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I. Members of the Bipolar Genome Study (BiGS)

University of California, San Diego: John R. Kelsoe, Tiffany
A. Greenwood, Caroline M. Nievergelt, Paul D. Shilling,
Tatyana Shekhtman; Institute for Systems Biology: Jared C.
Roach, Seth A. Ament, Leroy Hood; Indiana University: John
I. Nurnberger, Jr., Howard J. Edenberg, Tatiana Foroud,
Daniel L. Koller; University of Chicago: Elliot S. Gershon,
Judith A. Badner; University of Illinois: Chunyu Liu; Rush
University Medical Center: William A. Scheftner; Howard
University: William B. Lawson; University of Iowa: William
Coryell, James B. Potash; Washington University: John Rice;

University of California, San Francisco: William Byerley;
National Institute Mental Health: Francis J. McMahon,
Liping Hou; University of Pennsylvania: Wade H. Berrettini;
Johns Hopkins University: Peter P. Zandi; University of
Michigan: Melvin G. Mclnnis; The Translational Genomics
Research Institute: David W. Craig, Szabolcs Szelinger;
Georg-August-University Gottingen: Thomas G. Schulze; J.
Craig Venter Institute: Nicholas J. Schork, Danjuma Quarless

Il. Principal Investigators and Co-Investigators of the National
Institute of Mental Health (NIMH) Bipolar Disorder Genetics
Initiative and of the NIMH Control Samples Initiative

Data and biomaterials were collected as part of eleven
projects (Study 40) that participated in the National Institute
of Mental Health (NIMH) Bipolar Disorder Genetics
Initiative. From 2003-2007, the Principal Investigators and
Co-Investigators were: Indiana University, Indianapolis, IN,
RO1 MHS59545, John Nurnberger, M.D., Ph.D., Marvin J.
Miller, M.D., Elizabeth S. Bowman, M.D., N. Leela Rau,
M.D., P. Ryan Moe, M.D., Nalini Samavedy, M.D., Rif El-
Mallakh, M.D. (at University of Louisville), Husseini Manji,
M.D. (at Johnson and Johnson), Debra A. Glitz, M.D. (at
Wayne State University), Eric T. Meyer, Ph.D., M.S. (at
Oxford University, UK), Carrie Smiley, R.N., Tatiana Foroud,
Ph.D., Leah Flury, M.S., Danielle M. Dick, Ph.D (at Virginia
Commonwealth University), Howard Edenberg, Ph.D.;
Washington University, St. Louis, MO, R01 MH059534,
John Rice, Ph.D, Theodore Reich, M.D., Allison Goate,
Ph.D., Laura Bierut, M.D. K02 DA21237; Johns Hopkins
University, Baltimore, M.D., ROl MH59533, Melvin Mclnnis,
M.D., J. Raymond DePaulo, Jr., M.D., Dean F. MacKinnon,
M.D., Francis M. Mondimore, M.D., James B. Potash, M.D.,
Peter P. Zandi, Ph.D, Dimitrios Avramopoulos, and Jennifer
Payne; University of Pennsylvania, PA, R0l MHS59553,
Wade Berrettini, M.D., Ph.D.; University of California at San
Francisco, CA, R01 MH60068, William Byerley, M.D., and
Sophia Vinogradov, M.D.; University of Iowa, IA, ROl
MHO059548, William Coryell, M.D., and Raymond Crowe,
M.D.; University of Chicago, IL, ROl MHS59535, Elliot
Gershon, M.D., Judith Badner, Ph.D., Francis McMahon,
M.D., Chunyu Liu, Ph.D., Alan Sanders, M.D., Maria Caserta,
Steven Dinwiddie, M.D., Tu Nguyen, Donna Harakal;
University of California at San Diego, CA, R01 MH59567,
John Kelsoe, M.D., Rebecca McKinney, B.A.; Rush
University, IL, ROl MH059556, William Scheftner, M.D.,
Howard M. Kravitz, D.O., M.P.H., Diana Marta, B.S.,
Annette Vaughn-Brown, M.S.N., R.N., and Laurie Bederow,
M.A.; NIMH Intramural Research Program, Bethesda, MD,
1Z01MHO002810-01, Francis J. McMahon, M.D., Layla
Kassem, Psy.D., Sevilla Detera-Wadleigh, Ph.D, Lisa Austin,
Ph.D, Dennis L. Murphy, M.D.; Howard University, William
B. Lawson, M.D., Ph.D., Evarista Nwulia, M.D., and Maria

Hipolito, M.D. This work was supported by the NIH grants
P50CA89392 from the National Cancer Institute and
5K02DA021237 from the National Institute of Drug Abuse.
Biomaterials and phenotypic data were obtained from the
following projects that participated in the NIMH Control
Samples: Control subjects from the National Institute of
Mental Health Schizophrenia Genetics Initiative (NIMH-GI),
data and biomaterials are being collected by the "Molecular
Genetics of Schizophrenia II" (MGS-2) collaboration. The
investigators and coinvestigators are: ENH/Northwestern
University, Evanston, IL, MH059571, Pablo V. Gejman, M.D.
(Collaboration Coordinator; PI), Alan R. Sanders, M.D.;
Emory  University School of Medicine, Atlanta,
GA,MH59587, Farooq Amin, M.D. (PI); Louisiana State
University Health Sciences Center; New Orleans, Louisiana,
MHO067257, Nancy Buccola, APRN, B.C., M.S.N. (PD);
University of California-Irvine, Irvine, CA,MH60870,
William Byerley, M.D. (PI); Washington University, St.
Louis, MO, U01, MH060879, C. Robert Cloninger, M.D.
(PD); University of lowa, Iowa, TA,MH59566, Raymond
Crowe, M.D. (PI), Donald Black, M.D.; University of
Colorado, Denver, CO, MH059565, Robert Freedman, M.D.
(PI); University of Pennsylvania, Philadelphia, PA,
MHO061675, Douglas Levinson M.D. (PI); University of
Queensland, Queensland, Australia, MHO059588, Bryan
Mowry, M.D. (PI); Mt. Sinai School of Medicine, New York,
NY, MH59586, Jeremy Silverman, Ph.D. (PI). The samples
were collected by Vishwajit Nimgaonkar's group at the
University of Pittsburgh, as part of a multi-institutional
collaborative research project with Jordan Smoller, M.D.,
D.Sc., and Pamela Sklar, M.D., Ph.D., Massachusetts General
Hospital (grant MH63420). Data and biomaterials used in
Study 23 were collected by the University of Pittsburgh and
funded by an NIMH grant (Genetic Susceptibility in
Schizophrenia, MH56242) to Vishwajit Nimgaonkar, M.D.,
Ph.D. Additional Principal Investigators on this grant include
Smita Deshpande, M.D., Dr. Ram Moanohar Lohia Hospital,
New Delhi, India; and Michael Owen, M.D., Ph.D.,
University of Wales College of Medicine, Cardiff, UK.



lll. Supplementary Methods

1. Whole-genome sequencing of bipolar disorder
pedigrees. We sequenced the whole genomes of 200
individuals from 41 pedigrees multiply affected with bipolar
disorder (BD). This family-based sequencing strategy is
designed to detect effects of transmitted rare variants with
moderate to large effect sizes within a pedigree. We
hypothesized that transmitted rare variants play an important
role in the genetic architecture of BD for the following
reasons. First, BD is a strongly familial illness, with 8-fold
relative risk in the family members of BD probands. Second,
BD has relatively minor effects on evolutionary fitness (1).
Third, so far, associations with de novo mutations appear
relatively weak, compared with schizophrenia and autism (2—
4). Fourth, linkage studies have suggested the existence of
large-effect loci in some BD pedigrees, although causal
variants at these loci have been elusive.

Family-based sequencing also provides more general
advantages over sequencing of unrelated cases and controls.
Repeated observation of a rare variant across multiple family

members provides confidence that it is not a sequencing error.

Also, under many disease models we expect stronger or more
numerous risk variants in familial cases than in sporadic
cases. For instance, if a multiply affected pedigree has a
monogenic cause, then the causal variant in that pedigree is
predicted to have higher penetrance than risk variants in the
general population. If a multiply affected pedigree has a
polygenic cause, the affected family members are predicted
to inherit an especially large number of risk variants, though
each affected family member could inherit a unique
combination of risk variants. For all of these reasons, we
chose to sequence multiply affected pedigrees as a strategy
well suited to find genetic causes of bipolar disorder.

