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I. Members of the Bipolar Genome Study (BiGS) 
 

University of California, San Diego: John R. Kelsoe, Tiffany 
A. Greenwood, Caroline M. Nievergelt, Paul D. Shilling, 
Tatyana Shekhtman; Institute for Systems Biology: Jared C. 
Roach, Seth A. Ament, Leroy Hood; Indiana University: John 
I. Nurnberger, Jr., Howard J. Edenberg, Tatiana Foroud, 
Daniel L. Koller; University of Chicago: Elliot S. Gershon, 
Judith A. Badner; University of Illinois: Chunyu Liu; Rush 
University Medical Center: William A. Scheftner; Howard 
University: William B. Lawson; University of Iowa: William 
Coryell, James B. Potash; Washington University: John Rice; 

University of California, San Francisco: William Byerley; 
National Institute Mental Health: Francis J. McMahon, 
Liping Hou; University of Pennsylvania: Wade H. Berrettini; 
Johns Hopkins University: Peter P. Zandi; University of 
Michigan: Melvin G. McInnis; The Translational Genomics 
Research Institute: David W. Craig, Szabolcs Szelinger; 
Georg-August-University Göttingen: Thomas G. Schulze; J. 
Craig Venter Institute: Nicholas J. Schork, Danjuma Quarless 
 

 

II. Principal Investigators and Co-Investigators of the National 
Institute of Mental Health (NIMH) Bipolar Disorder Genetics 
Initiative and of the NIMH Control Samples Initiative 
 

Data and biomaterials were collected as part of eleven 
projects (Study 40) that participated in the National Institute 
of Mental Health (NIMH) Bipolar Disorder Genetics 
Initiative. From 2003-2007, the Principal Investigators and 
Co-Investigators were: Indiana University, Indianapolis, IN, 
R01 MH59545, John Nurnberger, M.D., Ph.D., Marvin J. 
Miller, M.D., Elizabeth S. Bowman, M.D., N. Leela Rau, 
M.D., P. Ryan Moe, M.D., Nalini Samavedy, M.D., Rif El-
Mallakh, M.D. (at University of Louisville), Husseini Manji, 
M.D. (at Johnson and Johnson), Debra A. Glitz, M.D. (at 
Wayne State University), Eric T. Meyer, Ph.D., M.S. (at 
Oxford University, UK), Carrie Smiley, R.N., Tatiana Foroud, 
Ph.D., Leah Flury, M.S., Danielle M. Dick, Ph.D (at Virginia 
Commonwealth University), Howard Edenberg, Ph.D.; 
Washington University, St. Louis, MO, R01 MH059534, 
John Rice, Ph.D, Theodore Reich, M.D., Allison Goate, 
Ph.D., Laura Bierut, M.D. K02 DA21237; Johns Hopkins 
University, Baltimore, M.D., R01 MH59533, Melvin McInnis, 
M.D., J. Raymond DePaulo, Jr., M.D., Dean F. MacKinnon, 
M.D., Francis M. Mondimore, M.D., James B. Potash, M.D., 
Peter P. Zandi, Ph.D, Dimitrios Avramopoulos, and Jennifer 
Payne; University of Pennsylvania, PA, R01 MH59553, 
Wade Berrettini, M.D., Ph.D.; University of California at San 
Francisco, CA, R01 MH60068, William Byerley, M.D., and 
Sophia Vinogradov, M.D.; University of Iowa, IA, R01 
MH059548, William Coryell, M.D., and Raymond Crowe, 
M.D.; University of Chicago, IL, R01 MH59535, Elliot 
Gershon, M.D., Judith Badner, Ph.D., Francis McMahon, 
M.D., Chunyu Liu, Ph.D., Alan Sanders, M.D., Maria Caserta, 
Steven Dinwiddie, M.D., Tu Nguyen, Donna Harakal; 
University of California at San Diego, CA, R01 MH59567, 
John Kelsoe, M.D., Rebecca McKinney, B.A.; Rush 
University, IL, R01 MH059556, William Scheftner, M.D., 
Howard M. Kravitz, D.O., M.P.H., Diana Marta, B.S., 
Annette Vaughn-Brown, M.S.N., R.N., and Laurie Bederow, 
M.A.; NIMH Intramural Research Program, Bethesda, MD, 
1Z01MH002810-01, Francis J. McMahon, M.D., Layla 
Kassem, Psy.D., Sevilla Detera-Wadleigh, Ph.D, Lisa Austin, 
Ph.D, Dennis L. Murphy, M.D.; Howard University, William 
B. Lawson, M.D., Ph.D., Evarista Nwulia, M.D., and Maria 

Hipolito, M.D. This work was supported by the NIH grants 
P50CA89392 from the National Cancer Institute and 
5K02DA021237 from the National Institute of Drug Abuse. 

