Supporting Information

Lead(II) Complex Formation with L-Cysteine in Aqueous Solution

Farideh Jalilehvand^{*a*,*}, Natalie S. Sisombath^{*a*}, Adam C. Schell^{*a*} and Glenn A. Facey^{*b*}

^{*a*} Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

^b Department of Chemistry, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N
6N5, Canada

Figure S-1a. Distribution diagrams for lead(II) cysteine complexes as a function of pH in solutions containing $C_{Pb(II)} = 0.3$ mM and H₂Cys / Pb(II) mole ratios 2.0 and 4.0, based on the reported formation constants by Bizri et al., calculated at 25 °C in the ionic medium 1.0 M NaClO₄ [16] for the following aqueous Pb(II)-cysteine complexes:

$$p Pb^{2^+} + q H^+ + r Cys^{2^-} \leftrightarrow Pb_p H_q (Cys)_r \qquad \qquad \beta_{p, q, q}$$

Pb(Cys) (log $\beta_{1, 0, 1} = 12.2$), Pb(Cys)(OH)⁻ (log $\beta_{1, -1, 1} = 2.04$), Pb(Cys)₂²⁻ (log $\beta_{1, 0, 2} = 15.9$), Pb(HCys)(Cys)⁻ (log $\beta_{1, 1, 2} = 25.10$) and Pb(HCys)⁺ (log $\beta_{1, 1, 1} = 16.16$).

The solid compound PbCys(c) is soluble at such low concentration; however, no solubility product (or formation constant) has been reported.

The distribution diagrams in Figures S-1a were calculated with computer program MEDUSA (http://www.kemi.kth.se/medusa/). The full input file to MEDUSA is:

3, 17, 4, 0	/MEDUSA, $t = 25 C$, $p = 1$	l
Pb 2+		
H+		
Cys 2-		
H(Cys)-	, 10.19 0 1 1	
H2(Cys)	, 18.44 0 2 1	
H3(Cys)+	, 20.53 0 3 1	
OH-	, -14.0 0 -1 0	
PbH(Cys)+	, 16.16 1 1 1	
PbH(Cys)2 -	, 25.1 1 1 2	
Pb(Cys)	, 12.2 1 0 1	
Pb(Cys)2 2-	, 15.9 1 0 2	
Pb(OH)(Cys)-	, 2.04 1-1 1	
Pb(OH)2	, -17.12 1 -2 0	
Pb(OH)3 -	, -28.06 1 -3 0	
Pb(OH)4 2-	, -39.7 1 -4 0	
Pb2(OH) 3+	, -6.36 2 -1 0	
Pb3(OH)4 2+	, -23.88 3 -4 0	
Pb4(OH)4 4+	, -20.88 4 -4 0	
Pb6(OH)8 4+	, -43.61 6 -8 0	
PbOH +	, -7.71 1-1 0	
PbCys(c)	, 15.2 1 0 1	
Pb(OH)2(c)	, -8.15 1-2 0	
PbO(cr)	, -12.91 1 -2 0	
PbO:Pb(OH)2	(c), -26.2 2 -4 0	
Pb 2+, H+,		
T, 0.01		
LAV, -1.0 -1.	3.0	
T, 0.02		

Note: The formation constant log β for solid PbCys(c) is an estimated value for this ionic strength (I = 1.0 M). The stability constants for Pb(II) hydroxo complexes (including Pb(OH)₄²⁻) have been introduced from the database HYDRA in MEDUSA program.

Figure S-1b. Distribution diagrams for lead(II) cysteine complexes as a function of pH in solutions containing $C_{Pb(II)} \sim 10$ mM or 100 mM, and H₂Cys / Pb(II) mole ratios 2.1, 3.0, 5.0 or 10.0, based on the reported formation constants for I = 1.00 M by Bizri et al. (used in Figure S-1a) [16]. A tentative solubility product of log K_{sp} = -15.2 was estimated for PbCys(c), with formation constant of log $\beta = 15.2$, to represent our experimental observations in the current study, i.e. dissolution of the PbCys(c) precipitate at pH = 10.4 in solutions with H₂Cys/Pb(II) mole ratios.

