend to apply this procedure in data-scarce

situations. As a drawback, the simple linear inversion required in the original formula for Fisher’s LD (main

text, eq. 12) is replaced by multiple iterations of the EM algorithm—which must be performed anew for every

tested set of readout parameters. So the regularization procedure is quite time-costly.

8



5 Unbiased estimation of CC indicators q and V

When it comes to computing CC indicators q(u, t) and V , the finite amount of data can bias the results in two

ways. First, due to the finite number of trials, each neuron’s individual statistic (say, d?i ) will differ from the

“perfect” value that would be obtained from an infinite number of trials. Second, due to the finite number of

neurons, each population-wide indicator (say, ¯̄q? =< b̄i d̄
?
i >i) will differ from the “perfect” value that would be

obtained if all neurons in the population had been recorded.

Here, we present a generic description of this problem, which applies both to the “true” and “predicted” CC

indicators from the main text, and we detail the specific corrections to ensure unbiasedness.

5.1 Nature of the problem, notations

We are given a neural population of interest, Ω, of cardinal M . Each neuron i in the population has two

attributes bi and di, and we wish to estimate the following population-wide indicators :

q :=
〈
bidi

〉
i∈Ω

, (6)

B :=
〈
b2i
〉
i∈Ω

, (7)

D :=
〈
d2
i

〉
i∈Ω

, (8)

V := BD − q2 . (9)

The names are directly inspired from the main text, without the complications due to temporal dependen-

cies, temporal averaging, stars, readout parameters, etc. For clarity, we also give explicit names to the two

intermediate quantities B and D, involved in the computation of V .

Unfortunately, all the data are not available to perform these computations exactly, and we need to introduce

some more notations. First, we will use the generic notation
〈
xi
〉
i∈R to denote the population average of quantity

xi over neurons i in some fixed neural ensemble R, possibly smaller than Ω. That is:

〈
xi
〉
i∈R :=

1

Card(R)

∑
i∈R

xi.

In our case, R is a generic notation for any subset of the neurons that were actually recorded ; we note R for its

cardinal. We assume that the choice of R amongst Ω is totally random and independent from everything else.

Second, due to the finite number of recording trials, we do not access the “perfect” values bi and di, but

experimental versions b̂i and d̂i which are corrupted by measurement noise. In our case, we may assume that

b̂i and d̂i are unbiased estimators of their true values, meaning that

E[̂bi] = bi,

E[d̂i] = di.

Here, the expectation refers to the random nature of the recording trials which lead to the measures of b̂i and d̂i.

In turn, the variances Var[̂bi] and Var[d̂i] give the strength of the respective measurement errors. For simplicity,
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we assume that the measurement error on each b̂i or d̂i is independent from all other errors. There are several

ways of estimating these errors in practice (e.g., based on a model). In this work, we estimated each quantity

Var[x̂i] from a bootstrap principle, as detailed below.

5.2 Unbiased estimators

Unbiased estimator for q. Given the above notations, our naive estimator for q in eq. 6 is:

q̂ :=
〈
b̂id̂i

〉
i∈R. (10)

This estimator is directly suitable for our needs, because it is unbiased. Indeed:

E
[
q̂
]

= E
[ 1

R

∑
i∈Ω

1
R
i b̂id̂i

]
=

1

R

∑
i∈Ω

E
[
1
R
i

]
E
[̂
bi
]
E
[
d̂i
]

=
1

R

∑
i∈Ω

R

M
bidi = q.

Conversely, the squaring operations involved in eq. 7-9 systematically transform measurement errors into positive

biases. For example, q̂2 is not an unbiased estimator of q2, so we need to introduce specific corrections. The

following lemma allows to derive all the corrections required below.

Lemma. Let {xi, yi}i∈Ω a set of values of interest over a population Ω, of cardinal M . Suppose that

• we access the values of xi through estimators x̂i for i ∈ S, a sub-ensemble of Ω of cardinal S ≤M ,

• we access the values of yi through estimators ŷi for i ∈ R, a sub-ensemble of S of cardinal R ≤ S,

and assume the following properties for the various estimators:

E(x̂i) = xi (unbiased estimator of xi)

E(ŷi) = yi (unbiased estimator of yi)

Cov(x̂i, ŷj) = δijWi (possible element-wise variance)

Then, the following quantity :

〈
x̂i
〉
i∈S

〈
ŷi
〉
i∈R − M − S

(S − 1)M

(〈
x̂iŷi

〉
i∈R −

〈
x̂i
〉
i∈S

〈
ŷi
〉
i∈R

)
︸ ︷︷ ︸ − 1

M

〈
Wi

〉
i∈R︸ ︷︷ ︸

“X term” “W term”

provides an unbiased estimator of
〈
xi
〉
i∈Ω

〈
yi
〉
i∈Ω

.

