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Derivation of OKR Gain and Related Learning Rules
First, we simplified equations as follows:

PCðtÞ=wðtÞGRðtÞ−MLIðtÞ+PC0

=wðtÞMFðtÞ−wMLIMFðtÞ+PC0

=MFðtÞ�wðtÞ−wMLI
�
+PC0;     

[S1]

VNðtÞ= vðtÞMFðtÞ−wðtÞMFðtÞ+wMLIMFðtÞ−PC0 +VN0

                =MFðtÞ�vðtÞ−wðtÞ+wMLI
�
−PC0 +VN0;

[S2]

τw
dw
dt

=−wðtÞ+ �
MFðtÞ�− �

MFðtÞCFðtÞ�; [S3]

τv
dv
dt

=−
�
MFðtÞ�vðtÞ+ �

MFðtÞðVNðtÞ− θðtÞÞ�

                    =−
�
MFðtÞ�vðtÞ+ �

MFðtÞ�MFðtÞ�vðtÞ−wðtÞ+wMLI
�

−PC0 +VN0 − θðtÞ��:
[S4]

We decomposed MFðtÞ=MF+ δMFðtÞ; where MF and δMF(t)
are the mean and the fluctuation around the mean, respectively.
We also decomposed CF(t) in a similar way. We attempted to
take a temporal average over a long enough time span to yield
hδMFðtÞi= hδCFðtÞi= 0 during and after training but short enough
to yield hwðtÞi=wðtÞ and hvðtÞi= vðtÞ, because w(t) and v(t) change
slowly over time. Thus, we obtained the following:

τw
dw
dt

=−wðtÞ+�
MF+ δMFðtÞ�−��

MF+ δMFðtÞ��CF+ δCFðtÞ��
=−wðtÞ+MF+

�
δMFðtÞ�−MF CF−

�
δMFðtÞδCFðtÞ�

−MF
�
δCFðtÞ�−CF

�
δMFðtÞ�

=−wðtÞ+MF−MF CF−
�
δMFðtÞδCFðtÞ�

=−wðtÞ+w0 −
�
δMFðtÞδCFðtÞ�;

[S5]

where the term ðMF−MF CFÞ is denoted by w0. Here, the terms
MF and −MF CF represent PF-LTP and PF-LTD, respectively,
induced by spontaneous activity of PFs and CF. Therefore, we
call them spontaneous PF-LTP and PF-LTD, respectively. We
regard w0 as the baseline weight of w, at which spontaneous PF-
LTP and PF-LTD are balanced. During OKR adaptation train-
ing, δMF(t) and δCF(t) are correlated in time (1), so the value of
w(t) decreases by PF-LTD, which we call specifically training-
induced PF-LTD. At resting states, δMF(t) and δCF(t) are in-
dependent, so w(t) returns to the baseline level w0. Electrophys-
iological studies have demonstrated that induction of PF-LTD or
PF-LTP occurs quickly within 5 min and reaches its plateau
within 30 min, and the recovery from the induction takes more
than 24 h (2, 3). To simulate the asymmetry of the time necessary
for induction and recovery, we used two equations for w(t), one
for during training and the other for after training, with different
time constants:

dw
dt

=

8>>><
>>>:

1
τlearn

ð−wðtÞ+w0 − cOKRÞ ðDuring  trainingÞ

1
τrecov

ð−wðtÞ+w0Þ; ðAfter  trainingÞ
; [S6]

where τlearn � τrecov, and cOKR = hδMFðtÞδCFðtÞi:
Similarly, we obtained the following:

τv
dv
dt

=−
�
MF+ δMFðtÞ�vðtÞ

                 +
��
MF+ δMFðtÞ���MF+ δMFðtÞ��vðtÞ−wðtÞ+wMLI

�
−PC0 +VN0 − θðtÞ��:

[S7]

Because θ(t) is a running average of VN(t), we obtained the
following:

θðtÞ≈MFðvðtÞ−wðtÞ+wMLIÞ−PC0 +VN0; [S8]

and thereby

τv
dv
dt

=−
�
MF+ δMFðtÞ�vðtÞ

+
��
MF+ δMFðtÞ��δMFðtÞ�vðtÞ−wðtÞ+wMLI

���
=−MFvðtÞ+ �

δMFðtÞδMFðtÞ��vðtÞ−wðtÞ+wMLI
�

=−
�
MF−

�
δMFðtÞδMFðtÞ��vðtÞ

+
�
δMFðtÞδMFðtÞ��−wðtÞ+wMLI

�
:

[S9]

Here, we carefully examined the value of hδMFðtÞδMFðtÞi. In the
following, we assumed that MFs discharge spikes under the Poisson
distribution (4), which means that the mean firing rate is given,
whereas the detailed spike timing varies. Let fMFðtÞ be the instan-
taneous firing rate of a MF at time t. Electrophysiological studies
have shown that MF activity correlates with the optokinetic stimu-
lus, i.e., screen velocity, and its peak modulation amplitude is
as large as its mean amplitude (5). Therefore, fMFðtÞ is given by
the following:

fMFðtÞ=

8><
>:

