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SI Methods
Surgery and Recording Techniques. Adult, male Sprague–Dawley
rats (250–400 g) were anesthetized with urethane (1.5 g/kg), and
supplemental doses of 0.15 g/kg were given when necessary after
several hours since the initial dose. We also used doses of ket-
amine (15–25 mg/kg) before the surgery to induce the anes-
thetized state quickly. Because the time elapsed from the last
dose to the beginning of the recordings was at least 3 h and
ketamine has a short-lasting effect, the recordings were mostly
done under the effect of urethane. Animals were held with
a custom-made nasoorbital restraint that left the ears free and
uncovered. We removed the left temporal muscle, and a small
craniotomy was made over the left primary auditory cortex (A1)
and the dura was removed. The location of the recording sites
was estimated to be A1 by stereotaxic coordinates and vascular
structure (1–3). Next, 32 or 64 channels silicon microelectrodes
(Neuronexus Technologies) were slowly inserted into deep layers
of the cortex (depth, 600–1,200 μm; lowering speed, ∼1 mm/h).
Probes had either eight shanks each with eight staggered re-
cording sites per shank (model Buzsaki 64-A64), or four shanks
with two tetrode configurations in each (model A4X2-tet-5mm-
150-200-312-A32). Shank spacing was 200 μm in both cases.
After establishing a stable recording site, the craniotomy site was
covered with 1% agar/artificial cerebrospinal fluid to protect
cortex and to stabilize recordings. In three of the experiments, we
recorded at several depths (3, 4), but only one depth per animal
was included for further analysis. Neuronal signals were high-pass
filtered (1 Hz) and amplified (1,000×) using a 64-channel am-
plifier (Sensorium), recorded at 20-kHz sampling rate with 16-bit
resolution using a PC-based data acquisition system (United
Electronic Industries) and custom-written software (Matlab Data
Acquisition Toolbox; MathWorks) and stored on disk for further
analysis.

Acoustic Stimuli. Recordings took place in a single-walled sound
isolation chamber (IAC) with sounds presented free field (RP2/
ES1; Tucker-Davis). Sound level calibration was performed be-
fore each recording session with an ACO-7012 microphone. The
microphone was placed facing the speaker at the same distance
that the animal’s right ear. Acoustic stimuli consisted of single or
double clicks (5-ms square pulses; 70 or 75 dB sound pressure
level; 50- or 100-ms interclick interval; 2.5- or 3.5-s separation
between stimuli). In the present study, we analyzed only the
responses to single click.

Datasets Description. We analyzed data from six experimental
sessions (n = 6 rats). The shortest session lasted 2,892 s, and the
longest, 16,347 s (mean + SD, 7,116 ± 4,935). Spike detection
and sorting was made off-line, using open-source, semiautomatic
clustering methods. The detection and initial clustering was done
using Klustakwik (klustakwik.sourceforge.net) (4) or EToS (etos.
sourceforge.net) (5, 6). The manual part of clustering was done
using Klusters (klusters.sourceforge.net/) (7). The local field po-
tential (LFP) signal was obtained by digitally low-pass filtering
(1.25 kHz) the broadband signal from each recording channel.
We obtained on average 86 ± 38 (mean + SD; range, 44–147)
well-isolated single units and 45 ± 40 (mean + SD; range, 3–103)
multiunit spike trains. Both types of spike trains were obtained
from waveforms forming a well-separated cluster in principal
component analysis space (7), but multiunit spike trains did not
show a clear refractory period in the autocorrelogram, indicating
that they contained spikes from more than one cell. We analyzed

only units that were active through the entire experimental ses-
sion. We did not impose, however, a constraint on the stationarity
of the firing rate because changes in brain state were sometimes
accompanied by changes in neuronal firing rate (8) (Fig. S2).

Silence and High Activity Density During Spontaneous and Evoked
Activity. We start by defining the spike count ni(t;T) as the
number of spikes fired by the ith single unit in the interval (t − T/2,
t + T/2) and the spike count nMUA

i ðt;TÞ as the number of spikes
fired by the ith multiunit.
The rate of the pooled population activity (merged activity of

single units and multiunits) was defined as follows:

rpoolðtÞ=
PN

i=1niðt;ΔtÞ+
PNMUA

i=1 nMUA
i ðt;ΔtÞ

Δt
; [S1]

that is, the rate of spikes from all single units and multiunits dis-
cretized in bins of size Δt [multiunit spike trains were exclusively
used throughout the analysis to compute rpool(t)]. The variable
y(t) identifying silent bins (i.e., bins with no spikes, Fig. 1A, brackets
above raster plots), was defined as follows:

yðtÞ=
�
1; if rpoolðtÞ= 0
0; otherwise 

�
: [S2]

To characterize the variations in brain state, we divided each re-
cording session into 50-s epochs and quantified the state in each
epoch via the silence density. We chose 50 s as a compromise be-
tween having a sufficiently large window containing enough activ-
ity to give a good estimate of the state and having a sufficiently
small window to capture variations in brain state. In each epoch,
the silence density (S) during spontaneous activity was defined as
the probability that pooled population activity had no spikes.
This probability was estimated by computing the average of
y(t) evaluated during the periods of spontaneous activity preced-
ing the stimuli presented during the given epoch:

S= h yðtkÞik∈Spon; [S3]

where the times {tk}k∈Spon correspond to the center of the kth bin
of size Δt within the 1.5 s preceding the stimulus onset times tlstim:

ftkgk∈Spon
=
�
tlstim −

Δt
2
; tlstim −

3Δt
2
; . . . ; tlstim −Δt

�
K −

1
2

�
;  l= 1; 2; :::;L1+2

�
;

[S4]

where L is a number of stimuli presentation during a given epoch
(both single- and double-click presentations were considered,
which gave L ranged from 14 to 20 depending on the interstim-
ulus interval) and K is a number of bins of size Δt within the 1.5 s.
With this notation, the average in Eq. S3 can be written as follows:

S= hyðtkÞik∈Spon =
1

L  K

XL
l=1

XK
k=1

y
�
tlstim −

�
k−

1
2

�
Δt
�
: [S5]