The proof is given at the end of this section. Rephrased, the sum of the “X” and “W” terms provides

an unbiased estimator of the quantity Cov
(〈
x̂i
〉
i∈S ,

〈
ŷi
〉
i∈R

)
. On the one hand, the “X term” assesses the

covariations of xi and yi from one neuron to the other. On the other hand, the “W term” will appear when

x̂i = ŷi, so that Wi = Var[x̂i], our measurement error on each xi.
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Unbiased estimator for q2. In this case, we apply the lemma with R = S, xi = yi = bidi, and their unbiased

estimator x̂i = ŷi = b̂id̂i, yielding the following unbiased estimator for q2:

[̂q2] := q̂2 − M −R
(R− 1)M

(〈
b̂2i d̂

2
i

〉
i∈R − q̂

2
)
− 1

M

〈
Var[̂bid̂i]

〉
i∈R. (11)

Unbiased estimator for BD. First, it is simple to obtain unbiased estimators for the intermediate quantities

B and D in eq. 7-8. For example:

E
[〈
b̂2i
〉
i∈S ] =

〈
b2i
〉
i∈Ω

+ E
[〈

Var[̂bi]
〉
i∈S

]
,

where the second term (average measurement error in the population) corresponds to the bias. A similar

relationship holds for d̂i. As a result:

B̂ :=
〈
b̂2i
〉
i∈S −

〈
Var[̂bi]

〉
i∈S is an unbiased estimator of B, (12)

D̂ :=
〈
d̂2
i

〉
i∈R −

〈
Var[d̂i]

〉
i∈R is an unbiased estimator of D. (13)

(Note that the available population for the average can be different for B̂ and D̂.)

In turn, B̂D̂ is not an unbiased estimator of BD. To derive the corrections, we apply the lemma with

xi = b2i measured over ensemble S, and yi = d2
i measured over ensemble R (assumed to be included in S).

Their respective unbiased estimators are x̂i = b̂2i −Var[̂bi] and ŷi = d̂2
i −Var[d̂i] (and so Wi = 0). Furthermore,

concerning the term x̂iŷi which appears in the lemma, we note that for every i ∈ R :

E
[
x̂iŷi

]
= b2i d

2
i = E

[̂
b2i d̂

2
i

]
−Var[̂bid̂i],

so the leftmost term can be replaced by the rightmost term without modifying its expected value. We deduce

the following unbiased estimator for BD:

[̂BD] := B̂D̂ − M − S
(S − 1)M

(〈
b̂2i d̂

2
i

〉
i∈R −

〈
Var[̂bid̂i]

〉
i∈R − B̂D̂

)
. (14)

5.3 Application : “true” and “predicted” indicators

Estimating measurement errors. We estimate all measurement errors thanks to a bootstrap principle. We

generate T surrogate versions of our data, by resampling with replacement from the original trials. Then, each

neuron’s individual statistic (say, d̂i) gives rise to T surrogate measures d̂
(rs)
i , and we estimate the measurement

error on di as:

Var[d̂i] :=
[ 1

T

T∑
rs=1

(d̂
(rs)
i )2

]
− d̂2

i . (15)

For the large-scale simulation presented in the article, we use T = 14 resamplings. Furthermore, we use

the same 14 resamplings to derive error bars on our final estimates (see main text). This departure from the
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statistical canon was imposed by the length of the whole inference procedure. As a result, when correcting for

measurement errors on a resampled set of data, we remove twice the estimated measurement error from eq. 15.

For example, for D in eq. 13, our “unbiased estimator” on resamplings is

D̂(rs) =
〈
(d̂

(rs)
i )2

〉
i∈R − 2

〈
Var[d̂i]

〉
i∈R.

