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I. Experimental Technique. Large single crystals of PuCoGa5 with
exposed crystallographic facets were grown by the self-flux
method as described in the work by Sarrao et al. (1). A single
crystal was polished to the dimensions of 2:208× 2:240× 0:641 mm,
with the tetragonal long axis being 2.208 mm. The drive transducer
of the resonant ultrasound spectroscopy apparatus was driven
well below its own first compressional resonance (from 100 kHz
to 2.5 MHz). The response voltage generated on the pickup
transducer—maximum whenever the drive frequency coincides
with a sample resonance—was measured with a custom-built
heterodyne amplifier (2).
The resonant ultrasound spectroscopy apparatus was custom-

built for the experiment, comprising two 2-mm-diameter com-
pressional-mode lithium-niobate piezoelectric transducers with
vibration isolation from the rest of the apparatus. The top trans-
ducer was mounted on a freely pivoting arm, ensuring weak coupling
and linear response. Temperature control was provided by an
He4 flow cryostat. The temperature was swept over 28 h from 295
to 13 K, sweeping at one-half the rate in the 50- to 13-K region.
During the temperature sweep, the positions of 33 resonances were
tracked. By sweeping frequency in nonlinear steps and taking
data only near the resonances, temperature steps of 0.2 K (and
0.1 K from 13 to 50 K) were achieved in the 28-h period (3).

II. Data Analysis. If the elastic moduli, the sample dimensions, and
the density are known, then the resonances can be calculated by
solving the 3D elastic equation (4). However, given the experi-
mentally determined resonance frequencies, the inverse problem
must be solved to obtain the elastic moduli. If approximate values
of the moduli are known a priori, then a standard gradient-based
minimization scheme can be used to fit the moduli using the
measured resonances (4). This method relies on the assumption
that there are no missing resonances in the dataset, which is not
always valid, because some modes may not be excited for a given
sample transducer geometry.
To overcome the unknown initial conditions and the possibility

of missing resonances, a data analysis procedure was developed
using a genetic algorithm, which allows for loose bounds on
the initial conditions (5–8). This algorithm has the following
structure.

i) N sets of randomly generated elastic moduli (six elastic mod-
uli per set generated within broad initial ranges) are created,
where N is ∼10 times the number of elastic moduli. These
sets are the parent sets, each denoted xparenti .

ii) N mutant sets of moduli are generated by xmutant
i = xparentk +

sðxparentl − xparentm Þ, where k, l, and m are random integers be-
tween 1 and N, and s is a user-defined scaling parameter that
controls the speed and accuracy of convergence; s is typically
small, such that the mutant vectors are relatively small per-
turbations from the parent vectors.

iii) Crossing is performed by taking the ith vector from the
parent set, taking the ith vector from the mutant set, and
creating a third child vector by taking a modulus from the
parent with probability p or the mutant with probability 1− p
(repeated individually for each moduli in the set).

iv) For each parameter set in the parent and child pools, the
resonance frequencies are calculated by numerically solving
the elastic wave equation (4). The sum-of-squares residuals
between the measured and computed frequencies are then
calculated. For each xparenti and xchildi pair, the parameter set

with the lowest residual is selected for the next generation
of evolution.

v) If the lowest residual is below the specified tolerance, then
the algorithm terminates, or it returns to step ii for the next
generation.

The computationally expensive step—numerically solving the
elastic equation for each parameter set—can be farmed out to
multiple processors, giving this algorithm very good scaling
properties as the number of moduli and resonances increases.
Because each resonance is primary related to two or three,
rather than all five, elastic strains, a genetic algorithm is partic-
ularly effective—the level of independence between the moduli
in a given parameter set results in faster convergence (7, 8).
When it is suspected that not all resonance modes have been

measured in a given frequency range, a modification is made to
step iv, which proceeds as follows.

i) The user inputs the maximum number of resonances that
they think have been missed.

ii) The residuals are computed for each set as normal. Then, one
missing peak is inserted between the first and second reso-
nances, and the residual is recomputed. The missing reso-
nance has a weight of zero for purposes of the residual cal-
culation, because the missing frequency is unknown, but it
has the effect of shifting all higher frequency resonances by
one. The resonance is then inserted between the second and
third resonances, and the residual is recomputed, continuing
until the missing resonance has been inserted into every
possible position. This procedure is then repeated for all
possible combinations of two missing resonances and then,
three, etc. until the maximum number of missing resonances
is reached. The residual used for competition between par-
ent and child sets is the lowest residual found during this
process.

iii) At the end of each generation, the user can see whether res-
onances may be missing or not and where to look in the
experimental frequency range; if there are no missing res-
onances, then all of the missing resonances will be placed at
the end of the list of measured resonances.