Figure S-2a. Distribution diagrams for lead(II) cysteine complexes as a function of pH in solutions containing $C_{Pb(II)} = 0.5$ mM and H₂Cys / Pb(II) mole ratios 2.0 and 4.0, based on the reported formation constants by Crea et al., calculated at 25 °C in the ionic medium 0.1 M NaNO₃ [20] for the following aqueous Pb(II)-cysteine complexes:

$$p Pb^{2^+} + q H^+ + r Cys^{2^-} \leftrightarrow Pb_p H_q (Cys)_r \qquad \qquad \beta_{p, q, r}$$

Pb(Cys) (log $\beta_{1, 0, 1} = 13.12$), Pb(Cys)(OH)⁻ (log $\beta_{1, -1, 1} = 2.49$), Pb(Cys)₂²⁻ (log $\beta_{1, 0, 2} = 17.56$), Pb(H₂Cys)²⁺ (log $\beta_{1, 2, 1} = 22.72$) and Pb(HCys)⁺ (log $\beta_{1, 1, 1} = 17.77$).

The distribution diagrams in Figure S-2a were calculated with computer program MEDUSA (http://www.kemi.kth.se/medusa/). The full input file to MEDUSA is:

```
3, 16, 4, 0 /MEDUSA, t= 25 C, p= 1
Pb 2+
H+
Cys 2-
H(Cys)-
                  10.46
                          0 1 1
H2(Cys)
                   18.78
                          0 2 1
                 , 21.04
H3(Cys)+
                          0 3 1
OH-
                  -14.0
                          0 - 1 0
                 , 13.12
Pb(Cys)
                          1 0 1
                 , 17.77
PbH(Cys)+
                          1 1 1
                 , 22.72
PbH2(Cys) 2+
                          1 2 1
Pb(Cys)2 2-
                 , 17.56
                          1 0 2
                 , 2.49
                           1 - 1 1
Pb(OH)(Cys)-
Pb(OH)2
                 , -17.14 1 -2 0
                 , -28.06
Pb(OH)3 -
                           1-30
                 , -7.08
Pb2(OH) 3+
                           2 - 1 0
                 , -23.41
Pb3(OH)4 2+
                           3 - 4 0
                 , -20.13
Pb4(OH)4 4+
                           4 - 4 0
Pb6(OH)8 4+
                 , -42.86
                           6-80
                  , -7.67
PbOH+
                           1 - 1 0
Pb(Cys)(c)
                   16.2
                           1 0 1
                  ,
Pb(OH)2(c)
                  , -8.15
                           1 - 2 0
                  , -12.91
PbO(cr)
                          1 - 2 0
PbO:Pb(OH)2(c)
                  , -26.2
                           2 - 4 0
Pb 2+, H+,
T, 0.1
LAV, -1.0 -13.0
T, 1.0
```

Note: The formation constant log β for solid PbCys(c) is an estimated value for this ionic strength (*I* = 0.1 M). The stability constants for Pb(II) hydroxo complexes have been adopted from Table 2 of Crea et al. [20], referring to *Pure Appl. Chem.*, **2009**,*81*, 2425–2476, and do not include the Pb(OH)₄²⁻ complex.

Figure S-2b. Distribution diagrams for lead(II) cysteine complexes as a function of pH in solutions containing $C_{Pb(II)} \sim 10$ mM or 100 mM, and H₂Cys / Pb(II) mole ratios 2.1, 3.0, 5.0 or 10.0, based on the reported formation constants for I = 0.1 M by Crea et al. (used in Figure S-2a) [20]. A tentative solubility product of log K_{sp} = -16.2 was estimated for PbCys(c), with the formation constant log $\beta = 16.2$, to represent our experimental observations in the current study, i.e. dissolution of PbCys(c) precipitate at pH = 10.4 in solutions with H₂Cys/Pb(II) mole ratio 2.1 (A and A*), and at pH \leq 9.1 for those with higher H₂Cys/Pb(II) mole ratios.

