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-Movie_S1: Introduction to Empirical Dynamics 

-Movie_S2: Takens Theorem 

-Movie_S3: Convergent Cross Mapping (CCM) 

2) SI Text 

-Simplex projection 

-S-map 

-CCM 
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SI Text 

 

A note on simplex projection and on determining embedding dimension 

 

Simplex projection is a nearest-neighbor forecasting algorithm (1) that involves tracking 

the forward trajectory of nearby points in a lag coordinate embedding. An exploratory 

series of embedding dimensions (E) are used to evaluate the prediction, and the best E is 

chosen based on prediction skill (Figure S1). This embedding is then used in the S-map 

procedure. 

 

Notes on the S-map test for nonlinear dynamics 

 

To determine whether a time series reflects linear or nonlinear processes we compare the 

out-of-sample forecast skill of a linear model versus an equivalent nonlinear model. To 

do this, we apply a two-step procedure: 1) we use simplex-projection (1) to identify the 

best embedding dimension, and 2) we use this embedding in the S-map procedure (2) to 
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assess the nonlinearity of the time series.    

 

S-maps are an extension of standard linear autoregressive models in which the 

coefficients depend on the location of the predictee yt in an E-dimensional embedding.     

New coefficients are recalculated (from the library of a predictant set X) by singular 

value decomposition (SVD) for each new prediction. In this calculation, the weight given 

to each vector in the library depends on how close that vector xt is to the predictee yt. The 

extent of this weighting is determined by the parameter θ.  

As above, we generate an E-dimensional embedding from points in the library using 

lagged coordinates to obtain an embedded time series with vectors xt ∈ ℝE+1, where xt(1) 

= 1  is the constant term in the solution of Eq. (S2) below.  Let the time series 

observation in the prediction set Tp time steps forward be Yt+Tp(1) = Y(t). 

Then the forecast for Yt is 

€ 

ˆ Y t = Ct ( j)Xt ( j)
j= 0

E

∑                                                             (S1) 

For	
  our	
  analysis,	
  we	
  chose	
  TP	
  =	
  1.	
  	
  For	
  each	
  E-­‐dimensional	
  predictee	
  vector	
  yt,	
  C	
  is	
  

solved	
  by	
  SVD	
  using	
  the	
  library	
  set	
  as	
  follows:	
  

                                                    B = AC,                                                                     (S2) 

where  Bi = w(|| xi − yt ||)yi , Aij = w(|| xi − yt ||)xi ( j) , and w(d) = e−θdit /d , θ 

€ 

≥ 0, dit is the 

distance between yt and the ith neighbor vector xi in the library embedding, and the scale 

vector, 

€ 

d , is the average distance between neighbors in the library. Note that A has 

dimension 

€ 

n × (E +1),	
  where	
  

€ 

n	
  =	
  size	
  of	
  the	
  library.	
  Again,	
  a	
  different	
  map	
  is	
  

generated	
  for	
  each	
  forecast,	
  with	
  the	
  weightings	
  in	
  each	
  map	
  depending	
  on	
  the	
  

location	
  of	
  the	
  predictee	
  in	
  the	
  E-­‐dimensional	
  state	
  space.	
  This	
  weighting	
  procedure	
  

is	
  governed	
  by	
  the	
  tuning	
  parameter	
  θ,	
  where	
  θ	
  =	
  0	
  gives	
  a	
  global	
  linear	
  map,	
  and	
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increasing	
  values	
  of	
  θ	
  give	
  increasingly	
  local	
  or	
  nonlinear	
  mappings.	
  	
  When	
  θ	
  =	
  0,	
  all	
  

vectors	
  are	
  more	
  or	
  less	
  weighted	
  equally	
  so	
  a	
  single	
  (global)	
  linear	
  map	
  can	
  be	
  

used	
  for	
  all	
  predictions.	
  	
  In	
  the	
  case	
  where	
  θ	
  >	
  0,	
  vectors	
  closest	
  to	
  the	
  predictee	
  in	
  

state-­‐space	
  are	
  weighted	
  more	
  heavily	
  in	
  the	
  SVD	
  solution.	
  	