This allows for D̂(rs) to have the same expectation as the original D̂. Without this ad hoc procedure, the final

CC indicators computed from the resamplings (q(rs) and V (rs)) would be systematically biased compared to

the original ones (q and V ).

True indicators. Let N be the set of all recorded neurons, of cardinal N . For the “true” indicators, the

individual neural data are b̂i and d̂?i . The population of interest Ω is the full population under study, of cardinal

M = Ntot, while the available ensemble is R = S = N . Then, eq. 10-14 lead to the following unbiased

estimators:

q̂? =
〈
b̂id̂

?
i

〉
i∈N̂[q?]2 = q̂?

2 − Ntot −N
(N − 1)Ntot

(〈
b̂2i d̂

2
i

〉
i∈N − q̂

2
)
− 1

Ntot

〈
Var[̂bid̂i]

〉
i∈N .

B̂ =
〈
b̂2i −Var

[̂
bi
]〉
i∈N

D̂? =
〈
(d̂?i )

2 −Var
[
d̂?i
]〉
i∈N

[̂BD?] = B̂D̂? − Ntot −N
(N − 1)Ntot

(〈
b̂2i d̂

2
i

〉
i∈N −

〈
Var[̂bid̂i]

〉
i∈N − B̂D̂

?
)
.

V̂ ? =
N(Ntot − 1)

(N − 1)Ntot

(
B̂D̂? − q̂?2

)
+

Ntot − 1

(N − 1)Ntot

〈
Var[̂bid̂i]

〉
i∈N .

The last line is directly obtained as V̂ ? = [̂BD?] − ̂[q?]2. As announced, specific corrections appear owing

to the finite amounts of data. Concerning the finite number of neurons, the correction on the first term is

akin to the famous “N/(N − 1)” correction on a sample’s empirical variance, in order to produce an unbiased

estimator of the true variance. Concerning the finite number of trials, we need to correct all our formulas with

the (bootstrap-estimated) measurement errors Var[̂bi] (to compute B̂), Var[d̂i] (to compute D̂) and Var[̂bid̂i].

12



Predicted indicators. For the “predicted” versions, we face two additional difficulties. First, for each

candidate readout ensemble E , the corresponding CC indicators are obtained as the compound of two predictions:

• On the one hand, the prediction for CC signals inside the readout ensemble E : qE :=
〈
bidi

〉
i∈E .

• On the other hand, the prediction for CC signals outside the readout ensemble E : qout :=
〈
bidi

〉
i/∈E .

Both predictions are then mixed with a weighting p := K/Ntot (see main text), so that:

q = p qE + (1− p) qout ,

V = B
(
pDE + (1− p)Dout

)
− q2 .

Second, the final CC indicators are obtained by averaging q and V over several candidate ensembles E (see

main text). To ease the implementation of this final averaging, we always use the same estimator B̂ computed

from all recorded neurons—independently of the candidate ensemble E :

B̂ =
〈
b̂2i −Var

[̂
bi
]〉
i∈N .

For CC signals inside E , we apply eq. 10-11 with Ω = R = E , of cardinal M = R = K. Then we apply

eq. 14 with S = N and R = E . We thus obtain the following unbiased estimators:

q̂E =
〈
b̂id̂i

〉
i∈E

[̂q2
E ] = q̂E

2 − 1

K

〈
Var[̂bid̂i]

〉
i∈E

D̂E =
〈
d̂2
i −Var

[
d̂i
]〉
i∈E

[̂BDE ] = B̂D̂E −
Ntot −N

(N − 1)Ntot

(〈
b̂2i d̂

2
i

〉
i∈E −

〈
Var[̂bid̂i]

〉
i∈E − B̂D̂E

)
.