The 41 bipolar disorder pedigrees sequenced in this
study were drawn from a set of 972 multiply affected
pedigrees collected by the NIMH Genetics Initiative and by
sites at the University of California, San Diego, the
University of California, San Francisco, and the University of
Chicago. This sample has been described previously (5).
DNA derived from whole blood or from lymphoblastoid cell
lines was obtained from the Rutgers University Cell and
DNA Repository and from the Corriell Institute.

We selected pedigrees and individuals for sequencing by
considering family structure, per-pedigree LOD scores at
4,500 genome-wide SNPs (5), and the polygenic risk score in
each pedigree’s proband (6). We chose a subset of individuals
within each pedigree so as to maximize power under the most
likely inheritance mode, as follows: (i) We sequenced a
single affected individual and a single unaffected individual
from nine pedigrees with a suggestive per-pedigree linkage
peak and predicted dominant inheritance (pedigrees #1-9). (ii)
We sequenced a parent-child trio or quartet from eight
pedigrees with a single, suggestive per-pedigree linkage peak
and either dominant or recessive inheritance (pedigrees #10-
17). In 22 pedigrees for which polygenic inheritance was

more likely, we sequenced either (iii) a subset of affected
individuals and 0-1 unaffected individuals (pedigrees #18-33)
or (iv) all available individuals (pedigrees #34-41). Pedigree
drawings annotated with the sequenced individuals and
segregation criteria used in genetic filtering are shown in Figs.
S1-S4 and Table S1.

Whole-genome sequencing was performed to >40x
coverage by Complete Genomics, Inc. (Mountain View, CA).
We used variant calls for single-nucleotide variants (SNVs)
and indels from the Complete Genomics analysis pipeline
version 2.0 or 2.2, relative to the human reference genome
version GRCh37.

2. Whole-genome sequencing of population controls. We
analyzed the 200 genomes from BD pedigrees together with
genomes of population controls drawn from a collection of
>1,200 genomes in an in-house collection at the Institute for
Systems Biology, which were originally ascertained on a
variety of diseases. The control pedigrees include a large
pedigree segregating a monogenic form of cardiomyopathy
(7), 10 pedigrees with Adams-Oliver syndrome (8, 9), and
three pedigrees with Fanconi anemia, as well as genome
sequences from several ongoing studies. Genome sequences
from studies of complex psychiatric and neurological
diseases such as epilepsy (10) were excluded from
association testing, but are included in some quality control
procedures. Individuals in the control pedigrees used for
association testing did not undergo diagnostic interviews for
psychiatric conditions and are likely to have a rate of BD
comparable to that in the broader population (~1-2%).
Whole-genome sequencing for all of these individuals was
performed by Complete Genomics.

Subsets of control genomes were utilized in several ways
throughout our analyses. (i) Allele frequencies and quality-
control metrics were calculated across 1,057 non-BD
genomes and used as a complement to publicly-available
databases for the identification of rare variants
(Supplementary Methods Section 4). (ii) For linear mixed
model association analysis of single variants, we analyzed the
BD genomes together with 254 genomes from individuals
and pedigrees of European ancestry. (iii) For gene and
pathway burden analyses we used control genomes to
calculate an empirical distribution for the rate at which
variants in each gene or pathway segregated in non-BD
pedigrees. In our analyses of uncommon coding and
regulatory variants, we utilized 168 genomes from 34
multigenerational pedigrees, matched to the BD pedigrees by
size and structure. (iv) In our analysis of rare, gene-disrupting
variants we additionally considered the empirical distribution
of transmitted gene-disrupting variants across 242 control
parent-offspring trios.

3. Affection status models. For analysis of segregation
patterns in single pedigrees, we designated affection status



models by combining phenotypic information with evidence
from a published linkage analysis utilizing these same
pedigrees (5). We considered all individuals with a diagnosis
of bipolar disorder type 1, bipolar disorder type 2, or
schizoaffective disorder bipolar type to be affected.
Individuals with recurrent or single episodes of major
depression were also considered to be affected if (i) the best-
supported linkage peak for that pedigree in the analysis by
Badner et al. (5) supported an inheritance model that included
major depression, and they were not married-in; or (ii) they
had offspring with BD and were not married-in to a pedigree.
Two individuals with unknown or other phenotypes were
considered obligate carriers and treated as affected because
pedigree structure and linkage data provided strong evidence
that they were carriers of risk alleles. In pedigrees 5407 and
11127 we developed two distinct affection status models,
treating individuals with major depression as affected or
unaffected, respectively; in these pedigrees, we used the
union of candidate variants under the two affection status
models for downstream analyses. The designated affection
status models for each pedigree are illustrated in Figs. S1-S4.

4. Variant annotation and filtering. SNVs and indels from
Complete Genomics masterVar files were annotated on
sequence quality, allele frequency, functional annotation,
likelihood of false positivity, and genetic segregation. These
filters were implemented using a combination of QIAGEN’s
Ingenuity Variant Analysis software
(www.qgiagen.com/ingenuity, QIAGEN Redwood City,
Redwood City, CA), the Family Genomics Workflow, and
PLINK (11), as follows:

4.a. Variant quality. Using Ingenuity, we retained
variants with Variable Allele Frequency quality scores >35 in
affected individuals or >20 in unaffected individuals. Using
the Family Genomics Toolkit, we then filtered out variants at
positions with >20% no-call rate across the 200 genomes
from BD pedigrees.

4.b. Allele frequency. We annotated allele frequencies
using data from the 1,000 Genomes Project, NHLBI Exomes,
Complete Genomics Public Genomes, Kaviar (12), and ISB’s
internal database of 1,057 genome sequences from non-BD
pedigrees. We defined “uncommon” variants as those with
allele frequencies < 5% in all populations and “rare” variants
as those with allele frequencies < 1% in all populations.

4.c. Functional annotation. Using Ingenuity, we
categorized gene-disrupting variants, coding variants, and
regulatory variants. Gene-disrupting variants were defined by
the following categories: (i) stop codon change, (ii) gene
fusions, (iii) frameshift indel, (iv) disrupt splice site up to two
bases into intron, or (v) a structural variant. Coding variants
included gene-disrupting variants, and the following
additional categories that alter the amino acid sequence of a
protein: (vi) established gain of function in the literature (vii)
inferred activating mutations by Ingenuity, (viii) predicted
gain of function by BSIFT, (ix) in-frame indel, (x) missense
(i.e., all other non-synonymous coding SNVs). Regulatory
variants were defined as those (i) in a microRNA binding site
predicted by TargetScan, (ii) deleterious to a microRNA, (iii)
in a JASPAR cis-motif or ENCODE ChIP-seq transcription

factor binding site within 1000 bp upstream of a transcription
start site, (iv) within a known or predicted enhancer binding
site from the VISTA database, or (v) in a 5’ or 3’ untranslated
region.

4.d. Eliminating likely false positives. We applied four
additional filters to remove likely false positives and non-
deleterious variants. Coding variants were filtered to exclude
100 bp segments with an unusually high rate of functional
variants in Complete Genomics genomes. Gene-disrupting
SNVs and indels were further filtered to exclude genes with
the highest 1% rate of transmitted gene-disrupting SNVs;
genes that contained a segregating, rare gene-disrupting SNV
or indel in any of the 34 multigenerational control pedigrees;
and variants with CADD (13) scores < 10.

4.e. Genetic segregation. Fully and nearly-fully
segregating variants were defined in each pedigree based on
allele sharing among the sequenced affected and unaffected
individuals. Thresholds for allele-sharing are shown in Table
S1. These thresholds were determined based on the number
of sequenced individuals and the number of meioses
separating the sequenced affected individuals.

4.f. Filter settings for each analysis. We combined
annotations in 4.a-4.e to define lists of candidate variants for
downstream statistical analysis, as follows. For mixed-model
analysis of single variants we used high-quality, uncommon,
segregating and non-segregating variants. For gene and
pathway burden tests of polygenic variants we used high-
quality, rare and uncommon, gene-disrupting, coding, and
regulatory variants with low false-positivity scores, which
segregated with BD in each pedigree. For pathway analysis of
rare, gene-disrupting variants, we used high-quality, rare,
gene-disrupting variants with low false-positivity scores,
which segregated with BD in each pedigree.

