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SI Methods
Ring Fitting. In the cases of an ensemble of crystals and a fibril
network, the diffraction pattern consists of Debye–Scherrer rings.
The center of the diffraction rings in each pattern is determined by
a Hough transform as used in image theory, allowing us to com-
pensate for any drift of the electron beam due to transient electric
fields (1). Azimuthal averaging of the pattern gives the diffraction
intensity as a function of the scattering vector, s (rocking curve).
The peaks are indexed on the basis of the monoclinic unit cell. For
data analysis, the rocking curve is decomposed into background and
diffraction peaks. A least-square fitting allows us to determine the
position and the intensity change of every peak as a function of the
delay time between photon–pump and electron–probe.
For the case of an ensemble of crystals, the observed rocking

curve is decomposed into several peaks. The absence of corre-
lation between their positions, as obtained from the fitting pro-
cedure, is verified by evaluating the covariance matrix, from which
a Pearson’s coefficient, p, of 0.1 is obtained (complete correla-
tion would be present if p is 1 or −1).

Determination of Temperature Jump. In the framework of an equi-
librium heating model (2) the laser irradiation is able to induce
a temperature increase, ΔT, within the investigated material. The
thermal motions excited by this temperature jump are responsible
for a loss of interference within the lattice, which results in a re-
duction of the diffraction intensity, quantitatively described by the
Debye–Waller relation:
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where T =T0 +ΔT, ΘD is the Debye temperature,W is the Debye–
Waller factor, and I0 and I are the diffraction intensities before and
after the optical excitation, respectively. The Debye–Waller factor
can be expressed as

W ðT;ΘDÞ= 3Z2s2

2MKBΘD

"
1
4
+
�

T
ΘD

�2 ZΘD=T

0

μ

expðμÞ− 1
dμ

#
;

where M is the average atomic mass, KB is the Boltzmann con-
stant, and Z is the Planck constant.

For the case of protein fibrils discussed in this work, the value of
the temperature increase, ΔT, can be extracted by the Debye–
Waller relation using the experimentally measured value of in-
tensity change for the diffraction peak at 4.8 Å and a Debye
temperature ΘD = 100 K (3).

Dipole–Dipole Interactions Between Amyloid Protofilaments. By
analogy with microtubules (4), the force of electrostatic attrac-
tion arising from dipole–dipole interactions between neighboring
protofilaments, Felectrostatic, is given by
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where a is the protofilament radius [22 Å for VQIVYK (5)],
d is the distance between protofilaments, σD is the dipole
moment per unit area (7.9 × 10−11 C/m for VQIVYK), λ is
a constant (∼2–3), « is the dielectric constant of water, and L
is the length of the fibril [typically between 1 and 3 μm (6)]. The
bond stiffness, kelectrostatic, is calculated as kelectrostatic = [dFelectrostatic/
dd]d = 2a.

Effective Bending Rigidity of Individual Amyloid Fibrils. By analogy
with cytoskeletal bundle mechanics (7), the effective bending
rigidity, κB, is given by
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where κf is the bending stiffness of a single β-sheet (∼1 × 10−26

N m2), N is the total number of intersheet and interprotofila-
ment interfaces per 4.8 Å layer of fibril, χ and c are constants (7),
and γ is the protofilament coupling parameter, as described in
the main text.
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Fig. S1. Representative intensity drop/temperature jump curve for amyloid fibril networks.

Fig. S2. Representative atomic expansion dynamics of amyloid fibril networks in 10-ns increments.
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Fig. S3. Angular-integrated 1D diffraction curve of an ensemble of amyloid microcrystals. Also shown are peak assignments, individual fitted profiles of
peaks, and background.
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