This procedure, although crude, turns out to be remarkably ef-
fective at locating missing resonances: additional inspection of the
data taken with a denser frequency scan and higher ultrasonic
power almost always resulted in the identification of a previously
missing resonance. However, if the numbers of missing and total
resonances are large, then this procedure becomes prohibitively
expensive: 60 resonances with 5 missing require 60!=5!55!=
5; 461; 512 residual calculations per parameter set; 15 missing
peaks would require over 53 trillion—in which case, a more
elegant solution would be required.
On completion of the algorithm, the logarithmic derivatives

of each resonance frequency with respect to each modulus is
computed numerically:

∂fμ
∂ci

×
c0i
f 0μ
≡ αi;μ; [S1]

where fμ is a particular resonance frequency, ci is one of six
elastic moduli, and f 0μ and c0i are the values at a reference
temperature (usually 300 K). These α-coefficients are essen-
tially geometric factors: all of the temperature dependences of
each resonance fμ are built from linear combinations of the
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temperature-dependent ci values, and the α-coefficients change
by, at most, a couple of percentages from 300 K down to 4.2 K.
In this way, we can write

2ΔfμðTÞ
f 0μ

=
X

i

αi;μ
ΔciðTÞ

c0i
: [S2]

The α-values defined in this way have the property that
P

iαi = 1,
and using these coefficients, the different resonances can be
identified as predominantly shear or scalar. In addition, because
the αi;μ values are essentially temperature-independent, after
a fit has been performed at one temperature and the αi;μ and
c0i values are obtained, at each temperature, the frequencies
ΔfμðTÞ and their associated coefficients αi;μ form an overdeter-
mined set of linear equations that can be solved for the elastic
moduli at that temperature. This method provides a second
route to computing the temperature dependence of the elastic
moduli (as opposed to performing the fit at each temperature)
and is an important consistency check.

III. Symmetry and Coupling. Elastic strain breaks into five irre-
ducible representations in a tetragonal lattice: two scalar strains
transforming as the A1g representation and three shear strains
transforming as the B1g, B2g, and Eg representations. Specifically,
the strains and associated moduli are

Two scalar strains are in-plane eA1g ;x ≡ ðexx + eyyÞ=2 and out-of-
plane eA1g ;z ≡ ezz, with respective moduli ðc11 + c12Þ=2 and c33.

Three shear strains are eB1g ≡ ðexx − eyyÞ=2, eB2g ≡ exy, and eEg ≡
fexz; eyzg, with respective moduli ðc11 + c12Þ=2, c66, and c44.

The elastic free energy includes all bilinear combinations of these
strains, allowing for a cross-term between the two A1g strains that
defines the sixth modulus c13. The free energy is then

Felastic =
X

μ

1
2
cμe2μ + c13

�
eA1g ;x

�
×
�
eA1g ;z

�
; [S3]

where eμ is one of five strains, and cμ is the corresponding mod-
ulus. Within Landau theory, an order parameter-η is introduced
that vanishes linearly at temperature T0, and its contribution to
the free energy is

Fo:p: =
1
2
αðT −T0Þη2 + 1

4
γη4; [S4]

where α and γ are constants. (The inclusion of cubic terms, which
are allowed for A1g-order parameters, does not change the qual-

itative behavior of the elastic moduli above T0.) When the order
parameter and the strain have the same symmetry, they can
couple linearly:

Fcoupling = βeμη; [S5]

where β is a coupling parameter. The total free energy is then

F =Felastic +Fo:p: +Fcoupling: [S6]

We eliminate η by minimizing the free energy at fixed strain,
∂F=∂ηje = 0, which gives an elastic modulus that diverges as
1=ðT −T0Þ as T0 is approached from above (9):

cμ′=
∂2F
∂e2μ

≈ cμ −
β2

αðT −T0Þ T >T0

≈ cμ −
β2

2αðT0 −TÞ   T <T0:

[S7]

This linear coupling between strain and order parameter is only
possible when the order parameter shares all symmetries with the
strain and not just the point-group symmetry. This constraint
means that the order parameter must be symmetric under time
reversal [no linear coupling of magnetic order parameters to
strain (10)], preserve gauge symmetry (no linear coupling of
the superconducting order parameter), etc.
When the strain couples to the square of the order parameter,

Fcoupling = βeμη2, the same exercise can be carried using equilib-
rium conditions η= 0 for T >Tc and η=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðTc −TÞ− βe=γ

p
for

T <Tc, which gives

cμ′= cμ T >Tc

= cμ −
β2

2γ
  T <Tc:

[S8]

In this case, there is no softening of the elastic modulus above
Tc and only a drop in elastic modulus across the transition.
Because the square of any representation contains a scalar
(A1g in a tetragonal lattice), the scalar moduli can always cou-
ple to the square of an order parameter—for example, super-
conductivity. A more interesting case would be a magnetic
order parameter that breaks inversion with symmetry Eu.
The square of this order parameter contains A1g, A2g, B1g,
and B2g objects, which means that all moduli except for c44
(with Eg symmetry) should show a jump across the magnetic
ordering transition.
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