5. Selection of genes and gene sets for analysis. The genetic
complexity of BD, combined with the massive number of
variants discovered in a WGS study, precluded an unbiased
genome-wide analysis. To increase statistical power, we
selected for analysis 3,087 candidate genes and 325 candidate
gene sets (“pathways”). These genes and pathways were
selected based on two hypotheses about BD’s genetic causes.

First, we hypothesized that genes influencing risk for BD
will be enriched for those with intrinsic neuronal functions.
Imaging studies, animal models, and other evidence suggest
that mood disorders arise from structural and physiological
changes in the brain. It is therefore reasonable to confine an
initial search for rare risk variants to genes with predicted
functions in neurons. Of course, peripheral tissues and non-
neuronal cells in the brain (e.g., glia) could contribute to
mood disorders. Also, genes with both neuronal and non-
neuronal functions (e.g., metabolic enzymes) may contribute
to disease. We anticipate that an unbiased genome-wide
search will become possible as sample sizes increase. Since
the specific neuronal functions perturbed in mood disorders
have yet to be ascertained, we aimed to include a broad
spectrum of genes with neuronal functions. Synaptic function
appears to be especially relevant, since synapses are highly
enriched for proteins that contribute to neuronal activity. We
therefore included all the genes that encode proteins that have



been localized to synapses through proteomics studies from
the SynaptomeDB database. A second category of neuronal
genes of special interest are those with characterized small
molecule agonists or antagonists. Genetic findings for these
genes may be especially actionable, since they are attractive
therapeutic targets. We therefore added to our list any ion
channel or G-protein coupled receptor (GPCR) included in
the International Union of Pharmacology (IUPHAR) database
of drug targets.

Second, we hypothesize that loci with evidence of an
association to BD from GWAS are likely to harbor causal
rare variants. Although only a handful of genome-wide
significant loci have been discovered in BD GWAS, scores of
additional loci have sub-threshold associations. These
“suggestive” loci are enriched for voltage-gated calcium
channels and other pathways (14-16). Also, polygenic risk
scores based on the combined genotypes at all nominally
significant loci classify cases from controls in independent
cohorts (14). These results suggest that some of the genes at
loci with sub-threshold associations from GWAS harbor true
risk variants. Some of the common SNPs identified by
GWAS may tag true causal variants that are more rare. Genes
that contain common risk variants may also contain
additional rare variants that are not linked to common SNPs.
We therefore used data from two recent publications by the
Psychiatric Genomics Consortium on Bipolar Disorder to
characterize genes with prior evidence from GWAS.

Our final list of candidate genes included:

* 1,887 genes encoding proteins localized to the pre- and
post-synaptic densities from the SynaptomeDB database.(17)
e 280 genes encoding ion channels from the TUPHAR
database.(18)

* 411 genes encoding G-protein coupled receptors from the
IUPHAR database.(18)

* 461 genes located within 100 kb of loci with suggestive
associations to BD (p < le-4) in the mega-analysis by the
Psychiatric Genomics Consortium (PGC-BD1).(16)

* 226 genes with empirical p-values < 0.05 in a meta-analysis
of bipolar disorder GWAS by Nurnberger et al.(15)

These 3,087 candidate genes were used in single-variant
association tests and gene burden tests.

In addition to variant- and gene-level tests, we conducted
pathway-level association and enrichment tests, focusing on
gene sets enriched among our 3,087 candidate genes. We
downloaded the Gene Ontology, KEGG, and BioCarta
pathways from MSigDB. We used Fisher’s exact tests to
identify pathways that were statistically over-represented
among our 3,087 candidate genes (FDR < 0.05). Since the
power of pathway-level tests depends on the number of genes
in the pathway, we then filtered gene sets by size. For
pathway burden association tests (Supplementary Methods
Section 7.2), we considered the 269 pathways that contained
between 5 and 100 genes. For enrichment analyses of gene-
disrupting variants we considered the 325 pathways that
contained between 5 and 200 genes (Supplementary Methods
Section 7.3). Different size filters reflect the differing power
of these tests to detect significance across small vs. large
gene sets, respectively.

6. Mixed model association test of uncommon SNVs. We
used EMMAX (19) to test for associations between BD and
uncommon (1-5% MAF) coding and non-coding SN'Vs. We
integrated the genotypes of the 200 genomes from BD
pedigrees with 254 genomes from non-BD pedigrees, also of
European descent. For this analysis, we considered
individuals with a diagnosis of bipolar disorder type I, bipolar
disorder type 2, or schizoaffective disorder to be affected;
individuals in BD pedigrees who had no mental illness and all
individuals in non-BD pedigrees were considered to be
unaffected; individuals with major depression or any other
DSM-V diagnosis, and individuals in BD pedigrees for whom
a phenotype was not ascertained were coded as unknown. In
total, there were 108 affected individuals, 309 unaffected
individuals, and 35 unknown. 5,730 uncommon coding and
non-coding SNVs were selected for analysis as described in
Section 4, above. We used emmax-kin to construct a Balding-
Nichols kinship matrix, based on these 5,730 genome-wide
SNVs. We then performed association testing with emmax.
We evaluated the success of this approach in accounting for
pedigree and population structure with quantile-quantile plots
and lambda statistics, implemented with the qqman and
GenABEL (20) R packages, respectively.

7. Gene and pathway burden tests.

7.1. Overview of the method. Association tests for the
effects of individual rare variants (MAF < 1%) have low
power because each variant is observed in only a few
individuals. Therefore, tests that aggregate the effects of
multiple rare variants are commonly used in rare-variant
association studies. Typically, these rare-variant tests
aggregate the variants in a region into a statistic for
association testing, either by collapsing them into a meta-
variable (“burden” tests) or by combining them in a variance-
component model (e.g., SKAT (21)). At least two challenges
have arisen in applying these rare-variant association tests to
real data. First, they have low power when only a small
fraction of the variants in a region contribute to disease risk.
Second, differences in gene size, mutation rate, level of
positive and negative selection, sequence depth and rate of
sequencing errors at each locus, and other factors lead to
biases in the number of transmitted variants observed in each
gene or gene set. These biases can lead to uneven power
across the genome and to spurious results.

We developed a strategy to test for the effects of rare
variants in our family-based sample that is designed to
overcome both of the previously mentioned challenges. To
enrich for risk-associated variants in each gene, we used
segregation patterns within pedigrees in combination with
other forms of functional annotation prior to association
testing across affected and unaffected pedigrees. This
approach may have better power than other methods when
only a subset of variants at a locus contribute to risk.

We used an empirical null distribution from control
pedigrees to assign p-values that correct for differences in the
background rate of transmitted variants. Other groups have
used theoretical distributions that account for some of the
factors contributing to bias (especially gene length).
Empirical distributions are appealing when sufficient



numbers of comparable control genomes are available, since
they correct for both known and unknown biases.

We developed three implementations of our approach for
testing the effects of (i) single genes, (ii) oligogenic
combinations of uncommon variants within a pathway, and
(iii) heterogeneous effects of very rare variants within a
pathway.

7.2. Gene burden test. The first step of all three burden
tests was to identify rare, functional variants that co-
segregated with disease in each BD pedigree. Co-segregation
was defined by allele sharing among affected and unaffected
individuals in a pedigree, according to the affection status
models shown in Figures S1-S4 and described in
Supplementary Methods Section 3. We allowed slight
deviations from perfect co-segregation to account for reduced
penetrance and phenocopies. Thresholds for allele sharing in
each pedigree are shown in Table S1. Rare and uncommon
variants (MAF < 5%) with functional annotations were
characterized as described in Section 4. The selection of
3,087 genes for analysis is described in Section 5. We
identified a total of 7,783 variants that passed all filtering
criteria across all 41 BD pedigrees. These variants are
predicted to impact the functions of 2,375 genes, with a
median of 146 genes impacted per pedigree.