Biomaterials and phenotypic data were obtained from the 
following projects that participated in the NIMH Control 
Samples: Control subjects from the National Institute of 
Mental Health Schizophrenia Genetics Initiative (NIMH-GI), 
data and biomaterials are being collected by the "Molecular 
Genetics of Schizophrenia II" (MGS-2) collaboration. The 
investigators and coinvestigators are: ENH/Northwestern 
University, Evanston, IL, MH059571, Pablo V. Gejman, M.D. 
(Collaboration Coordinator; PI), Alan R. Sanders, M.D.; 
Emory University School of Medicine, Atlanta, 
GA,MH59587, Farooq Amin, M.D. (PI); Louisiana State 
University Health Sciences Center; New Orleans, Louisiana, 
MH067257, Nancy Buccola, APRN, B.C., M.S.N. (PI); 
University of California-Irvine, Irvine, CA,MH60870, 
William Byerley, M.D. (PI); Washington University, St. 
Louis, MO, U01, MH060879, C. Robert Cloninger, M.D. 
(PI); University of Iowa, Iowa, IA,MH59566, Raymond 
Crowe, M.D. (PI), Donald Black, M.D.; University of 
Colorado, Denver, CO, MH059565, Robert Freedman, M.D. 
(PI); University of Pennsylvania, Philadelphia, PA, 
MH061675, Douglas Levinson M.D. (PI); University of 
Queensland, Queensland, Australia, MH059588, Bryan 
Mowry, M.D. (PI); Mt. Sinai School of Medicine, New York, 
NY, MH59586, Jeremy Silverman, Ph.D. (PI). The samples 
were collected by Vishwajit Nimgaonkar's group at the 
University of Pittsburgh, as part of a multi-institutional 
collaborative research project with Jordan Smoller, M.D., 
D.Sc., and Pamela Sklar, M.D., Ph.D., Massachusetts General 
Hospital (grant MH63420). Data and biomaterials used in 
Study 23 were collected by the University of Pittsburgh and 
funded by an NIMH grant (Genetic Susceptibility in 
Schizophrenia, MH56242) to Vishwajit Nimgaonkar, M.D., 
Ph.D. Additional Principal Investigators on this grant include 
Smita Deshpande, M.D., Dr. Ram Moanohar Lohia Hospital, 
New Delhi, India; and Michael Owen, M.D., Ph.D., 
University of Wales College of Medicine, Cardiff, UK. 
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III. Supplementary Methods 
 

 

1. Whole-genome sequencing of bipolar disorder 
pedigrees. We sequenced the whole genomes of 200 
individuals from 41 pedigrees multiply affected with bipolar 
disorder (BD). This family-based sequencing strategy is 
designed to detect effects of transmitted rare variants with 
moderate to large effect sizes within a pedigree. We 
hypothesized that transmitted rare variants play an important 
role in the genetic architecture of BD for the following 
reasons. First, BD is a strongly familial illness, with 8-fold 
relative risk in the family members of BD probands. Second, 
BD has relatively minor effects on evolutionary fitness (1). 
Third, so far, associations with de novo mutations appear 
relatively weak, compared with schizophrenia and autism (2–
4). Fourth, linkage studies have suggested the existence of 
large-effect loci in some BD pedigrees, although causal 
variants at these loci have been elusive.  

Family-based sequencing also provides more general 
advantages over sequencing of unrelated cases and controls. 
Repeated observation of a rare variant across multiple family 
members provides confidence that it is not a sequencing error. 
Also, under many disease models we expect stronger or more 
numerous risk variants in familial cases than in sporadic 
cases. For instance, if a multiply affected pedigree has a 
monogenic cause, then the causal variant in that pedigree is 
predicted to have higher penetrance than risk variants in the 
general population. If a multiply affected pedigree has a 
polygenic cause, the affected family members are predicted 
to inherit an especially large number of risk variants, though 
each affected family member could inherit a unique 
combination of risk variants. For all of these reasons, we 
chose to sequence multiply affected pedigrees as a strategy 
well suited to find genetic causes of bipolar disorder.  