MF+MFsin
�
2π
T

t
�
      ðDuring  trainingÞ

MF                                                    ðAfter  trainingÞ
; [S10]

where T is the period of sinusoidal screen oscillation, for exam-
ple, 6 s (6–8). Under the assumption of a Poisson distribution,
the probability of which MFs make n spikes in 1 s, denoted by
P(n), is given by the following:

PðnÞ= f nMFðtÞ
n!

e−fMFðtÞ: [S11]

We considered the ensemble average of the events, that is, the
average firing rate with respect to many epochs of 1 s Let μ(t)
be the average, which is calculated by the following:

μðtÞ=
X∞
n=0

nPðnÞ= fMFðtÞ: [S12]
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We can see that MF, the mean firing rate of MFs with respect to
time, can be obtained by taking the temporal average of μ(t):

hμðtÞi= h fMFðtÞi=MF: [S13]

Similarly, we calculate the variance of the events, i.e., the variance
of the firing rate with respect to many epochs of 1 s. Let σ2ðtÞ be
the variance. Because the variance equals to the average in the
Poisson distribution (9), we obtain the following:

σ2ðtÞ= μðtÞ: [S14]

Now, we regard this as the variance of temporal modulation of
MF signals, namely, hδMFðtÞδMFðtÞi, because the temporal av-
erage over a long time would be interchangeable with the en-
semble average of many epochs of 1 s, if we split the long time
period for the temporal averaging into these epochs. Thus, by
taking a temporal average of them, we can obtain the following:

hδMFðtÞδMFðtÞi= �
σ2ðtÞ�= hμðtÞi=MF: [S15]

Therefore, v(t) is updated by the following:

τv
dv
dt

=MFð−wðtÞ+wMLIÞ: [S16]

We also considered the activities of PCs and VN:

PCðtÞ= �
MF+ δMFðtÞ�ðwðtÞ−wMLIÞ+PC0

               =
�
MFðwðtÞ−wMLIÞ+PC0

�
+ δMFðtÞðwðtÞ−wMLIÞ;

[S17]

VNðtÞ= �
MF+ δMFðtÞ�vðtÞ−PCðtÞ+VN0

                =MFvðtÞ+VN0 + δMFðtÞvðtÞ− �
MFðwðtÞ−wMLI

�
+PC0Þ

− δMFðtÞ�wðtÞ−wMLI
�

                   =
�
MFðvðtÞ−wðtÞ+wMLI

�
−PC0 +VN0

�
+ δMFðtÞ�vðtÞ−wðtÞ+wMLI

�
:

[S18]

Moreover, we defined eye movement in proportion to the mod-
ulatory activity of the VN in response to the sinusoidally oscillat-
ing screen. We thereby omitted all of the constant terms from
VN(t) to obtain the following:

EYEðtÞ= gEYEδMFðtÞ�vðtÞ−wðtÞ+wMLI
�
; [S19]

where gEYE is a constant to translate the neuronal activity to eye
movement. Then, OKR gain was defined as the maximum am-
plitude of the eye movement with respect to the screen oscilla-
tion. We denote OKR gain as follows:

OKRðtÞ= gEYE2jδMFðtÞjðvðtÞ−wðtÞ+wMLIÞ
                    = gOKRðvðtÞ−wðtÞ+wMLIÞ;

[S20]

where jδMF(t)j is the max of δMF(t), and gOKR = gEYE2jδMF(t)j.
We normalized the screen oscillation amplitude to 1 without loss
of generality.
Finally, we arbitrarily set MF = PC0 = VN0 = w0 = wMLI = 1 for

simplicity. Summarizing, we obtained the following set of equations
as a model of long-term OKR adaptation:
OKR gain:

OKRðtÞ= gOKRðvðtÞ−wðtÞ+wMLIÞ: [S21]

Updating rule of the synaptic weights:

dw
dt

=

8>>><
>>>:

1
τlearn

ð−wðtÞ+w0 − cOKRÞ ðDuring  trainingÞ

1
τrecov

ð−wðtÞ+w0Þ ðAfter  trainingÞ
; [S22]

dv
dt

=
1
τv
ð−wðtÞ+wMLIÞ: [S23]

Parameters are w(0) = v(0) = 1, cOKR = 0.3, τlearn = 20 min,
τrecov = 2.5 h, τv = 5.5 h, and gOKR = 0.3. These values were
chosen to fit simulation results with experimental data (6).

Simulation of Cortical Shutdown and Muscimol Infusion
The cortical shutdown by injection of lidocaine (6) was simulated
by setting the activity of PCs at 0 immediately after training. A
calculation yields the following set of equations:
OKR gain:

OKRðtÞ=
�
gOKR

�
vðtÞ−wðtÞ+wMLI

�
          ðDuring  trainingÞ

gOKR
�
vðtÞ�                                                 ðAfter  trainingÞ :

[S24]

Updating rule of the synaptic weights:

dw
dt

=

8>>><
>>>:

1
τlearn

ð−wðtÞ+w0 − cOKRÞ ðDuring  trainingÞ

1
τrecov

ð−wðtÞ+w0Þ ðAfter  trainingÞ
; [S25]

dv
dt

=

8><
>:

1
τv
ð−wðtÞ+wMLIÞ        ðDuring  trainingÞ

0                                                    ðAfter  trainingÞ
: [S26]

Infusion of muscimol into the cerebellar cortex (7) was also
simulated by the same equations after training with a certain
delay but not immediately after training.