  Such	
  forecasts	
  

emphasize	
  local	
  information	
  in	
  the	
  library	
  set,	
  and	
  are	
  therefore	
  nonlinear.	
  	
  	
  

	
  

Notes of Convergent Cross Mapping (CCM) 

 

Consider two time series of length L, {X} = {X(1), X(2), …, X(L)} and {Y} = {Y(1), 

Y(2),…, Y(L)}. We begin by forming the lagged-coordinate vectors x(t) = <X(t), X(t-τ), 

X(t-2τ), …, X(t-(E-1)τ)> for t = 1+(E-1)τ to t = L. This set of vectors is the “reconstructed 

manifold” or “shadow manifold” MX. To generate a cross-mapped estimate of Y(t), 

denoted by Ŷ(t) | MX, we begin by locating the contemporaneous lagged-coordinate 

vector on MX, x(t), and find its E+1 nearest neighbors. Note that E+1 is the minimum 

number of points needed for a bounding simplex in an E-dimensional space. Next, denote 

the time indices (from closest to farthest) of the E+1 nearest neighbors of x(t) by t1, 

…tE+1. These time indices corresponding to nearest neighbors to x(t) on MX are used to 

identify points (neighbors) in Y (a putative neighborhood) to estimate Y(t) from a locally 

weighted mean of the E+1 Y(ti) values. 

 

                                  Ŷ(t) | MX = Σ wi Y(ti)              i = 1 … E+1          

 

where wi is a weighting based on the distance between x(t) and its ith nearest neighbor on 

MX and Y(ti) are the contemporaneous values of Y. The weights are determined by 

 

                                           wi = ui / Σ uj                    j=1 … E+1           

 

where 
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                                   ui = exp{-d[x(t), x(ti)] / d[x(t), x(t1)]}                                  

 

and d[x(s), x(t)] is the Euclidean distance between two vectors. Cross mapping from Y to 

X is defined analogously. 

 

Notes on Granger causality 

 

According to Granger causality, given two simultaneously recorded time series Xt  and Yt 

where t  = 1, N  denotes sampling times, we say that Y  has causal influence on X  if the 

variance of the prediction error of X  given Y  is less than the variance of the prediction of 

X  not given Y.  This means that if prediction of some output improves with the addition 

of an input, then the input Granger-causes the output. In its original formulation Granger 

causality is based on linear prediction of stochastic time series. 

There are several ways to test for Granger causality. The approach used here uses the 

autoregressive specification of a bivariate vector autoregression. For a given lag m, we 

estimate the following unrestricted equation by ordinary least squares:   

𝑋! = 𝑐 + 𝑎!

!

!!!

𝑋!!! + 𝑏!𝑌!!!

!

!!!

+ 𝑒! 

Where a, b, and c are coefficients and e is a residual. The null hypothesis that ‘Y does not 

Granger-cause X’ is then constructed as   

 

                                               Ho: b1 = b2 =…= bm= 0 

 

We also estimate the equation 

𝑋! = 𝑐 + 𝑎!

!

!!!

𝑋!!! + 𝑤! 



	
   6	
  

and compare the sum of squared residuals 

𝑅𝑆𝑆! = 𝑒!!
!

!!!

 

and               

𝑅𝑆𝑆! = 𝑤!!
!

!!!

 

The statistic   𝑆 =    (!""!!!""!)!""!   (!!!!!!)
!  is approximately equal to Fm,T-2m-1, and it is 

statistically significant at a p level of 

𝑝 = 1− 𝑝𝑟𝑜𝑏(𝐹!,!!!!!!) 