In order to define an empirical null distribution for the
gene burden test, we identified non-bipolar (control)
pedigrees from ISB’s in-house database that had similar size
and structure to the BD pedigrees and which were also of
European ancestry. We identified 34 suitable pedigrees in our
collection. In each control pedigree, we arbitrarily assigned a
subset of individuals as “affected”, such that the transmission
rate from parents to offspring and the relative risk among
siblings matched the values in the sequenced BD pedigrees.
We then identified variants that were shared among the
“affected” individuals and not the “unaffected” individuals in
each control pedigree. A total of 6,686 variants passed all
thresholds in control pedigrees, and these variants are
predicted to impact 2,283 genes. The distribution of candidate
gene counts per pedigree was similar between the BD and
control pedigrees (Kolmogorov-Smirnov test: p = 0.35). The
similarity in the number of genes identified in BD vs. control
pedigrees suggests that the structure of the BD vs. control
pedigrees was sufficiently similar that the variants in these
control pedigrees represent an appropriate null distribution
for testing gene enrichments. For each gene, we counted the
number of BD pedigrees and control pedigrees in which we
observed a variant that co-segregated with affection status.
We calculated a p-value for each gene using Fisher’s exact
test. A quantile-quantile plot indicates that the p-values from
this approach are uniformly distributed across all the genes
tested (Fig. S11A).

7.3. Pathway burden for uncommon and rare
functional variants. Disease risk in an individual may arise
from the additive and epistatic effects of rare or uncommon

variants across several genes in a protein complex or pathway.

Likewise, variants in distinct genes from the same complex or
pathway could occur in different pedigrees and have similar
effects on disease risk. In these scenarios, the genetic signal
from an individual gene may be too weak or too rare to be

detected with single-gene burden tests. We developed two
approaches to test for an increased burden of variants across
multiple genes in a pathway.

In the first pathway burden test, we hypothesize that risk
for BD increases with the number of mutated genes in a
pathway. To test this hypothesis, we used a score test based
on the normalized count of genes per pathway that contained
segregating variants in BD vs. control pedigrees. For each of
the 269 pathways in our analysis (see Section 5), we counted
the number of pathway genes (N,pyay) in the variant list from
each of the 41 BD pedigrees and from each of the 34 control
pedigrees. We then calculated a Fractional Pathway Score in
each pedigree as Nyyyay / Ny, Where Ny, is the total
number of genes with a candidate variant in that pedigree.
Dividing by N, normalizes for differences in the number of
candidate genes arising from segregation analysis in each
pedigree (which is itself a function of pedigree structure). We
used Wilcoxon’s rank-sum test to evaluate the hypothesis that
the Fractional Pathway Score for each gene set was larger in
BD vs. control pedigrees. A low p-value for a given pathway
suggests that segregating variants in BD pedigrees are over-
represented for genes within that pathway. Quantile-quantile
plots suggest that the distribution from this test is uniform
across most pathways, with a single pathway (the BioCarta
GABA Pathway) having a large deviation from the null
distiribution (Fig. S11B).

74. Pathway burden for rare, gene-disrupting
variants. A distinct hypothesis is that risk for BD increases if
there is a mutation in any of the genes in a pathway. In
Boolean terms, the hypothesis in 7.3 proposes an “AND”
relationship between the genes in a pathway and risk for
disease, whereas the hypothesis in this section proposes an
“OR” relationship. We formulated this problem as an
enrichment test for pathways that were over-represented for
rare, segregating variants in BD pedigrees. This test assumes
that each variant has an independent effect on disease risk,
and it will be better powered if these effects are large. We
therefore focused on rare gene-disrupting variants, which
have been shown in other psychiatric diseases to be more
strongly enriched than other classes of variants for those with
large effects on risk (22).

For each BD pedigree, we identified all likely damaging
(CADD score > 10), rare (MAF < 0.01), gene-disrupting
variants that co-segregated with disease. 437 genes contained
a gene-disrupting variant in one or more of the BD pedigrees.
416 of these 437 genes were disrupted in only one of the 41
BD pedigrees, and 21 genes were disrupted in two pedigrees.
This genetic evidence is not strong enough to make
inferences to individual genes. We calculated p-values for
each pathway by comparing the rate of transmitted gene-
disrupting variants in that pathway in BD pedigrees to the
empirical null distribution in control pedigrees. Because
gene-disrupting variants are rare even in aggregate, we found
that a larger set of control genomes was necessary for this
analysis than for other burden tests. We therefore calculated
the rate of gene-disrupting variants in each gene from a total
of 242 non-BD parent-offspring trios in our in-house
collection. A small number of genes are common false
positives with disrupting variants in a large fraction of trios.



True risk variants in these genes would be indistinguishable
from noise. We removed from analysis the top 1% of genes
with the highest rate of disrupting variants.

We analyzed 325 pathways that contained between 5 and
200 genes (Section 5). We recorded the overlap of each of
these pathways with the set of genes disrupted in BD
pedigrees. To test for significance, we then drew a same-
sized set of variants at random from the empirical distribution
in non-BD trios and recorded whether the overlap of this
random set with each of the pathways was greater than or
equal to the number observed in BD pedigrees. We repeated
this procedure 100,000 times. The empirical p-value for each
pathway is calculated as (N + 1) / (100,000 + 1), where N is
the number of times out of 100,000 that the overlap to the
pathway in variants drawn at random was equal to or greater
than the number observed in BD pedigrees. A quantile-
quantile plot for the distribution of observed vs. expected p-
values across the 325 suggests that this empirical p-value is
uniformly distributed except for a handful of pathways with a

strong enrichment of disrupting variants in BD pedigrees (Fig.

S11C).

7.5. Additional considerations. There are limitations of
our approach. Sample size is effectively reduced from the
number of sequenced individuals to the number of
independent pedigrees. Also, if disease risk within a family is
polygenic, then the fully- and nearly-fully segregating
variants in a pedigree will represent only a subset of the
causal variants. Although the use of control pedigrees
accounts for various sources of false positives in sequencing
studies, the power of this test may be different in large vs.
small genes. Future implementations could explore strategies
to weight variants based on the strength of the genetic
evidence in each pedigree.

Despite these limitations, our statistical approach has
several attractive features. First, because the linkage of
individual variants to disease is detected within pedigrees, the
test is robust to population stratification. Second, it combines
evidence from (within-pedigree) linkage and (between-
pedigree) association in an intuitive way and allows us to test
the linkage of individual variants to disease within families
while collapsing evidence across families into a gene burden
test. In contrast to the well-controlled p-value distributions
resulting from our method (Fig. S11), evaluation of other
rare-variant association tests for family-structured data
suggested that they often give anti-conservative results (data
not shown).

8. Targeted sequencing of 26 genes in 3,014 cases and
1,717 controls.

8.1. Selection of target regions. We performed targeted
resequencing of 185 pools of samples (23) to evaluate
associations of BD with rare variants in the coding and non-
coding regions of candidate genes (Table S10). Our initial
design included 30 candidate genes. Results for 26 of these
genes are presented here. Data for 4 genes were not analyzed
because WGS analyses conducted after the initial design of
the targeted sequencing study revealed poor sequence quality
at these loci. 20 of the targeted genes were identified by WGS
analysis in this study, and six were identified by GWAS. We

targeted all UCSC knownGene exons, as well as the
following non-coding regions with putative regulatory
functions. 5’ and 3’ untranslated regions were targeted based
on knownGene models, downloaded on December 10, 2012.
The core promoter was defined as the region 1-1000 bp
upstream of each transcriptional start site (TSS), also based
on UCSC knownGene models. We wused DNase
hypersensitive regions from the ENCODE project (24) to
identify  putative enhancers. We downloaded the
wgEncodeRegDnaseClusteredV2 track from the UCSC
Genome Browser and selected hypersensitive regions with
quality scores > 300. For the ten voltage-gated channel genes
in our study, we targeted the DNase hypersensitive regions
starting 5 kb upstream of the first transcriptional start site and
spanning the entire gene body. For the remaining genes, we
targeted DNase hypersensitive regions 5 kb upstream and
downstream of each TSS.

8.2. Amplicon design. We used Design Studio (Illumina,
San Diego, CA) to design TruSeq Custom Amplicons for
each target region. PCR amplicons passing Design Studio’s
quality threshold were successfully designed for 90.1% of the
targeted regions, spanning a total of 462 kb. Each amplicon
was approximately 250 bp and avoided homology to other
genomic regions, as well as common SNPs. The TruSeq
Custom Amplicon system can target a maximum of 1536
amplicons per assay. We therefore divided these regions into
two assays, with 1,536 and 1,525 amplicons, respectively.