Figure S-3. ESI-MS spectrum in negative ion modes for the alkaline Pb(II)-cysteine aqueous solution F, containing $C_{Pb(II)} = 10$ mM and $C_{H2Cys} = 100$ mM, pH = 9.1. The peaks with 100% relative intensity is at m/z = 120.01, assigned to $[H_2Cys - H^+]^-$ mass ions (see Table S-1 for peak assignment).

Table S-1. Assignment of mass ions observed in ESI-MS spectra (- mode) for Pb(II)-cysteine solutions A, B and F ($C_{Pb(II)} = 10 \text{ mM}$).^{*a*}

m/z (amu)	assignment
120.01	$[H_2Cys - H^+]^-$
220.88	$[Na^{+}+2ClO_{4}^{-}]^{-}$
241.95	$[H_2Cys - H^+ + NaClO_4]^-$
263.01	$[Na^{+}+2H_{2}Cys-2H^{+}]^{-}$
406.01	$[2Na^{+}+3H_{2}Cys-3H^{+}]^{-}$
446.99	$[Pb(H_2Cys)_2 - 3H^+]^-$
549.01	$[3Na^+ + 4(H_2Cys) - 4H^+]^-$

^{*a*} H₂Cys (C₃H₇NO₂S); m = 121.02

Figure S-4a. UV-vis. spectra of the alkaline aqueous Pb(II) cysteine solutions A (pH = 10.4) and B (pH = 9.1) with $C_{Pb(II)} = 10$ mM and H₂Cys/ Pb(II) mole ratios 2.1 and 3.0, respectively, compared with that of a Pb(II) penicillamine solution with $C_{Pb(II)} = 10$ mM and $C_{H_2Pen} = 30$ mM (pH = 9.6) [26]. The shift in λ_{max} is indicated by the vertical lines.

Figure S-4b. (*Top*) UV-vis. spectra of the Pb(II) cysteine solutions A – G (data interval = 0.5 nm), with a close up around 312 nm in inset, showing a systematic movement of the crossing points, spectrum by spectrum. (*Below*) Wavelengths at which the UV-vis. spectra of solutions B – G cross the absorption spectrum of solution A (inset: linear fit to the points corresponding to $H_2Cys/Pb(II)$ mole ratios 3 – 10).

Table S-2. *(Left)* Comparing the difference in ¹³C NMR chemical shifts ($\Delta\delta$) for Pb(II)-cysteine solutions A – F ($C_{Pb(II)} = 10$ mM) and free cysteine (pH = 9.1); (*right*) ¹H NMR chemical shifts (δ_{H}) for these solutions (see Figure 3)

	$\Delta\delta$ (¹³ C, ppm)						
Solution	C ₁	C ₂	C ₃				
А	5.0	4.1	4.4				
В	1.4	1.8	2.0				
С	1.4	1.7	2.0				
D	1.0	1.3	1.5				
Е	0.4	0.6	0.9				
F	0.2	0.4	0.7				

Figure S-5a. Overlapping MAS ²⁰⁷Pb NMR spectra of crystalline Pb(*S*,*N*-aet)₂ measured at MAS rates 5.5 and 5.8 kHz. The isotropic chemical shift is $\delta_{iso} = 2105$ ppm.

Figure S-5b. One-pulse solid state MAS ²⁰⁷Pb NMR spectrum of crystalline Pb(aet)₂ (spinning at 5.8 kHz; blue), and the reconstructed static ²⁰⁷Pb NMR powder pattern (pink). The isotropic chemical shift ($\delta_{iso} = 2105$ ppm) is shown by an arrow.