For CC signals outside E , the population of interest Ω has cardinal M = Ntot −K. We apply eq. 10-11 with

R = I, the set of complimentary neurons, of cardinal R = I (see main text). Then we apply eq. 14 with S = N
and R = I. We thus obtain the following unbiased estimators:

q̂out =
〈
b̂id̂i

〉
i∈I

[̂q2
out] = q̂out

2 − Ntot −K − I
(I − 1)(Ntot −K)

(〈
b̂2i d̂

2
i

〉
i∈I − q̂out

2
)
− 1

Ntot −K
〈
Var[̂bid̂i]

〉
i∈I

D̂out =
〈
d̂2
i −Var

[
d̂i
]〉
i∈I

̂[BDout] = B̂D̂out −
Ntot −N

(N − 1)Ntot

(〈
b̂2i d̂

2
i

〉
i∈I −

〈
Var[̂bid̂i]

〉
i∈I − B̂D̂out

)
Finally, our unbiased compound estimators are:

q̂ = p q̂E + (1− p) q̂out ,

V̂ = p [̂BDE ] + (1− p) ̂[BDout] − p2 [̂q2
E ] − (1− p)2 [̂q2

out] − 2p(1− p) q̂E q̂out .

13



These “predicted” estimators are generally not reliable, owing to the small size of complimentary ensemble I.

However, the final prediction is obtained as an average over a large number of pairs (E , I)—see main text.

Thanks to the linear structure of q̂ and V̂ , this averaging can be performed “online”, without storing the results

for each tested pair (E , I). Since each component is unbiased, the final average will also be unbiased, and

reliable.

5.4 Proof of the lemma

The expectation of
〈
x̂i
〉
i∈S

〈
ŷi
〉
i∈R writes as follows.

E
[〈
x̂i
〉
i∈S

〈
ŷi
〉
i∈R

]
= E

[ 1

SR

∑
i,j∈Ω

1
S
i 1
R
j x̂iŷj

]
=

1

SR

(
E
[∑
i∈Ω

1
S
i 1
R
i x̂iŷi

]
+
∑
i 6=j

E
[
1
S
i 1
R
j x̂iŷj

])
=

1

SM

∑
i∈Ω

E
[
x̂iŷi

]
+

S − 1

SM(M − 1)

∑
i 6=j

E
[
x̂iŷj

]
=

1

SM

∑
i∈Ω

[xiyi +Wi] +
S − 1

SM(M − 1)

∑
i 6=j

xiyj

=
(S − 1)M

S(M − 1)

〈
xi
〉
i∈Ω

〈
yi
〉
i∈Ω

+
M − S
S(M − 1)

〈
xiyi

〉
i∈Ω

+
1

S

〈
Wi

〉
i∈Ω

In the third line, we note that R ⊂ S, so that E
[
1
S
i 1
R
i

]
= R

M and, when i 6= j, E
[
1
S
i 1
R
j

]
= R(S−1)

M(M−1) .

In the last line, we note that
∑
i6=j xiyj = (

∑
Ω xi)(

∑
Ω yj)−

∑
Ω xiyi, and we collect all terms of interest with

their respective weightings.

The last two terms in the above sum can be replaced by their unbiased estimators. Namely :

〈
Wi

〉
i∈R is an unbiased estimator of

〈
Wi

〉
i∈Ω

,〈
x̂iŷi −Wi

〉
i∈R is an unbiased estimator of

〈
xiyi

〉
i∈Ω

.

Then, multiplying the above relationship by S(M−1)
(S−1)M and collecting terms again, we find that

E

[
S(M − 1)

(S − 1)M

〈
x̂i
〉
i∈S

〈
ŷi
〉
i∈R −

M − S
(S − 1)M

〈
x̂iŷi

〉
i∈R −

1

M

〈
Wi

〉
i∈R

]
=
〈
xi
〉
i∈Ω

〈
yi
〉
i∈Ω

.

The final result of the lemma is a rearranged form of this equation, making more explicit the corrective nature

of term “X”.
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6 Extended model with non-deterministic extraction time tR

We detail here the analytical modifications when the model’s extraction time tR is non-deterministic. We

thus assume that tR is itself a random variable, drawn on each trial according to some density function g(t),

independently of neural activities r(t). (Note that this is a restrictive hypothesis. In particular, it rules out a

direct application of the model to an integration-to-bounds framework.) The full readout model is then given

by:

tR ∼ g(t),

ŝ =
∑
i

∫
u>0

airi(tR − u)hw(u)du.

For concision, we have noted the integration kernel at scale w: hw(u) := w−1h(u/w). This model naturally

encompasses the simpler version presented in the main text. To obtain a deterministic readout time tR, we

simply need to set g(t) = δ(t− tR) where δ(·) corresponds to the Dirac delta-function.