8.3. Sample cohort. The data presented in this study are
from sequencing of 3,014 BPI cases and 1,717 neurologically
cleared controls of European-American ancestry. Samples
were primarily from the GAIN (6) and TGEN (25)
collections, and also included 169 BD cases from a new
prospective sample of lithium responsiveness in BD. These
samples were distributed across 149 of the 185 sample pools
that were sequenced in parallel. The remaining 36 sample
pools contained DNA from African-American BPI cases and
controls. Data from the African-American sample will be
published elsewhere.

84. Sample pooling. DNA was quantified with
PicoGreen (Life Technologies, Carlsbad, CA), and equimolar
quantities from each individual were combined into 185 pools.
Pools contained from a minimum of 16 to a maximum of 37
samples with 152 of the 185 pools containing 32 samples.
The samples in each pool were matched for phenotype,
ethnicity, and cohort. There were 95 pools with BD cases of
European-American (EA) ancestry, 54 pools with EA
controls, 14 pools with African-American (AA) cases, and 22
pools with AA controls.

8.5. Library preparation and sequencing. DNA from
each pool was aliquoted into multiple 96-well plates to enable
parallel library construction from the two sets of amplicons.
Each TruSeq Custom Amplicon assay is designed for
barcoding of up to 96 samples. We therefore divided the 185
sample pools into two batches, with equal numbers of
case/control and EA/AA pools in each batch. As technical
controls, we included in each batch a built-in “Illumina QC”
pool and two replicate pools of HAPMAP (26) samples. To
measure variance between plate preparations, a single EA BD
case pool was replicated between the plates.



We generated a separate sequencing library from each of
the two batches of samples, for each of the two sets of
TruSeq Custom Amplicons (a total of four libraries). We
utilized 8 bp dual indexing to provide unique barcodes for
each of the 96 sample pools in each batch. We performed
paired-end, 2*250 bp Rapid mode sequencing of each library
on a HiSeq2500 flowcell. To evaluate replicability, we
performed a second round of Rapid mode sequencing of each
library on an additional flowcell with paired-end 2*100 bp
reads.

8.6. Read alignment, variant calling, and quality
control. Sequence reads were aligned to the human reference
genome (GRCh37d5) using Burrows-Wheeler Alignment
(27), followed by indel realignment with the Genome
Analysis Toolkit (28). TruSeq Custom Amplicon library
construction incorporates adaptor sequences onto the ends of
each amplicon during PCR amplification, and there is no
fragmentation step. Therefore, each sequence read starts at
either the beginning or end of an amplicon, and reads with an
identical start position are not likely to be optical duplicates.
Since some of the amplicons were shorter than 250 bp, we
clipped reads at the expected length of each amplicon. These
steps led to a total of 390 BAM files, one per amplicon set
per pool.

We sorted and merged the aligned reads from the two

sets of amplicons from each sample pool, using samtools (29).

We then used SNVer (30) to call single-nucleotide variants
(SNVs) separately in each pool and to estimate per-pool
allele frequencies. We used default thresholds of base quality
=17 and mapping quality =20. We excluded variants
observed on only one strand. We combined the variant calls
from all 185 pools. We retained for further analysis all 3,715
SNVs located at positions with at least 640x total read depth
(approximately 20x per diploid), in every pool for which the
SNV was called.

The outputs from the steps above were tables of allele
frequencies in each of the 185 pools, for 3,715 high-quality
SNVs. Statistical association tests require allele counts in
each individual (rather than pooled allele frequencies). We
constructed a genotype matrix of 3,715 variants x 4,731
individuals by assigning the non-reference alleles from each
pool at random to each of the haplotypes in that pool.

8.7. Quality control and normalization. We performed
several experiments and analyses to evaluate the accuracy of
allele frequency estimates from pooled sequencing. As
detailed below, these steps led to the general conclusion that
allele frequency estimates were accurate and replicable across
most of the allele frequency range. The presence of possible
counting errors among very rare variants led us to perform
additional normalization steps that improved performance.

In total, targeted sequencing generated 1.28 billion high-
quality sequencing reads covering 320 billion base pairs
(Table S7). 65-80% of base pairs in each pool reached a read
depth threshold of >640x total read depth (~20x coverage per
diploid individual; Fig. S7). Across all individuals, per-
position read depth was unimodally distributed around a
mode of 40x coverage per individual (Fig. S8). These results
suggest that sequencing depth was consistent and deep across
sample pools and libraries.

We next compared allele frequencies derived from
targeted sequencing to the frequencies of these alleles in the
Kaviar database (12). Of the 3,715 SNVs identified through
targeted sequencing, 1,960 of these SNVs were present in the
Kaviar database on January 29, 2014. Allele frequencies for
these known SNVs were tightly correlated between targeted
sequencing and public data (r = 0.88; Fig. S8).

To further evaluate the replicability of allele frequency
estimates from targeted sequencing, we performed a second
round of sequencing on each of the four sequencing libraries.
In the second round of sequencing we used paired 100 bp
reads, meaning that only a subset of the positions were
targeted. 1,728 alleles were observed at positions with >640x
coverage in both sequencing runs. Visual inspection (Fig. S9)
indicated that allele frequency estimates were nearly perfectly
replicable for common variants and were strongly correlated
at allele frequencies as low as 10 copies / 12,002 sequenced
haplotypes (MAF = 0.001). At allele frequencies < 0.001
considerably more scatter was present. Still, allele
frequencies for the majority of variants at these frequencies
(including singleton variants) were estimated identically in
the two sequencing runs. These results indicate that results
from our targeted sequencing are accurate at MAF > 0.001.
Allele frequencies < 0.001 should be treated with caution but
provide useful information.

A common source of noise in pooled sequencing arises
from the difficulty in estimating an exact copy number for
variants present in a small fraction of reads (23). For instance,
in a pool of 32 individuals sequenced to 640x depth, each
haplotype is represented by 10 reads on average. However,
random variation during amplification and sequencing can
lead to uneven representation of the haplotypes among the
sequencing reads, which in turn can lead to inaccurate
estimation of allele counts. These counting errors are likely to
be especially important to account for when analyzing very
rare variants.

We evaluated possible counting errors by comparing the
distribution of estimated counts of each variant in each
sample pool to simulated distributions assuming Hardy-
Weinberg equilibrium. In simulated distributions, all variants
with MAF < 0.001 are expected to be observed in only one
haplotype per pool. 97% of variants with MAF < 0.005 were
predicted to be observed in only one haplotype per pool. 76%
of variants with MAF ~ 0.005-0.01 were predicted to be in
only one haplotype per pool. At allele frequencies > 1%,
variants are predicted to occur in multiple haplotypes in the
majority of pools. Simulated distributions for each allele
frequency bin are shown in Figure S11.

Comparison of these simulated distributions to the
haplotype count estimates reported by SNVer suggested
deviations from the simulated distribution for variants present
in 0-2 copies per pool. Specifically, single-copy variants were
under-represented at allele frequencies up to 0.05, and 2-copy
variants were over-represented at allele frequencies up to
0.005. At allele frequencies > 0.05, the observed distribution
approximated simulated values.

Since the vast majority of low-frequency variants are
expected to be present in a single haplotype per pool, the
most parsimonious explanation for these deviations from



Hardy-Weinberg equilibrium is that some single-haplotype
variants are under-called as not present in a pool, and others
are over-called as being present in two (or more) haplotypes.
These counting errors represent a small fraction of overall
genotype calls, but effects on individual rare variants may be
significant. We therefore applied two strategies to correct for
counting errors. First, we applied an expectation-
maximization procedure to normalize allele counts for
variants with frequencies < 0.01. Alternatively, we removed
from our analysis the extremely rare variants (MAF < 0.001)
whose frequency estimates are likely to be less accurate.