The 41 bipolar disorder pedigrees sequenced in this 
study were drawn from a set of 972 multiply affected 
pedigrees collected by the NIMH Genetics Initiative and by 
sites at the University of California, San Diego, the 
University of California, San Francisco, and the University of 
Chicago. This sample has been described previously (5). 
DNA derived from whole blood or from lymphoblastoid cell 
lines was obtained from the Rutgers University Cell and 
DNA Repository and from the Corriell Institute. 

We selected pedigrees and individuals for sequencing by 
considering family structure, per-pedigree LOD scores at 
4,500 genome-wide SNPs (5), and the polygenic risk score in 
each pedigree’s proband (6). We chose a subset of individuals 
within each pedigree so as to maximize power under the most 
likely inheritance mode, as follows: (i) We sequenced a 
single affected individual and a single unaffected individual 
from nine pedigrees with a suggestive per-pedigree linkage 
peak and predicted dominant inheritance (pedigrees #1-9). (ii) 
We sequenced a parent-child trio or quartet from eight 
pedigrees with a single, suggestive per-pedigree linkage peak 
and either dominant or recessive inheritance (pedigrees #10-
17). In 22 pedigrees for which polygenic inheritance was 

more likely, we sequenced either (iii) a subset of affected 
individuals and 0-1 unaffected individuals (pedigrees #18-33) 
or (iv) all available individuals (pedigrees #34-41). Pedigree 
drawings annotated with the sequenced individuals and 
segregation criteria used in genetic filtering are shown in Figs. 
S1-S4 and Table S1. 

Whole-genome sequencing was performed to >40x 
coverage by Complete Genomics, Inc. (Mountain View, CA). 
We used variant calls for single-nucleotide variants (SNVs) 
and indels from the Complete Genomics analysis pipeline 
version 2.0 or 2.2, relative to the human reference genome 
version GRCh37. 
 
2. Whole-genome sequencing of population controls. We 
analyzed the 200 genomes from BD pedigrees together with 
genomes of population controls drawn from a collection of 
>1,200 genomes in an in-house collection at the Institute for 
Systems Biology, which were originally ascertained on a 
variety of diseases. The control pedigrees include a large 
pedigree segregating a monogenic form of cardiomyopathy 
(7), 10 pedigrees with Adams-Oliver syndrome (8, 9), and 
three pedigrees with Fanconi anemia, as well as genome 
sequences from several ongoing studies. Genome sequences 
from studies of complex psychiatric and neurological 
diseases such as epilepsy (10) were excluded from 
association testing, but are included in some quality control 
procedures. Individuals in the control pedigrees used for 
association testing did not undergo diagnostic interviews for 
psychiatric conditions and are likely to have a rate of BD 
comparable to that in the broader population (~1-2%). 
Whole-genome sequencing for all of these individuals was 
performed by Complete Genomics. 

Subsets of control genomes were utilized in several ways 
throughout our analyses. (i) Allele frequencies and quality-
control metrics were calculated across 1,057 non-BD 
genomes and used as a complement to publicly-available 
databases for the identification of rare variants 
(Supplementary Methods Section 4). (ii) For linear mixed 
model association analysis of single variants, we analyzed the 
BD genomes together with 254 genomes from individuals 
and pedigrees of European ancestry. (iii) For gene and 
pathway burden analyses we used control genomes to 
calculate an empirical distribution for the rate at which 
variants in each gene or pathway segregated in non-BD 
pedigrees. In our analyses of uncommon coding and 
regulatory variants, we utilized 168 genomes from 34 
multigenerational pedigrees, matched to the BD pedigrees by 
size and structure. (iv) In our analysis of rare, gene-disrupting 
variants we additionally considered the empirical distribution 
of transmitted gene-disrupting variants across 242 control 
parent-offspring trios. 
 
3. Affection status models. For analysis of segregation 
patterns in single pedigrees, we designated affection status 
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models by combining phenotypic information with evidence 
from a published linkage analysis utilizing these same 
pedigrees (5). We considered all individuals with a diagnosis 
of bipolar disorder type 1, bipolar disorder type 2, or 
schizoaffective disorder bipolar type to be affected. 
Individuals with recurrent or single episodes of major 
depression were also considered to be affected if (i) the best-
supported linkage peak for that pedigree in the analysis by 
Badner et al. (5) supported an inheritance model that included 
major depression, and they were not married-in; or (ii) they 
had offspring with BD and were not married-in to a pedigree. 
Two individuals with unknown or other phenotypes were 
considered obligate carriers and treated as affected because 
pedigree structure and linkage data provided strong evidence 
that they were carriers of risk alleles. In pedigrees 5407 and 
11127 we developed two distinct affection status models, 
treating individuals with major depression as affected or 
unaffected, respectively; in these pedigrees, we used the 
union of candidate variants under the two affection status 
models for downstream analyses. The designated affection 
status models for each pedigree are illustrated in Figs. S1-S4. 
 