Derivation. For any deterministic function of time x(t), we note ER(x) := E(x(tR)) =
∫ +∞
t=−∞ g(t)x(t)dt, and

VarR(x) := ER(x2)−ER(x)2. Then, for any random process X(t) constructed from the spike trains (and hence,

independent of tR), we have:

E(X(tR)) = ER
(
E(X)

)
,

Var(X(tR)) = ER
(
Var(X)

)
+ VarR

(
E(X)

)
,

this last line stemming from the law of total variance. These two formulas allow to compute the moments of ŝ

given s, in a fashion similar to the main text (Methods, eq. 35-37). After these computations, we find that the

general form of the characteristic equations still holds:

∂sE[ŝ|s] = b̄>a ,

Var[ŝ|s] = a>Γa ,

Cov[r(t), ŝ|s] = C̄(t)a ,

but with more general definitions for b̄, C̄(t) and Γ:

b̄i :=

∫
u

(g ? hw)(u)bi(u) du, (16)

C̄ij(t) :=

∫
u

(g ? hw)(u)Cij(t, u) du, (17)

Γij :=

∫∫
(u,v)

Gw(u, v)Cij(u, v) du dv + V tempij , (18)

having defined g ? hw(u) =
∫
t
g(t)hw(t− u)dt and Gw(u, v) :=

∫
t
g(t)hw(t− u)hw(t− v)dt.
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Interpretation. Through eq. 17, g(t) acts a weighting factor over the CC curves that would be obtained for

each tR: C̄(t|g) =
∫
u
g(u)C̄(t|tR = u)du. This leads to the spreading of CC curves sketched in main text, Fig

8a. Furthermore, matrix V tempij is an additional source of variance that appears only when g(t) has an extended

temporal support, i.e., when tR is non-deterministic:

V tempij :=

∫∫
(u,v)

Gw(u, v)E
[(
mi(u; s)−mi(s)

)(
mj(v; s)−mj(s)

)]
du dv,

where mi(s) :=
∫
t
(g ?hw)(t)mi(t; s)dt is the corresponding temporal average for mi(t; s). Thus, V tempij measures

a form of temporal covariance in the PSTHs for the neurons3. Indeed, if tR varies from trial to trial, any

variation of firing rates in time creates an additional source of variability in ŝ.

Extension of our method. Could the statistical approach introduced in the main text be extended, to

recover a non-deterministic extraction function g(t)? One possible concern is that the temporal evolution of CC

signals is only determined by the aggregate function (g ? hw)(t) (eq. 17), which cannot be used to disentangle

g(t) and w separately.

However, note that in the sensitivity equation (eq. 18), one now has ¯̄C 6= Γ in general—as opposed to the

case with deterministic tR. Instead, the respective effects of g(t) and w on C̄(t) and Γ (eq. 17-18) can roughly

be thought of as a scaling:
¯̄C ' ρ(w, g)Γ, (19)

because the overall “shape” of covariance between neurons (as opposed to its “strength”) does not depend much

on the precise temporal integration used to compute their activity. For example, eq. 19 is exactly verified if

(1) neural activities are stationary and (2) the profile of temporal correlation is homogeneous across neurons:

Cij(t, u) = ¯̄CijF (|t− u|). Precisely, in this case,

ρ(w, g) =

∫
ξ
F̃ (ξ)‖h̃w(ξ)‖2‖g̃(ξ)‖2dξ∫
ξ
F̃ (ξ)‖h̃w(ξ)‖2dξ

expressed in terms of Fourier transforms.

As a result, the CC indicator q(u, t) (main text, eq. 14) is predicted to scale as ρ(w, g). So, while matching

the temporal support of 〈q〉E(u, t) and q?(u, t) constrains the value of (g?hw)(t), matching their overall amplitude

constrains ρ(w, g). Thus, we may hope that minimizing the loss term
∫∫
u,t

(〈q〉E(u, t)− q?(u, t))2dudt will allow

to disentangle the values of g(t) and w separately. In practice though, this would require the fitting of at least

one additional temporal parameter ; typically, the standard deviation of tR from trial to trial.

3The average E[·], running over the different tested stimuli s, is only here to produce a stimulus-independent covariance structure,
in keeping with the main text. In the general case, it is possible that Vij(s) have an explicit dependency on the tested stimulus s.
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