The values of S strongly depended on the size of used bin Δt. Small
bins (e.g., Δt ∼ 1 ms) led to values of S close to 1 in all epochs (Fig.
S1A, brown and red curves). Longer bins (e.g., Δt > 640 ms) gave
S values equal or close to zero for all epochs (Fig. S1A, dark blue
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curves). In both cases, the range of S across epochs was small. S
values also depend on the pooled population rate averaged over
spontaneous intervals in the epoch rpool = <rpool{tk}>k∈Spon. A
low pooled rate would produce sparse population activity and as
a result increase the probability of obtaining silent periods (S
would again approach 1 for all epochs). Therefore, to obtain an
accurate estimation of S requires recording the simultaneous ac-
tivity of dozens of neurons. For our data, the mean rpool across the
six recordings was 323 spikes per s with range of 189–609 spikes
per s. Given a recording with rpool large enough, the optimal bin
size Δt that maximizes the discriminability across brain states was
obtained as follows: first, we computed S using different bin sizes
Δt (range, 1–1,280 ms; Fig. S1A) and calculated its range across
all epochs as the difference between maximum and minimum S
values (Fig. S1 B and C, black curves). As we argue above, part of
the variation of S could be simply attributed to a variation in rpool
across epochs (Fig. S2A). To obtain an estimate of the variation
of S attributable to pooled rate changes, we computed the homo-
geneous Poisson silence density (SHP) defined as the probability
of finding zero spikes in a bin Δt, assuming that the population
spikes in each epoch were generated from a Poisson process with
constant rate rpool (Fig. S2B, gray). Evaluating the probability
mass function of the Poisson distribution at zero (9), one obtains
the following:

SHP = exp
�
−Δt · rpool

�
: [S6]

Next, we computed the range of SHP across epochs and subtracted
it from the range of S (Fig. S1 B and C, blue curve). Thus, for
instance, for Δt = 1 ms the ranges of S and SHP were the same, the
difference was zero meaning that Δt = 1 ms yielded no discrim-
inability of brain state beyond that obtained solely from variations
in pooled population rate. We chose the bin size Δt = 20 ms as
the one that maximized the difference between S and SHP ranges
averaged across all experiments (Fig. S1C, blue curve).
We performed a second control of the impact of pooled rate

variations on S by adjusting the bin size Δt in each epoch to
correct for the pooled population rate changes. Thus, given the
spontaneous pooled rate rpool in each epoch, we found the Δt
(Eq. S6) that would equalize SHP to the median of the SHP across
epochs obtained for Δt = 20 ms. The S computed with adjusted
Δt was only slightly different from S calculated for fixed Δt = 20
ms (Fig. S2B, black and blue curves). Thus, the impact of rate
variations on S at Δt = 20 ms was negligible.
Additionally, we verified that the existent pairwise correlations

between neurons increased the probability of observing silent
periods. For this, we compared the joint silence density computed
from pairs of single-unit spike trains with the product of the si-
lence densities obtained from each spike train separately. We
defined the marginal silence density of the ith single unit as Si =
hyiðtkÞik∈Spon, where the binary variable yi(t) was 1 if ni(t;Δt) = 0
and zero otherwise. The joint silence of pair (i,j) was defined as
Sij = hyijðtkÞik∈Spon, where yij(t) was 1 if ni(t;Δt) + nj(t;Δt) = 0 and
zero otherwise. Fig. S2 D and E shows the difference Sij − SiSj
averaged across all pairs vs. bin size Δt.
The instantaneous silence density S(t) computed for evoked

activity was obtained by averaging y(t) across stimulus repetitions:

SðtÞ= �
y
�
tlstim + t

�	
l =

1
M

XM
l=1

y
�
tlstim + t

�
; [S7]

where tlstim is the time of the lth stimulus presentation andM is the
number of “single-click” stimulus trials assigned to given brain
state (see next section). Because y(t) was computed from bins Δt =
20 ms whereas for the instantaneous measures of variability [see
FF(t;T) and ρ(t;T) below] we used a sliding window T = 50 ms, we
matched the timescales and “slowed” the instantaneous silence

density by convolving S(t) from Eq. S7 with a square kernel of
duration T = 50 ms (Fig. 2B, and Figs. S4B, S8B, and S9G).
The high activity density H for spontaneous condition was

computed similarly to the silence density (Eqs. S2–S5) with y(t) = 1
whenever rpool(t) was above a given threshold and zero otherwise.
We considered two thresholds: one that made H match S during
desynchronized epochs (see below), and a second one that made
the mean H across epochs match the mean S (Fig. S7B, blue and
gray traces, respectively). Both thresholds were chosen separately
for each experiment.

Brain State Classification. To classify the brain state of each epoch,
we used the silence density S computed for the spontaneous activity
(Eqs. S3 and S5). We arbitrarily divided the continuum of values
spanned by S into three intervals representing three brains states:
desynchronized (S < 0.05), intermediate (0.05 ≤ S ≤ 0.2), and
synchronized state (0.2 < S). Each epoch was classified under one
of these states. Each state gathered a sufficient number of stimulus
trials M to perform the subsequent analysis of the impact of brain
state on the statistics of evoked spiking responses (see below). In
our dataset, the total number of single-click trials was on average
1,098 (range, 581–2,175). In particular, the average number of
single-click stimulus trials in each brain state was M = 293 for the
desynchronized (range, 29–419), M = 370 for the intermediate
(range, 101–652), and M = 435 for the synchronized state (range,
128–1,104) (the mean and the range were taken over n = 6 ex-
perimental sessions). For a given brain state, the data were in-
cluded for further analysis of evoked activity if we had at least 100
trials, a criterion that only left out the analysis of the desyn-
chronized state from one experiment (it had only M = 29 trials).
We checked that the classification of brain state derived from S

was consistent to that obtained from a more standard spectral
analysis of the LFP (10–13). In particular, we used short-time
Fourier transform to compute the power spectrum of the LFP
recorded in each channel in epochs of 52.43 s (aligned at the onset
with the 50-s epochs used for S). We found that the mean over
channels of the LFP power ratio of low frequencies (<5 Hz) over
higher frequencies (from 20 to 45 Hz) correlated strongly with S
across epochs (see example in Fig. S2 B and C; mean correlation
coefficient across experiments was 0.89; range, 0.78–0.96). Thus,
both methods quantified brain state changes similarly.

Spike Count Statistics During Spontaneous and Evoked Activity. To
quantify the spike count statistics, rate, Fano factor, and correlation
coefficient, we only used spike trains obtained from single units.
Firing rate. For a given unit, stimulus-evoked instantaneous rate
averaged across trials was defined as follows:

riðtÞ= 1
T ·M

XM
l=1

ni
�
tlstim + t;T

�
; [S8]

where ni(t;T) (i = 1, 2,...,N) was the spike count of ith neuron in
the interval (t − T/2, t + T/2) and tlstim for (l = 1, 2,..,M) was the
time onset of the lth single-click trial in the 50-s epochs assigned
to one of the three brain states (see above, Brain State Classifi-
cation) and N was a number of single units in a given experiment.
We then computed the population-averaged instantaneous rate
by averaging across single units as follows:

rðtÞ= hriðtÞii =
1
N

XN
i=1

riðtÞ: [S9]

The time courses of the instantaneous rate conditioned on brain
state are shown in Fig. 2A (one experiment) and Fig. S4A (av-
eraged over all experiments).
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Fano factor. To quantify the variability in the activity of individual
neurons, we computed spike count Fano factor (FF) for both
spontaneous and evoked conditions. The spike count Fano factor
of the ith neuron during the spontaneous activity in one epoch
was defined as follows:

FFiðTÞ=
Var½niðtk;TÞ�k∈Spon
hniðtk;TÞik∈Spon

; [S10]

where the variance and the mean were taken across the times
{tk}k∈Spon corresponding to the center of the bins of size T within
the 1.5 s preceding the onset times tlstim of all of the stimuli
occurring in the epoch:

ftkgk∈Spon
=
�
tlstim −

T
2
; tlstim −

3T
2
; . . . ; tlstim −T

�
K −

1
2

�
; l= 1; 2; :::;L

�
:

[S11]

The variable K was the number of count windows T in 1.5 s and L
was the number of all stimulus trials in the epoch (both single-
and double-click presentations were considered, which gave
L ranging from 14 to 20 depending on the interstimulus interval).
With this notation, the spike count mean and variance in Eq. S10
can be written as follows:

hniðtk;TÞik∈Spon =
1

L  K

XL
l=1

XK
k=1

ni

�
tlstim −

�
k−

1
2

�
T;T

�
;

[S12]

Var½niðtk;TÞ�k∈Spon =
1

L  K

XL
l=1

XK
k=1



ni

�
tlstim −

�
k−

1
2

�
T;T

�

− hniðtk;TÞik
�2
: [S13]

Thus, when for instance T = 50 ms, the mean and variance were
obtained from the spike count in K·L = 420 or 600 nonoverlap-
ping windows.
The stimulus-evoked instantaneous Fano factor FFi(t;T) con-

ditioned on brain state was computed differently because the
statistics were performed across the stimulus trials from all ep-
ochs assigned to one of the three brain states. The instantaneous
Fano factor was obtained from the following equation:

FFiðt;TÞ=
Var

�
ni
�
tlstim + t;T

�
l�

ni
�
tlstim + t;T

�	
l

; [S14]

where the mean and the variance were obtained across M single-
click presentations in each of the brain state as described by the
following:

�
ni
�
tlstim + t;T

�	
l =

1
M

XM
l=1

ni
�
tlstim + t;T

�
; [S15]

Var
�
ni
�
tlstim + t;T

�
l =

1
M

XM
l=1

�
ni
�
tlstim + t;T

�
−
�
ni
�
tlstim + t;T

�	
l

2
:

[S16]

The time course of the stimulus-evoked instantaneous popula-
tion-averaged Fano factor FF(t), obtained by averaging FFi(t)
over all neurons (similarly to rate in Eq. S9), was shown in Fig.

S5A (for one experiment) and Fig. S5B (for average across experi-
ments; n = 6 for synchronized and intermediate, n = 5 for de-
synchronized brain state). Because the variance in Eq. S16 was
computed across trials coming from the epochs separated in time
during the long recordings (average length, ∼2 h), slow drifts in
excitability could increase the spike count variance. Therefore, we
computed the shift-corrected Fano factor to remove variability
due to changes in the excitability of individual neurons occurring
in a timescale much slower (e.g., 5–10 min) than the interstimulus
interval (14). The shift-corrected Fano factor FFðt;TÞe was ob-
tained by substituting the variance in Eq. S16 by the shift-cor-
rected variance defined as follows:

gVar
�
ni
�
tlstim + t;T

�
l =

1
M

XM
l=1

ni
�
tlstim + t;T

�2

−
1

M − 1

XM−1

l=1

ni
�
tlstim + t;T

�
ni
�
tl+1stim + t

�
:

[S17]

Shift-corrected Fano factor showed identical dependence on
brain state and the same stimulus-evoked time courses as FF(T),
but with slightly lower values (Fig. S5C, average decrease was less
than 5% for T = 50 ms).
To ease the notation, the explicit dependence of FF(t;T) on

T was dropped in the main text and figures becoming FF(t).
Correlation coefficient. Spike count covariability between pairs of
single units was quantified using the Pearson correlation co-
efficient, which, like the Fano factor, was computed separately for
spontaneous and evoked conditions. The spike count correlation
between the pair of neurons (i,j) during spontaneous activity in
a given epoch was obtained from the following:

ρijðTÞ=
Cov

�
niðtk;TÞ; njðtk;TÞ


k∈Sponffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½niðtk;TÞ�k∈SponVar
�
njðtk;TÞ


k∈Spon

q : [S18]

Similarly to the Fano factor during spontaneous activity (Eq. S10),
the covariance and variance were computed across times {tk}k∈Spon
(Eq. S11). The average correlation coefficient over pairs was then
obtained as follows:

ρðTÞ= �
ρijðTÞ

	
ij
=

1
NðN − 1Þ

XN
i=1

XN
j= i+ 1

ρijðTÞ: [S19]

Fig. 1 shows the population-averaged correlation ρ obtained for
T = 100 ms as a function of the epochs (Fig. 1C) and vs. epoch’s
spontaneous silence density S (Fig. 1D).
The stimulus-evoked instantaneous correlation coefficient ρij(t;T)

conditioned on brain state was obtained similarly to the instan-
taneous Fano factor (Eq. S14):

ρijðt;TÞ=
Cov

�
ni
�
tlstim + t;T

�
; nj

�
tlstim + t;T

�
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var
�
ni
�
tlstim + t;T

�
lVar

�
nj
�
tlstim + t;T

�
l

q ; [S20]

where the covariance and the variance were obtained across all
single-click presentations during the epoch assigned to one of three
brain states as shown Eqs. S15 and S16. The time course of the
evoked population-averaged instantaneous correlation ρ(t;T), ob-
tained by averaging ρij(t;T) over all pairs (as in Eq. S19), was shown
in Fig. 2 C and D (example experiment) and Fig. S4C (average
across experiments) for T = 50 ms. As with the Fano factor, we also
computed the shift-corrected correlation coefficient by replacing
the covariance and variance in Eq. S20 by shift-corrected versions
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as described in Eq. S17. However, consistent with previous results
(14), there were no noticeable systematic differences between the
population-averaged standard and shift-corrected correlation coef-
ficients ρ(t;T) computed for T = 50 ms.
To ease the notation, the explicit dependence of ρ(T) and ρ(t;T)

on T was dropped in the main text and figures becoming ρ and ρ(t).

Surrogate Dataset. This analysis was restricted to the spontaneous
activity from 1.5-s intervals preceding each stimulus presentation.
We used all single and multiunit spike trains from experimental
data to generate a new surrogate dataset from which we quan-
tified the amount of correlation not explained by the occurrence
of silent period. First, for each epoch we removed all silent bins
detected by the silence variable y(t) = 1 (Eq. S2; Δt = 20 ms).
Second, we concatenated remaining active periods to obtain a
continuous recording with S = 0 for each epoch. Third, corre-
lations (Eqs. S18 and S19) were computed in each epoch using
the single units identically to what was done for the original data
and they were plotted against the density S of each epoch
measured in the original data (Fig. 1 C–F).