 $\delta_{11} = 3707.98$ ppm; $\delta_{22} = 2831.04$ ppm; $\delta_{33} = -223.12$ ppm;

 $\delta_{iso} = 1/3 \ (\delta_{11} + \delta_{22} + \delta_{33}) = 2105.3 \ ppm$

Figure S-6. ²⁰⁷Pb NMR spectrum of an aqueous solution with a Pb(II):cysteamine mole ratio 1:3 (10% D₂O, pH = 10.1, $C_{Pb(II)} = 76$ mM) prepared by dissolving Pb(*S*,*N*-aet)₂ in a solution containing the same number of Haet moles.

Figure S-7. Pb L_{III}-edge XANES spectra compared for Pb(II)-cysteine alkaline solutions A and E $(C_{Pb(II)} = 10 \text{ mM})$, and for solutions A* and F* $(C_{Pb(II)} = 100 \text{ mM})$. The H₂Cys/Pb(II) mole ratios are shown in brackets.

Figure S-8. Pb L_{III}-edge k^3 -weighted EXFAS oscillations, and the corresponding Fouriertransforms, compared for Pb(II)-cysteine alkaline solutions A – E ($C_{Pb(II)} = 10$ mM), and A* – F* ($C_{Pb(II)} = 100$ mM). The H₂Cys/Pb(II) mole ratios are shown in brackets.

Figure S-9. Comparison between k^3 -weighted Pb L_{III}-edge EXAFS spectra of the lead(II) cysteine aqueous solution A* ($C_{Pb(II)} = 100 \text{ mM}$, $C_{H2Cys} = 210 \text{ mM}$, pH = 10.4), and that of a Pb(II) penicillamine solution ($C_{Pb(II)} = 100 \text{ mM}$, $C_{H2Pen} = 300 \text{ mM}$, pH = 9.6) with [Pb(*S*,*N*,*O*-Pen)(*S*-H_nPen)]²⁻ⁿ (n = 0 - 1) as the dominating species [26].

Figure S-10. (*Top*) Principal Component Analysis (PCA) of k^3 -weighted, raw experimental EXAFS spectra of Pb(II) cysteine solutions A* - F* and A – E (for compositions, see Table 1), showing all the components and their corresponding eigenvalues. (*Bottom*) Total residual in the reconstructed spectra as a function of the number of components.

Figure S-11a. Linear combination of EXAFS oscillations for $PbS_2N(N/O)$ and PbS_3 models fitted (green) to the EXAFS spectra of Pb(II) cysteine solutions A* - F* (white) in *k*-range 2.7 – 11.7 Å⁻¹; residual is shown in red.

Figure S-11b. Linear combination of EXAFS oscillations for $PbS_2N(N/O)$ and PbS_3N models fitted (green) to the EXAFS spectra of Pb(II) cysteine solutions A* - F* (white) in *k*-range 2.7 – 11.7 Å⁻¹; residual is shown in red. Estimated error limit for the percentages obtained is ± 10-15%.

Figure S-11c. Linear combination of EXAFS oscillations for $PbS_2N(N/O)$, PbS_3 and PbS_3N models fitted (green) to the EXAFS spectra of Pb(II) cysteine solutions A* - F* (white) in *k*-range 2.7 – 11.7 Å⁻¹; residual is shown in red.

Figure S-11d. Linear combination of EXAFS oscillations for $PbS_2N(N/O)$ and PbS_3N models fitted (green) to the EXAFS spectra of Pb(II) cysteine solutions A - E (white) in *k*-range 2.7 – 11.7 Å⁻¹; residual is shown in red. Estimated error limit for the percentages obtained is ± 10-15%.

Figure S-11e. Linear combination of EXAFS oscillations for $PbS_2N(N/O)$, PbS_3 and PbS_3N models fitted (green) to the EXAFS spectra of Pb(II) cysteine solutions A - E (white) in *k*-range 2.7 – 11.7 Å⁻¹; residual is shown in red.