In our case if X is ΔGT and Y is CR the p value assuming an AR-1 (AR-2) process is 0.82 

(0.97). If X is CR and Y is ΔGT, the respective p values are 0.81 and 0.64. Thus neither X 

nor Y Granger-causes the other. In fact, the variance explained in the prediction error is 

less than 1% regardless which variable is used to predict the other. Considering higher 

order AR processes does not improve these results. 
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Figure S1: Prediction skill (correlation coefficient between actual and predicted values) 

as a function of the embedding dimension (E) for the first-differenced GT time series 

using the nonlinear prediction method of Sugihara and May (1). The results indicate 

nonlinear dynamics with an optimum embedding dimension of 5.  
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Figure S2.  (Fig 2 in main text). The	
  S-­‐map	
  analysis	
  of	
  (a)	
  the	
  CR	
  time	
  series	
  (aa	
  

proxy),	
  (b)	
  the	
  GT	
  time	
  series,	
  and	
  (c)	
  the	
  first-­‐differenced	
  ΔGT time series. Δρ is the 

difference in the correlation between actual and predicted values between a linear model 

(global linear map) and an equivalent nonlinear model (local or nonlinear mappings). In 

a sense, it is a measure of the curvature of the manifold.   Evidence for nonlinear 

dynamics is demonstrated if predictability improves as the S-map model parameter θ is 

tuned toward nonlinear solutions (θ >0). The shaded area is the 5th/95th and the dashed 

blue line the 10th/90th percentile confidence intervals using surrogate data (see text for 

details on surrogate data). The figure shows that while CR and ΔGT both show statistical 

nonlinear state dependent dynamics, the raw GT time series does not. 
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Figure	
  S3:	
  	
  CCM	
  is	
  repeated	
  for	
  different	
  lags	
  to	
  determine	
  the	
  optimum	
  lag.	
  In	
  the	
  

case	
  of	
  ΔGT cross	
  map	
  CR	
  (red	
  line)	
  this	
  lag	
  is	
  -­‐2,	
  which	
  is	
  sensible	
  as	
  the	
  effect	
  (of	
  CR	
  

on	
  ΔGT)	
  cannot	
  precede	
  the	
  cause.	
  	
  However	
  in	
  the	
  meaningless	
  case	
  CR	
  cross	
  map	
  

ΔGT	
  (non-­‐significant	
  blue	
  line)	
  this	
  lag	
  is	
  3.	
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Figure	
  S4:	
  	
  As in Fig 3 of the main paper but with AR1 surrogates.	
  	
  Results of CCM 

analysis between the CR time series and the annual variations in global temperature 

(ΔGT).  Convergence (increasing and significant ρ with longer time series) (blue line) 

shows that year-to-year changes in global temperature are causally forced by galactic 

cosmic rays. Lack of convergence (red line) shows, as expected, that ΔGT has no causal 

influence on CR.  Results of the AR1 surrogates are nearly identical to those obtained by 

the Ebisuzaki method in the main text. 
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Figure S5: Same as Fig. 3 in the main paper but for a suboptimal embedding dimension 

8 to demonstrate robustness. Again we recover the results shown in Fig. 3. 
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Figure S6: Results of CCM analysis between the CR time series and the annual 

variations in global temperature (ΔGT) generated by the CCSM4 NCAR model (an IPCC 

AR5 model). As expected, because this model does not include any mechanism for cosmic 

rays to affect temperature, CCM shows there is no identifiable causality—there is no 

significant cross-mapping between the historical cosmic rays time series using ΔGT from 

the model. Furthermore, the result falls in the middle of the null expectation intervals 

based on AR1 surrogates (as used in Fig. S4 for the historical temperature data). 

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

L

ρ

∆GT xmap CR



	
   13	
  

 
 

Figure S7:  Cross mapping results shown as observed vs predicted along the CR time 

series.  The overall correlation coefficient is 0.20 in accordance with the blue line in Fig. 

S4. 
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Figure S8: Cross mapping done with 6-fold cross validation, were the cross map period 

is held out of sample from the libraries used to predict the out of sample period. We 

observe that in five out of six sub-periods the correlation coefficient between actual and 

predicted values is positive, as one would expect when CR causes ΔGT. Given the small 
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sample sizes involved as well as the fact that the effect of CR on ΔGT is weak to 

moderate, this result provides additional confidence about the causality between CR and 

ΔGT. 

 

 