Computational Network Model. We modeled the data assuming
that, during spontaneous conditions, the cortical circuit alternates
stochastically between an active and a silent network equilibrium
points. During active periods, we assumed that the network is in
a balanced state where neurons fire weakly correlated Poisson-
like spike trains at low firing rate (15). During silent periods,
there is barely any firing. Because building such a bistable bal-
anced spiking network is still an open question (Discussion in
main text), we simplified the problem and modeled the spike
count variability as generated by two separate sources (16–20):
the first consists in the variation of the population rate r(t) due to
alternation between an active and a silent attractors, and the
second reflects spiking stochasticity existent at a constant rate.
We build a model to investigate the variability of the population
rate r(t) (see below) and assumed that all neurons fire condi-
tionally independent Poisson spike trains with rate r(t). To make
the problem identifiable and to be able to distinguish firing rate
variability from spiking variability, we assumed a separation of
timescales between the two sources of variability as the residence
times of the network in each equilibria (hundreds of milliseconds)
are much longer than timescale of the synaptic current fluctua-
tions triggering spikes (tens of milliseconds). Under these as-
sumptions, one can decompose the variance of the spike count
ni(t;T) of the ith neuron in the interval (t – T/2, t + T/2) as follows:

Var½niðt;TÞ�=Var
h
hniðt;TÞjrðtÞispk

i
+
D
Var½niðt;TÞjrðtÞ�spk

E
;

[S21]

where the mean (angle brackets) and variance are taken with re-
spect to the spiking variability when indicated with the subscript
“spk” or with respect to the variability of the rate r(t) otherwise.
The expected number of spikes given the rate r(t) is equal to the
following:

hniðt;TÞjrðtÞispk =
Zt+T=2

t−T=2

r
�
t′
�
dt′≡Rðt;TÞ: [S22]

Assuming that neurons fire Poisson spike trains, we can substitute
the variance of spike counts by the mean:

Var½niðt;TÞjrðtÞ�spk = hniðt;TÞjrðtÞispk =Rðt;TÞ: [S23]

Substituting Eqs. S22 and S23 into Eq. S21, we obtain that the
total variance can be written as follows:

Var½niðt;TÞ�=Var½Rðt;TÞ�+ hRðt;TÞi: [S24]

One can now express the Fano factor FFi(t;T) as follows:

FFiðt;TÞ=Var½niðt;TÞ�
hniðt;TÞi =

Var½Rðt;TÞ�+ hRðt;TÞi
hRðt;TÞi : [S25]

Similarly, we can decompose the spike count covariance between
pair of neurons (17):

Cov
�
niðt;TÞ; njðt;TÞ


=Cov

h
hniðt;TÞjrðtÞispk;

�
njðt;TÞjrðtÞ

	
spk

i
+
D
Cov

�
niðt;TÞ; njðt;TÞjrðtÞ


spk

E
:

[S26]

Because we have assumed that all neurons fire with the same rate
r(t), the total covariance can be expressed as follows:

Cov
�
niðt;TÞ; njðt;TÞ


=Var½Rðt;TÞ�+ c0; [S27]

where we have defined c0 as the mean covariability reflecting
spiking stochasticity at a fixed rate:

c0 =
D
Cov

�
niðt;TÞ; njðt;TÞjrðtÞ


spk

E
: [S28]

The fact that c0 does not depend on T means that the spiking
covariability was assumed to be instantaneous (i.e., the cross-
correlation function conditioned on rate was a Dirac delta).
From Eqs. S24 and S27, the correlation coefficient can be ex-
pressed as follows:

ρðt;TÞ= Var½Rðt;TÞ�+ c0
Var½Rðt;TÞ�+ hRðt;TÞi: [S29]

If we assume that covariations due to spiking stochasticity at
a fixed rate are negligible (c0 = 0), the expressions for the
spike count Fano factor and the correlation coefficient de-
pend only on the statistics of the population rate r(t). We next
present a mechanistic rate model to describe the dynamics of
the population rate across brain states and in response to a
stimulus.

Statistical Approach to Bistable Model. We performed a statistical
analysis of the data asking whether spontaneous population ac-
tivity has to be described by a bimodal rate distribution, reflecting
transition between silent and active periods, or whether in con-
trast spike count statistics are captured by a model in which si-
lence periods are simply extreme events from a unimodal rate
distribution. We assumed a doubly stochastic process where the
spike counts ni(t;T) of the ith neuron (i = 1, ...N) in the time
interval (t − T/2, t + T/2) were generated according to a Poisson
distribution with parameter λi = ri T G. For a given epoch (50-s
duration), the firing rates ri were constant, whereas the pop-
ulation gain G was randomly drawn from a probability density
function f(G) in each count window (t − T/2, t + T/2). The gain
variable G represented network stochastic changes in excitability
and as such was common to all cells in the population. Because
spike counts ni(t;T) were conditionally independent given G,
correlations in this model were only introduced by the gain
variability. Thus, the spike count covariance could be written
as follows (Eq. S26):
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In the unimodal model, G followed a gamma distribution with
the shape parameter k and scale parameter Q (20) (Fig. S6B):

f ðG; k;QÞ=Gk−1expð−G=QÞ
ΓðkÞQk : [S31]

We set the mean G to 1 by imposing Q = 1/k such that the
mean spike count hniðt;TÞi= hλii= riT. We drop hereafter the
dependence on Q from f(G;k,Q). The distribution of the spike
count ni(t;T) was a gamma mixture of Poisson distributions,
which marginalizing over G yielded a negative binomial distri-
bution (20):

Pðn; k; qiÞ= Γðn+ kÞ
Γðn+ 1ÞΓðkÞ q

k
i ð1− qiÞn; [S32]

with qi = 1=ð1+ riT=kÞ and k was a shape parameter of the gain
distribution.
To account for bimodality caused by the transitions between

silent and active periods, we added to the G distribution f(G; k)
a weighted Dirac delta function centered at G = 0 (Fig. S6C):

fbimðG; k; psÞ= psδðGÞ+ ð1− psÞf ðG; kÞ; [S33]

where the parameter ps gives the probability of G = 0. In this
bimodal model, the spike count probability mass function was
a weighted sum of P(n;k,qi) and the delta Kronecker at zero:

Pbimðn; k; qi; psÞ= psδn;0 + ð1− psÞPðn; k; qiÞ: [S34]

Because brain state affected the firing rates ri and presumably the
parameters of gain distribution f(G) (Fig. S6A), the two models
were fitted separately for each epoch. The parameters of the G
distribution, {k} for f(G;k) (Eq. S31) or {k,ps} for fbim(G;k,ps)
(Eq. S33) could then be estimated by fitting P(n;k,qi) (Eq. S32)
or Pbin(n;k,qi,ps) (Eq. S34), respectively, to the spike counts ni(t;T)
obtained during spontaneous activity in each epoch. Because
under the synchronized brain state the typical silent periods were
∼100 ms long, we assumed that changes in G occur in that
timescale. Thus, to capture the variability introduced by gain
variations, count windows had to be T = 20–50 ms because larger
windows, e.g., T ∼ 1–2 s, would partly average out the gain
variability. Due to low individual average rates (ri ∼ 2–3 spikes
per s), the counts ni(t;T) using T = 20–50 ms were effectively
binary and never did exhibit bimodality regardless the brain state
(Fig. S6D). As a result, the fitted functions P(n;k,qi) (Eq. S32)
and Pbin(n;k,qi,ps) (Eq. S34) were similar, preventing the discrim-
ination between the two models (Fig. S6D). Because in the
model the gain was common to all neurons, the spike count of
the pooled activity of N neurons npoolðt;TÞ=