Simulation of Gene-Manipulated Animals
We also considered the case of deficits of either PF-LTP or PF-
LTD at PF–PC synapses (10, 11). We introduced nonlinearity
explicitly to maintain positive synaptic weights and neural ac-
tivity, namely wðtÞ≥ 0; vðtÞ≥ 0;PCðtÞ≥ 0;VNðtÞ≥ 0. In normal
circumstances, these conditions hold naturally. In the update
rule of the synapses (Eq. S5), the baseline value of PF–PC syn-
aptic weight is determined by the balance of spontaneous PF-
LTP and PF-LTD (w0 = MF−MF CF).
First, we considered the case of a deficit in PF-LTP. If PF-LTP is

impaired, the synaptic weight decreases toward −MF CF but stops
at 0. Thus, all synapses vanish, that is, wðtÞ= 0 for any t. Under
this condition, a calculation yields the following set of equations:
OKR gain:

OKRðtÞ= gOKRðvðtÞÞ: [S27]

Synaptic weights:

wðtÞ= 0 for any t: [S28]

vðtÞ= vð0Þ for any t: [S29]

Apparently, OKR gain is a constant gOKRv(0).
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Second, we considered the PF-LTD–deficient case. There
are two PF-LTD terms in Eq. S5: one is spontaneous PF-LTD
(−MF CF) and the other is training-induced PF-LTD (−cOKR =
−hδMFðtÞδCFðtÞi). The conventional PF-LTD induction pro-
tocol, which uses paired stimulation of PFs at 1 Hz and CF at
1 Hz in slice experiments, corresponds to the spontaneous PF-
LTD. Impairment of PF-LTD was confirmed by this protocol
(11). Training-induced PF-LTD has never been tested to date.
We assume that PF-LTD–deficient mice (11) lack only sponta-
neous PF-LTD. Thus, we removed the term from Eq. S5 and
defined w0 =MF. Under this condition, PF–PC synaptic weight is
so large that VNðtÞ= 0. It follows v(t) = 0 at the resting state
from Eq. S9. Moreover, from Eq. S9, plasticity at MF–VN syn-
apses works only when vðtÞ−wðtÞ+wMLI ≥ 0. After a calculation,
we obtain the following set of equations:
OKR gain:

OKRðtÞ=
�
gOKRðvðtÞ−wðtÞ+wMLIÞ        when  vðtÞ−wðtÞ+wMLI ≥ 0;

0                                                                        otherwise:

[S30]

Updating rule of the synaptic weights:

dw
dt

=

8>>><
>>>:

1
τlearn

ð−wðtÞ+w0 − cOKRÞ ðDuring  trainingÞ

1
τrecov

ð−wðtÞ+w0Þ ðAfter  trainingÞ
; [S31]

dv
dt

=

8<
:

1
τv
ð−wðtÞ+wMLIÞ    when  vðtÞ−wðtÞ+wMLI ≥ 0;

0                                                      otherwise:
    [S32]

To demonstrate that normal motor learning can occur under PF-
LTD knockout in a certain condition, we changed values of three
parameters, which could be mediated by some compensation
mechanisms in gene-manipulated animals. We set gOKR = 1.0,
which was set at 0.3 in normal condition, and v(0) = 0 and w(0) =

w0 = 1.1, which were set at 1 in the normal condition. Other
parameters were identical to the normal condition. Training
was made for 8 d to observe the success or failure of memory
transfer clearly.
Furthermore, we consider the case of selective depletion of

GABA receptors on PCs (12). We deleted the inhibition term
from PCs. This was made equivalently by setting wMLI = 0. This
manipulation strengthens the inhibition from PCs to VN, thereby
making the OKR gain totally negative. To compensate for this,
we added a constant ccompensate to OKR(t). A calculation yields
the following set of equations:
OKR gain:

OKRðtÞ= gOKRðvðtÞ−wðtÞÞ+ ccompensate: [S33]

Updating rule of the synaptic weights:

dw
dt

=

8>>><
>>>:

1
τlearn

ð−wðtÞ+w0 − cOKRÞ ðDuring  trainingÞ

1
τrecov

ð−wðtÞ+w0Þ ðAfter  trainingÞ
; [S34]

dv
dt

=
1
τv
ð−wðtÞÞ; [S35]

where ccompensate = 1.0, v(0) = 0.0. Other parameters were iden-
tical to the normal case.

Simulated Training Paradigms
A typical simulated training was 1 h of daily training followed by
23 h of rest for 4 or 5 consecutive days. Simulated OKR gain was
calculated while w(t) and v(t) were updated. Specifically, during
the training and afterward, w(t) was updated by interleaving two
equations “during training” and “after training,” respectively.
Some simulations used much shorter daily trainings of 15 or 7.5 min.
Simulation programs were written in C language. Differential
equations were solved numerically by the forward Euler method
with a time step of 1 min.
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