The expectation-maximization procedure was applied to
all variants with allele frequencies in our data < 0.01. For a
variant with a frequency of 0.01 (95/9472 total haplotypes in
our study), 70% of pools containing that variant are expected
to have only one variant haplotype. For a variant with a
frequency of 0.001 (5/9472 haplotypes), >99% of pools
containing that variant are expected to have only one variant
haplotype. Thus, haplotype counts in a pool that are > 1 are
predicted to be incorrect the majority of the time for an allele
with a frequency of 0.01, and nearly always incorrect for an
allele with a frequency of 0.001. As a corrective, we therefore
adjusted allele haplotype counts to 1 for each pool in which
the variant was observed. This procedure maximizes the
expectation that rare variants will be present in one copy per
pool. We applied this normalization only to variants with
MAF < 0.01, since the expectation of 1 haplotype per pool
does not hold for variants with MAF > 0.01.

Comparison of normalized allele counts to simulations
under Hardy-Weinberg equilibrium suggests that our
normalization procedure succeeded in correcting haplotype
counts per pool to be nearly identical to expected (simulated)
values (Fig. S11). Slight deviations from the simulated
distribution are still apparent for variants with allele
frequencies > 0.01, which were not normalized. However,
three considerations suggest that these remaining counting
errors will have very little effect on results. First, any
counting errors represent only a small fraction of the calls for
each common allele. Second, common alleles are given very
small weights in the sequence kernel association test (SKAT)
used to assess significance. Third, the C-alpha test included
only variants with MAF < 0.01 and gave similar results to
SKAT (Tables S8, S9).
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As an alternative to the normalization procedure
described above, we also calculated rare-variant associations
while removing all variants with allele frequencies < 0.001.
These variants, represented by fewer than 10 haplotypes in
our dataset are the most sensitive to counting errors. We
chose a cutoff of < 0.001 because the technical
reproducibility of allele frequencies for variants above this
threshold improved dramatically (Fig. S10).

8.8. Rare-variant association tests. We used SKAT
(31), C-alpha (32), and the unidirectional gene burden test
implemented in the SKAT R package to test for associations
between BD and rare variants in each of the 26 candidate
genes. We tested for associations of BD separately for coding
vs. regulatory variants. We defined non-synonymous coding
variants as those that change the amino-acid sequence of a
knownGene gene model, as predicted by ANNOVAR (33).
We defined regulatory SNVs as non-coding SNVs with an
annotation in RegulomeDB (34).

For the SKAT test, we used default parameters to weight
the effects of rare vs. common variants (alpha = 1, beta = 25).
These parameters assign strong weights to variants with MAF
< 0.01, weak weights to variants with MAF 0.01-0.05, and
near-zero weights to variants with MAF > 0.05. P-values
reported in Table 1 are based on 100,000 re-sampling
permutations. Permutation p-values were nearly identical to
the asymptotic p-values reported by SKAT (Tables S8, S9).

We performed a primary SKAT analysis and two
secondary analyses. The primary analysis used the allele
frequencies with expectation-maximization normalization.
The second analysis used “raw” allele frequency estimates
but removed variants with MAF < 0.001. The third analysis
used raw allele frequency estimates, including all allele
frequencies. The p-values from the first and second
approaches were nearly identical. The third approach yielded
anti-conservative p-values compared to the other approaches.
We performed the SKAT gene burden test using normalized
allele frequencies.

We performed the C-alpha test using normalized allele
frequencies. Since C-alpha assigns an equal weight to each
variant regardless of its frequency, we set a hard allele
frequency cutoff, MAF < 0.01. We used an implementation
of C-alpha in the AssotesteR R package and performed
100,000 permutations.



lll. Figures S1-S12

Figure S1. Pedigree diagrams 1-9: WGS from one case and one control. Letters indicate the individuals from whom whole-
genome sequences were obtained. Each of these individuals was designated affected (A) or unaffected (U) as described in

Supplementary Methods Section 3.
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Figure S2. Pedigree diagrams 10-17: WGS from a family quartet or trio. Letters indicate the individuals from whom

whole-genome sequences were obtained. Each of these individuals was designated affected (A) or unaffected (U) as described
in Supplementary Methods Section 3.
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Figure S3. Pedigree diagrams 18-33: WGS from several BD cases. Letters indicate the individuals from whom whole-
genome sequences were obtained. Each of these individuals was designated affected (A) or unaffected (U) as described in
Supplementary Methods Section 3.
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Figure S4. Pedigree diagrams 34-41: WGS from all available individuals. Letters indicate the individuals from whom

whole-genome sequences were obtained. Each of these individuals was designated affected (A) or unaffected (U) as described
in Supplementary Methods Section 3.
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Figure S5. Distribution of coding and non-coding variation in voltage-gated calcium channels and GABA receptors
across bipolar disorder cases and controls. A mixed model was implemented in EMMAX to test for associations
between BD and uncommon (<5% MAF), bi-allelic SN'Vs in voltage-gated calcium channels and GABA receptors, using WGS
from 108 affected individuals from BD pedigrees (“A”), 57 unaffected individuals from BD pedigrees (“U”), and 254
individuals from control, non-BD pedigrees (“U”). Plots are shown for SNVs in GABA receptors and voltage-gated calcium
channels that were associated with risk or protection for BD (P < 0.05). Each row represents an SNV, and each column
represents an individual person. Individuals are ordered by pedigree along the horizontal axis. Dark blue lines indicate that an
individual is heterozygous or homozygous for the SNV in that row. The higher density of SN'Vs in affected individuals
indicates a pathway-wide association of voltage-gated calcium channels and GABA 4 receptors with risk for BD. The sparse
representation of each SNV suggests that the specific risk variants are heterogeneous among the unaffected individuals. The
presence of multiple risk variants in some individuals raises the possibility of additive or epistatic interactions among variants
within each pathway.
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Figure S6. Oligogenic combinations of risk variants in bipolar disorder pedigrees. Combining results from variant- and
pathway-level models suggested that most affected individuals inherited multiple risk variants. For this analysis, we defined as
risk variants all SN'Vs with p-values < 0.001 and odds ratios > 1 by mixed model analysis (“EMMAX?”, 14 SNVs), as well as
SNVs with mixed-model p-values < 0.05, odds ratios > 1, and an annotation to one of the following enriched pathways:
BioCarta GABA pathway (9 SNVs), calcium channels (38 SNVs), CaM kinases (10 SNVs), GTPases (88 SNVs), and
glycolysis / tricarboxylic acid cycle (“Metabolism”, 13 SNVs). For each category, we report the number of risk variants
identified in each affected BD case (“A”, orange), unaffected relative in a BD pedigree (“UR?”, light blue), or population
control (“PC”, dark blue). The widths of polygons are proportional to the number of individuals with each variant count. The
figure showing combined risk variant scores is reproduced from Fig. 2D.
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Figure S7. Per-base coverage profiles of the four targeted sequencing libraries. Setlofl = sample batch #1 + amplicon
set 1, Setlof2 = sample batch #1 + amplicon set 2, Set2 of1 = sample batch 2 + amplicon set 1, Set2of2 = sample batch 2
+ amplicon set 2.
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Figure S8. Distribution of average read depth per base in targeted sequencing. Histogram shows all targeted regions,
across all sequenced individuals.
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Figure S9. Allele frequencies from pooled sequencing are correlated with allele frequency estimates from public
databases. We identified a total of 3,715 distinct SN'Vs located at positions with at least 20x coverage per individual in every
pool in which the variant was observed. 1,960 of these SNVs are present in the Kaviar database (12). Allele frequencies for
these known SNVs were tightly correlated between our targeted sequencing and public data (r = 0.88). Allele frequencies in
public genomes are based on all data in the Kaviar database on January 29, 2014.
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Figure S10. Allele frequency estimates from targeted sequencing are highly replicable across multiple sequencing runs.
To evaluate replicability of allele frequency estimates from pooled sequencing, we performed a second round of sequencing on
all libraries at a subset of positions. 1,728 alleles were observed at positions with >600x coverage in both sequencing runs. We
estimated the number of haplotypes (out of 12,002) containing each minor allele, separately for the primary sequencing run (x-
axis) and for the duplicate sequencing run (y-axis). Plots are shown at varying levels of resolution to emphasize both common
and rare alleles. In the plot showing the rarest variants, values indicate the number of variants with each haplotype count. MAF,
Minor allele frequency.
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Figure S11. Distribution of alternate allele haplotype counts per pool. To assess the accuracy of allele count estimates
within pools, we compared the observed distribution of allele counts to the expected counts if alleles are randomly distributed
across pools (dashed red lines). Raw allele counts per pool (black dotted lines) deviated from expected values for counts of 0-2
per pool. Following normalization (solid black lines), allele count estimates were similar to expected values. Association tests
reported in the main text and in Table 1 are based on normalized allele counts.
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Figure S12. Quantile-quantile plots for gene and pathway burden tests. A. Gene burden p-values were calculated for 3,087
genes. B. Oligogenic pathway burden p-values were calculated for 269 pathways. C. gene-disrupting variant pathway burden p-
values were calculated for 325 pathways. We used quantile-quantile plots to compare the observed (y-axis) vs. null expectation
(x-axis) p-value distributions for each test. Each point describes a single gene or pathway. The diagonal line on each plot
indicates the distribution of p-values that is expected to occur if no genes or pathways have true associations with disease risk.
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Ill. Tables $S1-S10