PN
i=1niðt;TÞ followed,

given G, a Poisson distribution with parameter λ= rpoolTG,
where rpool =

PN
i=1ri. Therefore, we fitted the functions P(n;k,qpool)

(Eq. S32) and Pbin(n;k,qpool,ps) (Eq. S32), with qpool =
1=ð1+ rpoolT=kÞ, to the spike counts npool(t;T) obtained from
pooling all of the simultaneously recorded single and multiunit
spike trains (Fig. S6E). We used a simplex algorithm (the Mat-
lab function fminsearch) that searched for the values of {k,qpool}
or {k,qpool,ps} that minimized the negative log-likelihood of the
set of counts {npool(t;T)} (Fig. S6A, blue arrows). From this fit,
we then obtained the G distributions f(G;k) and fbim(G;k,ps)
(Fig. S6 B and C).

We tested which model better reproduced the population spike
count variability. For the unimodal model, the variance of the
population spike count was obtained from the negative binomial
distribution P(n;k,qpool):

Var
�
npool

�
=

�
1− qpool

�
k

q2pool
: [S35]

For the bimodal case, it is easy to show that the variance of the
count is given by the following:

Var
�
npool

�
=
ð1− psÞ

�
1− qpool

�
k

q2pool
+
psð1− psÞ

�
1− qpool

�2k2
q2pool

: [S36]

Both models reproduced accurately the mean counts, but the
unimodal model significantly overestimated the count variance
in comparison with bimodal model (compare gray and blue dots
in Fig. S6F). This underdispersion of the data compared with the
unimodal model was greater for synchronized epochs (Fig. S6F).
A similar behavior was observed in all (n = 6) experimental
datasets. The bimodal model was a better predictor of the ex-
perimental mean pairwise spike count covariance (Fig. S6G).
For both models, the pairwise spike count covariance was com-
puted for each single-unit pair using equation Eq. S30 and then
averaged across pairs.
To assess the models’ relative goodness-of-fit, we divided the

set of counts {npool(t;T)} of each epoch in two halves [odd and
even windows (t − T/2, t + T/2)], fitted the models using the first
half and quantified the likelihood of the second half. We
then normalized the likelihood by the total number of spikesP

t∈evennpoolðt;TÞ so that it was expressed per spike. We repeated
the same procedure switching the two halves and computed the
mean of the two likelihoods (Fig. S6H). In desynchronized ep-
ochs, when S ∼ 0, both models were equally accurate predicting
the data (Fig. S6 E, Left, and H, brown dots). However, as S
increased, the histogram of npool(t;T) became progressively bi-
modal and the likelihood of the bimodal model became larger
than that of the unimodal model (Fig. S6 E and H, orange and
red dots). In synchronized epochs, the difference between the
two models, expressed as a log-likelihood ratio (LLR), varied
nonmonotonically with count window T (Fig. S6H, Inset, filled
squares). For a very small T, the spike counts became binary,
which made two models similar. On the other hand, as T grew
above 50 ms, the number of silence periods approached zero
(Fig. S1A), which made ps ∼ 0 and, as a result, the two models
became equivalent.
To demonstrate that correlations were necessary for the

population data to be bimodal, we destroyed the time relation-
ships across units by randomly and independently shifting each
spike train. As expected, in this surrogate data without correla-
tions among neurons, the fitted models were equally likely in-
dependently of the size of counting window T (Fig. S6H, Inset,
open squares). The discrimination between two models also
depended on the number of units merged to obtain npool(t;T).
Fitting the models to only one unit was similar to using a very
small count window T because spike count was a binary variable
(Fig. S6 B and I, light gray dots). When the activity of more
neurons was pooled, the LLR of the two models showed a
monotonic increase with silence density S (Fig. S6I). Thus, the
more neurons recorded simultaneously, the easier is to establish
the bimodality of the population spike counts. To obtain LLR
presented in Fig. S6I, we fitted both models to 50 randomly
chosen subpopulations of N units and computed the mean.

Population Rate Dynamics in the Bistable Model. We studied the
dynamics of the population of excitatory neurons using rate model
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with adaptation (21, 22). The dynamics of the population rate r(t)
and adaptation a(t) were given by the following equations:

τr
dr
dt
=−rðtÞ−φðαrðtÞ− aðtÞ+ IðtÞ− θÞ; [S37]

τa
da
at

=−aðtÞ+ βrðtÞ;

where the external input I(t) = I + stim(t) + σξ(t) was composed
of a constant term I (range, 0–4 a.u.), the stimulus modeled as
a step function stim(t) = 60 a.u. for 0 < t < 10 ms and zero
otherwise (Fig. 4). We hereafter omit specifying the units when
they are arbitrary, that is a.u. should be assumed if no units are
specified. In Fig. S8, we used stimuli of different amplitude
(range, 10–500) and different duration (range, 5–50 ms). The
noise term was modeled as an Ornstein–Uhlenbeck process
ξ(t) with zero mean, SD σ = 4.5 (Figs. 3 and 4, and Figs. S7
and S8), and time constant of 0.5 ms. The rate activation thresh-
old was θ = 2. The rate and adaptation time constants were set to
τr = 5 ms and τa = 250 ms, respectively. The strength of recurrent
feedback was α = 4.6 s and the strength of adaptation β was
varied in the range of 0.3–3 s. Rate model equations (Eq. S37)
were numerically integrated using a fourth-order Runge–Kutta
method with integration time step dt = 0.005 ms.
The transfer function φ(x) was given by the following (23):

φðxÞ=
8<
:

0; x< 0
gx2; 0≤ x≤ 1
g

ffiffiffiffiffiffiffiffiffiffiffiffi
4x− 3

p
; x> 1

: [S38]

In the quoted study (23), the gain constant was set to g = 10 to
approximately fit the f–I curve of cortical pyramidal cells. We used
g = 0.45 Hz (Figs. 3 and 4, and Figs. S7 and S8) to match the rate of
the model’s active attractor with the mean population rate observed
in the data (∼3 spikes per s). This rescaling did not alter the dynam-
ics of the system but only changed the values of the rate r(t) during
active periods. Because the rate during silent periods was close to
zero independently of g, increasing g increased the difference be-
tween the silent and active rates, i.e., increased population rate
variance, and consequently increased the correlation ρ(T) (Eq. S29).
To investigate the minimal model reproducing the dynamics of

evoked correlation, we simplified our model by removing adapta-
tion (i.e., setting β = 0 in Eq. S37) (Fig. S9, bistable model). To
obtain baseline values of the rate and silence density comparable to
the bistable model with adaptation, we set I = 1.36, σ = 2.8, α =
2.25 s, and g = 0.6 Hz. We also modeled the impact of short-term
synaptic depression on the thalamocortical afferents by adding an
after-stimulus suppression term: I(t) = I + stim(t) − Θ(t − toff)D
exp(−(t − toff)/τrec) +σξ(t), where toff = 10 ms is the time of the
stimulus offset, Θ(t) is a Heaviside function, the suppression ampli-
tude is D = 0.3 or 0.6, and the recovery time constant is τrec = 75 ms.