Table S-3. Results of fitting the raw, k^3 -weighted Pb L_{III}-edge EXAFS spectra of Pb(II) cysteine solutions A* - F* and A – E with linear combinations of EXAFS oscillations for PbS₂N(N/O), PbS₃N and PbS₃ models (see Figures S-11c and S-11e).^{*a*}

Solution (H ₂ Cys/Pb ^{II}	δ(²⁰⁷ Pb)	$PbS_2NO + PbS_2N_2$	PbS ₃ N	PbS ₃
mole ratio)	ppm	(%)	(%)	(%)
A (2.1)	2006	86	10	4
B (3.0)	2112	74	18	8
D (5.0)	2229	65	23	12
E (8.0)	2310	63	25	12
A* (2.0)	2010	91	9	0
B* (3.0)	2219	73	23	4
C* (4.0)	2316	63	31	6
D* (5.0)	2350	48	37	15
E* (8.0)	2418	39	43	18
F* (10.0)	2507	40	50	10

^{*a*} Raw k^3 -weighted EXAFS spectra of 0.1 M lead(II) solutions containing penicillamine ($C_{H2Pen} = 0.3 \text{ M}$; pH = 9.6), or *N*-acetylcysteine ($C_{H2NAC} = 1.0 \text{ M}$, pH = 9.1) were used for the PbS₂N(N/O) and PbS₃ species, respectively. The EXAFS oscillation for PbS₃N was theoretically simulated (see text). Estimated error limit of the relative amounts is $\pm 10 - 15\%$.

Table S-4. Least-squares curve-fitting of the k^3 -weighted EXAFS spectra for Pb(II)-cysteine alkaline aqueous solutions A – B ($C_{Pb(II)} = 10 \text{ mM}$) and A*, B* and F* ($C_{Pb(II)} = 100 \text{ mM}$), containing different H₂Cys/ Pb(II) mole ratios (Table 1), using different fitting models.^{*a*}

		Pb-(N/O)				Pb-S			
Solution	Model	N	<i>R</i> (Å)	$\sigma^2(\text{\AA}^2)$	N	<i>R</i> (Å)	$\sigma^2(\text{\AA}^2)$	ΔE_0	R ^b
А	Ι	2 <i>f</i>	2.410	0.0206	2f	2.638	0.0058	-1.1	20.0
	Π	2f	2.400	0.0143	1.6	2.641	0.0043	-0.9	19.5 *
В	Ι	2f	2.431	0.0170	2f	2.643	0.0062	-0.1	14.0
	II	2f	2.430	0.0165	2.0	2.644	0.0061	-0.1	14.0 *

		Pb-(N/O)			Pb-S				
Solution	Model	N	<i>R</i> (Å)	$\sigma^2(\text{\AA}^2)$	N	<i>R</i> (Å)	$\sigma^2(\text{\AA}^2)$	ΔE_0	R ^b
A*	Ι	2f	2.417	0.0199	2f	2.639	0.0055	-1.4	22.0
	II	2f	2.416	0.0201	2.0	2.639	0.0055	-1.4	22.0 *
	Ш	1 <i>f</i>	2.335	0.0081	2f	2.636	0.0055	-1.2	21.9
		1 <i>f</i>	2.503	0.0081 ^c					
B*	Ι	2f	2.425	0.0177	2f	2.652	0.0050	0	18.2
	II	2f	2.429	0.0237	2.3	2.649	0.0059	-0.4	18.0 *
	III	1 <i>f</i>	2.332	0.0143	2f	2.649	0.0050	-0.3	18.1
		1 <i>f</i>	2.496	0.0143 ^c					
F*	IV	1.5 <i>f</i>	2.452	0.0290	2.9	2.662	0.0064	1.1	12.9
	\mathbf{V}^{d}	1.5 <i>f</i>	2.429	0.0185	2.5f	2.663	0.0055	1.2	13.0*
	VI	1 <i>f</i>	2.391	0.0200	2.8	2.661	0.0062	0.4	12.9
	VII ^e	1 <i>f</i>	2.403	0.0134	2.5 <i>f</i>	2.662	0.0054	0.7	13.0