Table S1. Summary of sequenced pedigrees and individuals. The first column lists the numeric identifier for each of the 41
BD pedigrees. The next two columns describe the number of affected and unaffected individuals from each pedigree with
WGS. The last two columns describe thresholds for genetic segregation (i.e., allele sharing among affected and unaffected
individuals). These thresholds were used to define candidate variants in each pedigree, as described in the supplementary
methods. In pedigrees 33 and 34, two distinct affection status models (ASMs) were considered, and both designations of
affected vs. unaffected status are shown.
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Table S2. SNVs significantly associated (q < 0.1) with BD in a mixed-model association test of 454 individuals from BD
and non-BD pedigrees. We tested for associations of BD with 5,730 SNVs with 1-5% minor allele frequencies and predicted
coding or regulatory effects. We compared WGS from 108 cases (BP1, BP2, or SA-BP) within 41 multiply affected pedigrees,
to a total of 309 unaffected relatives and population controls. We used linear mixed models implemented with EMMAX(19).
These mixed models are designed to test for the associations of single SNVs while accounting for relatedness within pedigrees,
population structure, and polygenes. The table provides annotation and association statistics for four SN'Vs reaching study-
wide significance, defined by a False Discovery Rate (q-value) < 10%. Chromosomal position (Chr, Pos) is in 1-based
GRCh37 coordinates. Reference (Ref) and alternate (Alt) nucleotides are also based on GRCh37. Gene annotations (Gene,
Region, Amino Acid Change) are based on RefSeq gene models. Frequencies of each variant in affected (Freq. Aff.) and
unaffected (Freq. Unaff.) individuals, are based on observed genotypes and are not corrected for family structure. No-call rate
indicates the fraction of missing genotypes for each SNV. Beta coefficients and p-values are from EMMAX. A beta coefficient
< 0 indicates that the SNV is associated with an increased risk for bipolar disorder. Q-values for each SNV were calculated
using the method of Benjamini and Hochberg(35), and may be conservative in the presence of non-independence among SNVs.

AA. Freq. Freq. No-Call
Chr Pos Ref | Alt | Gene Region Change Aff. Unaff. Rate Beta P-Value Q-Value
5 161116672 C T GABRA6 Exonic T187M 0.060 0.003 0.002 -0.49 3.0e-5 9.0e-2
10 134902253 C T GPR123 5'UTR - 0.097 0.010 0.012 -0.37 4.3e-5 9.0e-2
20 61392681 G A NTSR1 3'UTR - 0.097 0.021 0.000 -0.31 6.3e-5 9.0e-2
20 61393859 G A NTSR1 3'UTR - 0.097 0.021 0.000 -0.31 6.3e-5 9.0e-2
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Table S3. Genes with a suggestive burden of fully and nearly segregating uncommon, coding and non-coding variants in
bipolar disorder pedigrees. We identified uncommon and rare functional variants that co-segregated with disease in each BD
pedigree and used the empirical distribution of segregating variants in 34 matched control pedigrees to identify genes with an
increased burden of rare variants. We calculated a p-value for each gene using Fisher’s exact test. Although no gene was
significant in this analysis after correcting for multiple testing, there were several genes in which we observed segregating
variants in many more BD pedigrees than control pedigrees. We show results for all genes with p-values < 0.01. The top gene,
GABRA4, is a GABA receptor. This result, together with study-wide significant associations from single-variant tests and
pathway burden tests, supports a role for GABA receptors in risk for BD.

Gene BD Pedigrees (41) | Ctrl Pedigrees (34) | Odds Ratio | P-Value
GABRA4 13 1 14.9 1.1e-3
TFAM 13 1 14.9 1.1e-3
GFAP 11 1 11.8 4.4e-3
TPP1 8 0 Inf 5.7e-3
GRIK2 7 0 Inf 1.1e-2
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Table S4. Protein complexes and signaling pathways with an increased burden of fully and nearly-fully segregating
variants in bipolar disorder pedigrees. P-values were calculated by comparing the frequency of segregating variants from
each pathway in each pedigree, using Wilcoxon’s signed rank test (see Methods). Q-values represent a False Discovery Rate
calculated using the Benjamini-Hochberg method.

BD/ | Genesin | Genes with
Pathway Ctrl | Pathway | Segregating Variant | P-Value Q-Value
BioCarta GABA Pathway 4.3 10 8 1.5e-4 4.1e-2
GTPase Activity 1.7 99 88 6.8e-3 >0.1
BioCarta PGC1A Pathway 2.1 26 20 7.3e-3 >0.1
BioCarta Ca/CaM Pathway 2.3 16 10 1.4e-2 >0.1
BioCarta Glycolysis Pathway 2.8 10 9 2.5e-2 >0.1
Calcium Channel Activity 1.5 33 29 3.1e-2 >0.1
KEGG Pathogenic Escherichia
coli Infection 1.6 59 47 3.5e-2 >0.1
Voltage Gated Calcium Channel
Complex 1.6 15 13 3.6e-2 >0.1
Tricarboxylic Acid Cycle
Intermediate Metabolic Process | 2.0 11 10 5.0e-2 >0.1
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Table S5. Protein complexes and signaling pathways enriched for fully and nearly-fully segregating, gene-
disrupting variants in bipolar disorder pedigrees. For each of 325 functionally-related gene sets from Gene
Ontology(36), KEGG(37), and BioCarta, we calculated an empirical p-value by comparison of observed gene-disrupting
variants (GDVs) to the genome-wide null distribution of transmitted GDVs in 242 control trios. Results are shown for gene sets
with empirical p-values < 0.05.

Genes Observed | P-

Gene Set in Set GDVs Value Q-Value | Genes

Nicotinic Acetylcholine Gated

Receptor Channel Complex 11 3 4.5e-4 | 7.3e-2 CHRNAG6, CHRNB4, CHRND
Nicotinic Acetylcholine Activated

Cation Selective Channel Activity | 11 3 4.5e-4 | 7.3e-2 CHRNAG6, CHRNB4, CHRND
Excitatory Extracellular Ligand

Gated lon Channel Activity 21 3 2.1e-3 | >0.1 CHRNAG6, CHRNB4, CHRND
Extracellular Ligand Gated lon

Channel Activity 22 3 2.1e-3 >0.1 CHRNA6, CHRNB4, CHRND

CACNAI1G, CCS, CHRNAS,
CHRNB4, CHRND, KCNQ5, KCNS1,

Metal lon Transmembrane MS4A2, SLC39A2, SLC40A1,
Transporter Activity 147 11 3.7e-3 | >0.1 TRPM1

Acetylcholine Binding 17 2 1.2e-2 | >0.1 CHRNAG6, CHRNB4

Amine Binding 23 2 1.3e-2 | >0.1 CHRNAG6, CHRNB4

CACNA1G, CHRNA6, CHRNB4,
CHRND, KCNQ5, KCNS1, MS4A2,

Cation Channel Activity 119 8 1.8e-2 | >0.1 TRPM1
KEGG Pathogenic Escherichia Coli
Infection 59 3 2.9e-2 >0.1 NCL, TUBB3, TUBB4B