Population Rate Dynamics in the Gaussian Model. To implement
a Gaussian monostable model describing population activity, we
used the same rate dynamics as in the bistable model (Eq. S37)
with no adaption (β = 0) and a threshold-linear transfer function
given by the following:

φTLðxÞ=
�
0; x< 0
gTLx; x≥ 0 : [S39]

The value of the only stable fixed point obtained in this model was
matched to the rate of active attractor of the bistable model by
setting I = 7.5, α = 2.25 s, and gTL = 0.2 Hz. To obtain levels
of silence density comparable to the bistable model, we set the
noise time constant to 5 ms and varied the fluctuations ampli-

tude σ from 2 to 16 (Fig. S7). For the intermediate brain state
presented in Fig. S9, the amplitude was σ = 9. As in the minimal
model without adaptation described above, we introduced an
after-stimulus suppression term to reproduce the dynamics of
evoked correlation with suppression amplitude D = 2 and 5,
and recovery constant τrec = 75 ms (Fig. S9; monostable model).

Analysis of the Rate Model in Spontaneous Conditions. To simulate
spontaneous activity in the model we set stim(t) = 0. For each
combination (β, I), we run the model for 500 s (Fig. 3) and com-
puted the mean rate by averaging r(t) across time (Fig. 3D, Left).
We calculated the silence density S (Fig. 3D) as the fraction of time
in which r(t) < 0.9 Hz (Fig. 3) or r(t) < 1 Hz (Fig. S7F). The high
activity density H was computed as a fraction of time in which r(t)
was above certain threshold: 3 and 3.9 Hz for the monostable
model (Fig. S7F) and 2.9 and 3.1 Hz for the bistable model (Fig.
S7G). To obtain the correlation ρ(T) (Eq. S29), we computed R(t;T)
by convolving r(t) with a square kernel (Eq. S22; width T = 100 ms;
amplitude, 1) and calculated its mean and variance across time. We
used c0 = 0 (Fig. 3D) except in Fig. 3E where we also used c0 = 0.01
(Fig. 3E, black line). We explored the parameters plane (β, I) to
study the relation between S and ρ. Relatively big values of β and
small values of I gave S > 0.5, which was not observed in our da-
tasets. At small β, increasing I reproduced the silence density vs.
correlation relationship observed across brain states (Fig. 3E).
Similar relationship could be obtained by the simultaneous in-
crease of I and the decrease of β (Fig. 3 D and E).
If the spike count window T is much smaller than the mean silent

and active period durations, one can simplify the problem and as-
sume that the variable R(t;T) only takes the values 0 (during silent
periods) and ractT (during active periods) with probabilities S and
1− S, respectively (i.e. the probability of T straddling between a silent
and an active period is negligible). Here, ract is the population rate
during active periods. The variance Var[R(t;T)] = S(1 − S)(ractT)

2

and the mean <R(t;T)> = (1 − S)(ractT)
2 can then be used in to

derive ρ(T) (Eq. S29) with c0 = 0 that can be expressed as follows:

ρðTÞ= SractT
1+ SractT

: [S40]

Given that in the data and in the model ract ∼ 3 spikes per s and
S < 0.5, for T = 100 ms the product ract T S << 1 and Eq. S33
becomes the following:

ρðTÞ ’ SractT; [S41]

which reveals a linear relationship between ρ(T) and S with slope
ractT. This simple expression gave a relatively good prediction of
the relation between ρ(T) and S in the model. Notice, however,
that in general ρ(T) is not a function of only S because different
mean silent and active period durations can yield different cor-
relation at the same S value (Fig. 3E, gray shaded area).

Analysis of the Rate Model in Evoked Conditions. To model the
responses to click stimuli, we set stim(t) = 60 for 0 < t < 10 ms and
zero otherwise (Fig. 4). The instantaneous mean rate, silence
density, integrated rate variance, and correlation (Fig. 4 and Figs.
S8 and S9) were obtained across 10,000 stimulus repetitions. We
compare the model traces with those obtained from data, and we
computed the mean evoked rate as the expected spike count
normalized by the count window size T (Fig. 4A and Figs. S8A
and S9F, and Movies S1 and S2):

rðt;TÞ= hnðt;TÞi
T

=

D
hnðt;TÞjrðtÞispks

E
r

T
=
hRðt;TÞir

T
; [S42]

where R(t;T) is the expected number of spikes conditioned
on r(t) (also termed integrated rate; Eq. S22). Moreover, we
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plotted the variance Var[R(t;T)] (Fig. 4C and Figs. S8C and
S9H; Movies S1 and S2) to illustrate the variability introduced
by the rate r(t) (we used T = 50 ms). Instantaneous silence
density S(t) was computed as the fraction of trials in which the
rate r(t) < 0.9 Hz (Fig. 4B and Fig. S8B) or r(t) < 1 Hz (Fig.
S9G). For plotting purposes, we matched the timescales of the