^{*a*} $S_0^2 = 0.9$ fixed (obtained from fitting the EXAFS spectrum of solid PbPen) [33]; *k*-range = 2.7 – 11.7 Å⁻¹; *f* = fixed value; $R \pm 0.04$ Å; $\sigma^2 \pm 0.002$ Å²; ^{*b*} The residual (%) from the least-squares curve fitting is defined as:

$$\frac{\sum_{i=1}^{N} |y_{\exp}(i) - y_{\text{theo}}(i)|}{\sum_{i=1}^{N} |y_{\exp}(i)|} \ge 100$$

where y_{exp} and y_{theo} are experimental and theoretical data points, respectively; ^{*c*} correlated; ^{*d*} assuming a 50:50% mixture of PbS₂N(N/O) and PbS₃N coordination environments; ^{*e*} assuming a 50:50% mixture of PbS₂N(N/O) and PbS₃ coordination. * Selected model for Table 4 and Figure 6.

Model	Path	N	<i>R</i> (Å)	$\sigma^2(\text{\AA}^2)$	${S_0}^2$	ΔE_0	R
Ι	Pb-(N/O)	2 <i>f</i>	2.538	0.0040	$0.9 f^{b}$	3.5	20.7
	Pt-S	2 <i>f</i>	2.632	0.0069			
	Pt-C	4 <i>f</i>	3.437	0.0156			
Π	Pb-(N/O)	2f	2.532	0.0020	$0.9 f^{b}$	1.9	20.0
	Pt-S ^c	2.8	2.615	0.0099			
	Pt-C	4 <i>f</i>	3.406	0.0158			
III	Pb-(N/O)	2 <i>f</i>	2.540	0.0033	1.0 <i>f</i>	3.3	20.4
	Pt-S	2f	2.623	0.0078			
	Pt-C	4 <i>f</i>	3.437	0.0174			

Table S-5. Least-squares curve-fitting of the k^3 -weighted EXAFS spectra for crystalline Pb(aet)₂ ^{*a*}

^{*a*} Mixed 50:50 (w/w) with boron nitride; Pb(aet)₂ crystal structure [25] was used as FEFF model; *k*-range = $2.7 - 12.4 \text{ Å}^{-1}$; f = fixed; $R \pm 0.04 \text{ Å}$; $\sigma^2 \pm 0.002 \text{ Å}^2$; ^{*b*} S₀² = 0.9 fixed (obtained from fitting EXAFS spectrum of solid PbPen) [33]. ^{*c*} Simultaneous refinement of coordination number and σ^2 for the Pb-S path shows the strong correlation between these parameters, which contribute in the EXAFS amplitude.

Figure S-12. EXAFS fitting results for crystalline Pb(aet)₂ (see Table S-5); structure from Ref. 25

	CSD Code	Pb-S (Å)	Pb-N (Å)	Reference
1	XIRBUW	2.626 2.664	2.571	G.G. Briand, A.D. Smith, G. Schatte, A.J. Rossini, R.W. Schurko <i>Inorg. Chem.</i> 2007 , <i>46</i> , 8625
		3.174		
2	XIRCAD	2.618	2.497	G.G. Briand, A.D. Smith, G. Schatte, A.J. Rossini, R.W.
		2.648		Schurko Inorg. Chem. 2007, 46, 8625
r	DAOVOT	3.267	2 411	M. C. Dharana, C. H. Kim, C. Darkin, D. A. Atrucad
3	PAQVUI	2.704	2.411	M. S. Bharara, C. H. Kim, S. Parkin, D.A. Alwood Polyhedron 2005 24 865-871
		3.086		1 Olyneuron 2003 , 24, 005-071
	Pb-X Range Average	2.618 - 3.267 2.853	2.411 – 2.571 2.493	

Table S-6. Survey of Pb(II) complexes with PbS₃N coordination in CSD version 5.35 (Nov 2013)