CACNA1G, CHRNA6, CHRNB4,
CHRND, CLCA1, KCNQ5, KCNS1,

lon Channel Activity 149 9 2.9e-2 | >0.1 MS4A2, TRPM1
CACNA1G, CHRNA6, CHRNB4,
Substrate Specific Channel CHRND, CLCA1, KCNQ5, KCNS1,
Activity 156 9 3.6e-2 | >01 MS4A2, TRPM 1
Response To Nutrient 17 2 3.6e-2 |>0.1 CCKAR, ENPP1
COPB1, FURIN, KIAA0368,
Coated Vesicle 47 4 3.6e-2 | >0.1 NECAP2
Regulation Of MAP Kinase
Activity 67 4 3.8e-2 | >0.1 ERBB2, MAP3K10, MAP3K5, TRIB3
Positive Regulation Of MAP
Kinase Activity 47 3 4.1e-2 | >01 ERBB2, MAP3K10, MAP3K5
BioCarta Shh Pathway 16 2 42e-2 | >0.1 PRKACB, PTCH1
Neurotransmitter Binding 53 3 4.2e-2 | >0.1 CCKAR, CHRNA6, CHRNB4
Neurotransmitter Receptor
Activity 50 3 42e-2 | >01 CCKAR, CHRNAG6, CHRNB4
CASP8AP2, ERBB2, MALT1,
Positive Regulation Of Catalytic MAP3K10, MAP3K5, NLRC4,
Activity 165 7 43e-2 | >01 TNNT2
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Table S6. Enrichment of pathways with an increased burden of rare variants in BD pedigrees for differentially
expressed genes in dorsolateral prefrontal cortex from BD cases vs. controls. We analyzed RNA-seq gene expression
profiles from the dorsolateral prefrontal cortex of 11 BD cases and 11 age- and gender-matched controls (38). We identified
3,059 genes with evidence for differential expression (p < 0.05) between cases and controls. Using hypergeometric tests, we
evaluated enrichments of these differentially expressed genes for each of the 27 pathways with a significant burden of rare
variants in BD pedigrees (Tables S4, S5). DEGs, differentially expressed genes.

# of Genes in
Pathway Pathway # DEGs Overlap P-value
BioCarta SHH Pathway 25 3059 9 1.7e-4
BioCarta PGC1A Pathway 3 3059 11 1.5e-3
Voltage Gated Calcium Channel Complex 8 3059 7 3.0e-3
Metal lon Transmembrane Transporter Activity 14 3059 39 1.0e-2
Calcium Channel Activity 6 3059 11 1.5e-2
BioCarta Ca/CaM Pathway 4 3059 6 2.0e-2
BioCarta GABA Pathway 1 3059 4 2.7e-2
Cation Channel Activity 17 3059 30 3.0e-2
lon Channel Activity 19 3059 35 7.3e-2
Substrate Specific Channel Activity 20 3059 36 8.0e-2
Coated Vesicle 22 3059 10 2.7e-1
KEGG Pathogenic Escherischia coli Infection 7 3059 11 4.6e-1
GTPase Activity 2 3059 18 5.3e-1
Positive Regulation of MAP Kinase Activity 24 3059 8 5.6e-1
Positive Regulation of Catalytic Activity 28 3059 30 5.7e-1
Nicotinic Acetylcholine Gated Receptor Channel
Activity 10 3059 1 6.5e-1
Nicotinic Acetylcholine Activated Cation Selective
Channel Activity 11 3059 1 6.5e-1
Excitatory Extracellular Ligand Gated lon Channel
Activity 12 3059 2 8.0e-1
Extracellular Ligand Gated lon Channel Activity 13 3059 2 8.2e-1
Amine Binding 16 3059 2 8.4e-1
Regulation of MAP Kinase Activity 23 3059 9 8.5e-1
Response to Nutrient 21 3059 1 8.6e-1
Acetylcholine Binding 15 3059 1 8.6e-1
BioCarta Glycolysis Pathway 5 3059 0 8.8e-1
Tricarboxylic Acid Cycle Intermediate Metabolic
Process 9 3059 0 9.0e-1
Neurotransmitter Binding 26 3059 3 9.9e-1
Neurotransmitter Receptor Activity 27 3059 3 9.9e-1
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Table S7. Genes targeted for sequencing in 3,014 BD cases and 1,717 controls. 10 calcium channels, 5 GABA receptors,
and 5 calmodulin-dependent protein kinases were selected for sequencing based on a significant pathway burden in BD
pedigrees. An additional six genes were selected based on evidence from GWAS and candidate gene association studies.

Gene Group Reference

CACNAIB Calcium channel

CACNAID Calcium channel

CACNAIE Calcium channel

CACNB2 Calcium channel

CACNB3 Calcium channel

CACNB4 Calcium channel

CACNG1 Calcium channel

CACNG2 Calcium channel

RYR3 Calcium channel

CACNAIC Calcium channel; GWAS Ferreira et al. (2008)(39)
CAMK2A4 Calmodulin-dependent protein kinase signaling

CAMK2B Calmodulin-dependent protein kinase signaling

CAMK2D Calmodulin-dependent protein kinase signaling

CAMKKI1 Calmodulin-dependent protein kinase signaling

CREBI1 Calmodulin-dependent protein kinase signaling

GABRAI GABA receptor

GABRA2 GABA receptor

GABRA4 GABA receptor

GABRA6 GABA receptor

GABRG1 GABA receptor

ANK3 GWAS Ferreira et al. (2008)(39)
NGF GWAS Sklar et al. (2011)(16)
NTRK2 GWAS Smith et al. (2009)(6)
TENM4 GWAS Sklar et al. (2011)(16)
BDNF Candidate gene association studies Sklar et al. (2002)(40); Neves-Perreira et al. (2002)(41)
NTRK1 Candidate gene association studies
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Table S8. Quality control metrics for targeted re-sequencing data. Targeted sequencing was performed across four lanes of
a HiSeq2500 sequencer, so that each of the two sets of amplicons was sequenced in each of the two batches of samples on a
single lane. In total, we analyzed 1.28 billion high-quality sequencing reads covering 320 billion base pairs. The table shows
quality metrics for individual sequencing lanes, indicating stable performance across the four lanes. Gb, billion base pairs; bp,

base pairs.

Lane | Sample | Amplicon Raw High- Read Quality | Reads with | Bases
Pool Set Reads (M) Quality Length Yield perfect > Q30
Reads (M) (bp) (Gb) barcode
1 1 1 368.34 314.96 250 78.7 84.9% 70.5%
2 1 2 373.58 326.72 250 81.7 86.7% 74.9%
3 2 1 360.04 320.62 250 80.2 87.9% 76.3%
4 2 2 352.64 318.52 250 79.6 89.1% 81.0%
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Table S9. Associations between rare coding variants in 26 candidate genes and risk for BD, based on targeted
sequencing of 3,014 cases and 1,717 controls. Rare-variant association tests were used to evaluate associations between
regulatory variants at each locus and BD affection status. Coding variants were defined as SNVs with predicted effects on the
sequence of a protein produced by any of a gene’s knownGene transcripts. We report results from our primary statistical model
(Model 1), as well as for four alternate models with distinct variant aggregation statistics and normalization procedures. For
further information see Supplementary Methods Section 8. For each test, we report the number of single-nucleotide variants
aggregated in that test (“SNVs”), an asymptotic p-value from the test’s theoretical distribution (“P-Asym”), an empirical p-
value derived from 100,000 permutations (“P-Perm”), and a false discovery rate for P-Perm based on the method of Benjamini
and Hochberg (“Q-Val”).
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Table S10. Associations between rare regulatory variants in 26 candidate genes and risk for BD, based on targeted
sequencing of 3,014 cases and 1,717 controls. Rare-variant association tests were used to evaluate associations between
regulatory variants at each locus and BD affection status. Coding variants were defined as SNVs with predicted effects on the
sequence of a protein produced by any of a gene’s knownGene transcripts. We report results from our primary statistical model
(Model 1), as well as for four alternate models with distinct variant aggregation statistics and normalization procedures. For
further information see Supplementary Methods Section 8. For each test, we report the number of single-nucleotide variants
aggregated in that test (“SNVs”), an asymptotic p-value from the test’s theoretical distribution (“P-Asym”), an empirical p-
value derived from 100,000 permutations (“P-Perm”), and a false discovery rate for P-Perm based on the method of Benjamini
and Hochberg (“Q-Val”).
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