instantaneous silence density and spike count statistics by con-
volving S(t) with a square kernel of duration T = 50 ms (Fig.
4B and Figs. S8B and S9G). The instantaneous spike count
correlation ρ(t;T) (Fig. 4D and Figs. S8D and S9I; Movies S1
and S2) was computed from Eq. S29 with c0 = 0 using a window
T = 50 ms.
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Fig. S1. Silence density depends on the bin size used to detect silence. (A) Variations of silence density S (Eq. S5) across one example experiment obtained
using different bin sizes Δt (see values in Inset). S was computed in 50-s epochs. As Δt decreases S approaches 1 (red colors), whereas as Δt increases S goes to
zero (blue colors). In both the small and large Δt limits, the range spanned by S throughout the experiment is small. (B) The ranges of S (black) and homo-
geneous Poisson silence density SHP (gray), defined as the difference between maximum and minimum values spanned during the experiment, as a function of
Δt. The SHP (Eq. S6) gives the expected silence density produced in each epoch by a homogeneous Poisson process with a rate matching the pooled population
spike rate R. Variations in SHP thus reflect the changes in rpool accompanying brain state changes (Fig. S2A). The difference between the ranges of S and SHP is
also shown (blue). (C) As in B, but for the average over n = 6 experiments (error bars show SD). For further analyses, we chose Δt = 20 ms as the bin size that
maximizes the averaged difference between the range of S and SHP.
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Fig. S2. Variations in silence density cannot be accounted by changes in population rate. (A) Pooled population firing rate rpool computed in 50-s epochs from
one example experiment (also shown in Figs. 1 and 2). Note that the pooled population rate (Eq. S1) is not normalized by the number of single-unit and
multiunit spike trains (n = 84). (B) Silence density S (black; Eq. S5) and homogeneous Poisson silence density SHP (gray; Eq. S6) computed for each epoch using
bins of Δt = 20 ms. Silence density computed with adjusted Δt (to compensate for the changes in rate rpool) is shown in blue. (C) Mean LFP power ratio defined
as the fraction of spectral density at low frequencies (<5 Hz) over higher frequencies (from 20 to 45 Hz). The mean computed across recording channels (n =
60). In this experiment, the correlation coefficient between mean LFP power ratio and S across epochs (for Δt = 20 ms) was r = 0.96 (mean across all experiments
was 0.89; range, 0.78–0.96). (D) Difference between joint silence density obtained from cell pairs and the product of their marginal densities, Sij – SiSj, vs. bin
size Δt. The difference was averaged across cell pairs (i ≠ j; n = 3,240) by grouping desynchronized (brown), intermediate (orange), and synchronized (red)
epochs. Data came from the experiment shown in A–C. Stars above indicate points significantly different from zero (Wilcoxon rank-sum test, P < 0.05). (E) Same
as D, but averaged across experiments (n = 6; error bars show SD).
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ranges are 0.007–0.03 (data) and 0.011–0.32 (surrogates).
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Fig. S4. Dynamics of the evoked response in A1 across brain states. (A–C) Population-averaged instantaneous rate r(t) (A), instantaneous silence density S(t)
(B), and instantaneous correlation ρ(t;T) (C) in response to a click stimulus during desynchronized (brown), intermediate (orange), and synchronized (red)
epochs. For each experiment, the statistics were obtained across stimulus repetitions within the given brain state. Population rate was averaged across single
units and correlation was average across single-unit pairs. Panels show the mean over experiments (n = 6 for synchronized and intermediate state; n = 5 for
desynchronized state). Rate and correlation were obtained using T = 50-ms sliding windows (time step, 2 ms). The density S(t) was obtained using bins Δt = 20 ms,
and then it was smoothed with a square kernel of width T = 50 ms (Eq. S7). Shaded areas show the SEM.
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Fig. S5. Evoked dynamics of Fano factor for experimental and model data. (A) Population-averaged instantaneous Fano factor FF(t;T) from one example
experiment session (A, same experiment as in Figs. 1 and 2 and Figs. S1 and S2) in response to a click stimulus during desynchronized (brown), intermediate
(orange), and synchronized (red) epochs. The statistics were obtained across stimulus repetitions under the corresponding state using T = 50-ms sliding
windows (step, 2 ms; Eq. S14) and then averaged over single units (n = 81 units; shaded area illustrates 95% confidence bands obtained from 500 random
resamples). (B) Average over all experiments of the population-averaged Fano factor shown in A (n = 6 for synchronized and intermediate state, n = 5 for
desynchronized state; shaded area represents SEM). (C) Same as in B but for the FF(t;T) computed using the shift-corrected variance (Eq. S17) that factors out
the variability due to slow variations in neuronal excitability. (D) Stimulus-evoked instantaneous Fano factor computed from numerical simulations of the
computational rate model for the three brain states defined in Fig. 3 (same color code). Statistics was obtained across repeated stimulus presentations (Eq. S25).
Stimulus was a 10-ms square pulse added to the external input I(t). Notice the different temporal scale used in A–C and D.
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Fig. S6. Unimodal vs. bimodal models of spike count statistics across brain states. (A) Model diagram. Given the population gain G, the spike counts ni(t;T) in
the time interval (t − T/2, t + T/2) for each neuron (i = 1, ..., N) are generated according to a Poisson distribution with parameter ri T G. The firing rates ri are
constant in each epoch, whereas G is randomly drawn, in each count window (t − T/2, t + T/2), from a probability density function f(G). Brain state variations
affect the rates ri and the gain distribution f(G) (Left). Thus, changes in G occur in a timescale (∼100 ms) that is faster than changes in brain state (∼1–2 min) but
slower than the spiking stochasticity (a few milliseconds). Because spike counts ni(t;T) are conditionally independent given G, correlations are only introduced
by the gain variability. (B) Probability density function f(G) for the unimodal model in three epochs representative of desynchronized (brown), intermediate
(yellow), and synchronized (red) brain states. The f(G) is a Gamma distribution obtained by fitting the unimodal model to the population spike counts obtained
from spontaneous activity (merge of n = 84 single units and multiunits; T = 20 ms; blue bottom arrow in A; see SI Methods for details). (C) Same as in B but for
a bimodal model where f(G) consists of a Gamma distribution plus a Dirac delta function at zero (vertical arrows). The amplitude of the delta function obtained
from the fit was approximately equal to S in each epoch (delta amplitudes in the plot are set for illustration purposes only). (D) Spike count histograms for an
example neuron in the three selected epochs (bars) together with the distribution predicted from the unimodal (gray line) and bimodal (blue line) models
shown in B and C. Because the rates of single neurons are low (e.g., mean rate across epochs for this neuron was ri = 3.9 spikes per s), spike counts are ef-
fectively binary and both models give similar distributions that are almost independent of the brain state. (E) Population spike count histograms (N = 84; mean
rate across epochs, 189 spikes per s) and the predictions from the models shown in B and C. Color code as in D. Data come from the same experiment shown in
Figs. 1 and 2. During desynchronized epochs (S ∼ 0), histograms are unimodal and both models give equivalent fits (blue and gray lines overlap). With cortical
synchronization, S increases, the histograms become progressively more bimodal, and the bimodal model fitted the data more accurately than the unimodal
model. (F) Mean population spike count variance for the experimental data and for the two fitted models vs. silence density (color code defined in Inset). The
mean and SD (error bars) are taken across epochs with given silence density. Although the bimodal model predicts the variance across all brain states, the
unimodal model overestimates spike count variability particularly as brain state becomes synchronized. The same qualitative relation was observed in all
experiments (n = 6). (G) Mean pairwise spike count covariance derived from the models vs. the covariance obtained from the data (n = 3,240 single-unit pairs).
As in F during synchronized epochs the unimodal model overestimates covariance. (H) Predictive accuracy of the unimodal vs. bimodal models across epochs.
Each data point illustrates the log-likelihood of the population counts of one epoch. In each epoch, models were fitted to the half of data, and log-likelihood
was computed on the remaining half and expressed per spike (SI Methods). Epochs were colored according to the three brain state categories defined in
Methods. (Inset) Log-likelihood ratio (LLR) of bimodal over unimodal model, averaged across synchronized epochs, vs. count window T (filled symbols). The

Legend continued on following page
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bimodality of the data was optimally revealed using T in the range of 10–50 ms. If the time relationships across units was removed by randomly and in-
dependently shifting each spike train, the data were no longer bimodal (open symbols). (I) LLR between bimodal and unimodal models in each epoch as
a function of S. The models were fitted to population counts obtained from a subpopulation of N randomly chosen neurons (Inset). The growth in bimodality
with S is harder to detect in subpopulations of small N.
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Fig. S7. Comparison of Gaussian and bistable models describing spontaneous changes in correlation. (A) Averaged spontaneous spike count correlations ρ
obtained across 50-s epochs (same experiment as Fig. 1). (B) Silence density S (black) and high activity density H, with average matching the average S (gray;
H threshold of 6 spikes in a bin Δt = 20 ms) or matching S at the most desynchronized epochs (blue; H threshold, 10 spikes). (C) Correlation vs. H for all n = 6
experiments. Each dot represents a 50-s epoch. H thresholds were chosen separately for each experiment. Note the lack of systematic relation between ρ and
H (mean ρ–H correlation coefficient across experiments were −0.03 and 0.24 for gray and blue sets, respectively). (D) Correlation vs. S for all experiments (n = 6)
shows a clear linear relationship (mean ρ–S correlation coefficient was 0.94). (E) Spontaneous activity traces (Left) and rate histograms (Right) for Gaussian
model for three amplitudes of the input fluctuations σ (3, 8, 14) chosen to reproduce different brain states. (F) Correlation vs. S (black) and vs. H (gray and blue)
obtained in the monostable model across brain states, modeled by changing σ (range, 2–16). Two H thresholds were used (3 and 3.9 Hz; dotted lines in E) to
compare two sets of high activity density as in B and C. Colored squares mark the ρ–S values corresponding to the states shown in E. The Gaussian model shows
an increase of both densities in disagreement with the ρ–H behavior found in the data (C). (G) Same as F for the bistable model. Brain state changes were
modeled by changing I as in Fig. 3 E and F (range I = 0.4–4). Curve ρ–S (black) is taken from Fig. 3E (gray). High activity thresholds were 2.9 Hz (gray) and 3.1
Hz (blue).
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Fig. S8. Correlation evoked dynamics for different stimulus parameters. (A–D) Stimulus-evoked mean instantaneous rate r(t) (A), instantaneous silence density
S(t) (B), variance of integrated rate R(t) (C), and instantaneous correlation ρ(t) (D) obtained for the bistable network with adaptation operating in the in-
termediate brain state (same as orange trace in Fig. 4 A–D). Statistics were obtained across repeated presentations of the pulse stimulus using different
amplitudes (Left; Inset) and different durations (Right; Inset). Stimuli with larger amplitude or duration caused a larger evoked response r(t) and, due to the
larger recruitment of adaptation, a deeper poststimulus rate suppression (A). This increased suppression was caused by more pronounced rebound in S(t)
(B) and yielded a larger rebound in ρ(t) followed by a deeper second drop (D). Notice that the rebound amplitude of the integrated rate variance increases until
S(t) reaches 0.5 (dotted line in B). For S(t) > 0.5, the variance decreases (see small drop in the rebound for the largest stimulus amplitude or duration; dark blue
traces in C). This drop at the rebound is mitigated in ρ(t) by the decrease of the mean rate (D) and only becomes apparent when S(t) peaks at very high
amplitudes (dark blue traces in right panels).
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Fig. S9. Minimal model reproducing the key features of the stimulus-evoked dynamics of correlation. (A) Simplified network model with no adaptation
composed of a recurrently coupled excitatory population receiving a fluctuating input I(t) consisting of a brief stimulus (square pulse) and an after-stimulus
suppression, mimicking the effect of short-term depression of the synaptic afferents. (B and C) Graphical representation of the stable fixed points of the system
(filled circles) obtained from solving the equation: r = φ(αr + I − θ). The identity line r = x is shown as dotted. The transfer function φ(αr + I − θ) (solid lines),
shown for baseline I (black) and the suppressed I taken after stimulus offset (red; arrowheads in A), was sigmoidal for the bistable model (B) or linear-threshold
in the monostable model (C). (D) Example rate traces during spontaneous activity (Left). For each model, the parameters were chosen to yield the same
baseline values for mean rate, integrated rate variance R, and silent density S corresponding to the intermediate brain state (dotted line represents silence
threshold at 1 Hz). The distribution of r(t) is bimodal in the bistable model and approximately Gaussian in the monostable model (Right). (E–I) Stimulus (E),
mean evoked instantaneous rate r(t) (F), silence density S(t) (G), variance of integrated rate R(t) (H), and instantaneous correlation ρ(t) (I) obtained for the
bistable (left panels) and monostable model (right panels) for three stimuli with a different level of after-stimulus suppression (color code in E). Stimulus
parameters were chosen for each model to produce the same peak response and after-stimulus rate suppression levels (E and F). Because the rate distribution
of the bistable model becomes unimodal at the response peak (Fig. 4E, ii), S(t), the integrated rate variance, and ρ(t) all show a prominent drop for all stimuli
(G–I, Left). The monostable model, in contrast, suffers an upward displacement of the rate distribution with no decrease in variance (H; Right) and shows
a smaller drop of ρ(t) (I; Right), purely caused by the increase in mean rate (Eq. S29). Only the bistable model showed a robust rebound in ρ(t) in response to
stimuli with after-stimulus suppression (I, gray and blue traces). The monostable model did not display a rebound in ρ(t) because the dynamics of the rate
variance were qualitatively different (H, Right). Vertical dotted lines mark the time of the peak of the S(t) rebound. Notice the different time range shown in
left and right panels. Bistable model parameters: g = 0.6 Hz, α = 2.25 s, θ = 2, I = 1.36, and σ = 2.8. Monostable model parameters: θ = 2, I = 7.5, and σ = 9.
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Movie S1. Rate model transient dynamics during the desynchronized brain state. From Top to Bottom: Stimulus-evoked mean instantaneous rate r(t), rate
variance, instantaneous correlation ρ(t;T), and the instantaneous probability density of the system P(r,a,t) given as a time-varying color map plotted on the (r,a)
phase plane (hotter colors indicate larger probability). Rate and adaptation nullclines are superimposed (white cubic curve and straight line, respectively).
Statistics were obtained across 10,000 repeated stimulus presentations. Time points i–iii discussed in the main text are marked with dotted lines. Marginal
distributions P(r,t) and P(a,t) are plotted next to the rate and adaptation axes, respectively. Parameters were I = 3.6 and β = 1.67.
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Movie S2. Rate model transient dynamics during the synchronized brain state. Convention as in Movie S1 except that the model was simulated with pa-
rameters I = 1.1 and β = 1 to exhibit the dynamics of the synchronized state.

Movie S2
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