4. Variant annotation and filtering. SNVs and indels from 
Complete Genomics masterVar files were annotated on 
sequence quality, allele frequency, functional annotation, 
likelihood of false positivity, and genetic segregation. These 
filters were implemented using a combination of QIAGEN’s 
Ingenuity Variant Analysis software 
(www.qiagen.com/ingenuity, QIAGEN Redwood City, 
Redwood City, CA), the Family Genomics Workflow, and 
PLINK (11), as follows: 

4.a. Variant quality. Using Ingenuity, we retained 
variants with Variable Allele Frequency quality scores >35 in 
affected individuals or >20 in unaffected individuals. Using 
the Family Genomics Toolkit, we then filtered out variants at 
positions with >20% no-call rate across the 200 genomes 
from BD pedigrees. 

4.b. Allele frequency. We annotated allele frequencies 
using data from the 1,000 Genomes Project, NHLBI Exomes, 
Complete Genomics Public Genomes, Kaviar (12), and ISB’s 
internal database of 1,057 genome sequences from non-BD 
pedigrees. We defined “uncommon” variants as those with 
allele frequencies < 5% in all populations and “rare” variants 
as those with allele frequencies < 1% in all populations. 

4.c. Functional annotation. Using Ingenuity, we 
categorized gene-disrupting variants, coding variants, and 
regulatory variants. Gene-disrupting variants were defined by 
the following categories: (i) stop codon change, (ii) gene 
fusions, (iii) frameshift indel, (iv) disrupt splice site up to two 
bases into intron, or (v) a structural variant. Coding variants 
included gene-disrupting variants, and the following 
additional categories that alter the amino acid sequence of a 
protein: (vi) established gain of function in the literature (vii) 
inferred activating mutations by Ingenuity, (viii) predicted 
gain of function by BSIFT, (ix) in-frame indel, (x) missense 
(i.e., all other non-synonymous coding SNVs). Regulatory 
variants were defined as those (i) in a microRNA binding site 
predicted by TargetScan, (ii) deleterious to a microRNA, (iii) 
in a JASPAR cis-motif or ENCODE ChIP-seq transcription 

factor binding site within 1000 bp upstream of a transcription 
start site, (iv) within a known or predicted enhancer binding 
site from the VISTA database, or (v) in a 5’ or 3’ untranslated 
region. 

4.d. Eliminating likely false positives. We applied four 
additional filters to remove likely false positives and non-
deleterious variants. Coding variants were filtered to exclude 
100 bp segments with an unusually high rate of functional 
variants in Complete Genomics genomes. Gene-disrupting 
SNVs and indels were further filtered to exclude genes with 
the highest 1% rate of transmitted gene-disrupting SNVs; 
genes that contained a segregating, rare gene-disrupting SNV 
or indel in any of the 34 multigenerational control pedigrees; 
and variants with CADD (13) scores < 10. 

4.e. Genetic segregation. Fully and nearly-fully 
segregating variants were defined in each pedigree based on 
allele sharing among the sequenced affected and unaffected 
individuals. Thresholds for allele-sharing are shown in Table 
S1. These thresholds were determined based on the number 
of sequenced individuals and the number of meioses 
separating the sequenced affected individuals.  

4.f. Filter settings for each analysis. We combined 
annotations in 4.a-4.e to define lists of candidate variants for 
downstream statistical analysis, as follows. For mixed-model 
analysis of single variants we used high-quality, uncommon, 
segregating and non-segregating variants. For gene and 
pathway burden tests of polygenic variants we used high-
quality, rare and uncommon, gene-disrupting, coding, and 
regulatory variants with low false-positivity scores, which 
segregated with BD in each pedigree. For pathway analysis of 
rare, gene-disrupting variants, we used high-quality, rare, 
gene-disrupting variants with low false-positivity scores, 
which segregated with BD in each pedigree. 
 
5. Selection of genes and gene sets for analysis. The genetic 
complexity of BD, combined with the massive number of 
variants discovered in a WGS study, precluded an unbiased 
genome-wide analysis. To increase statistical power, we 
selected for analysis 3,087 candidate genes and 325 candidate 
gene sets (“pathways”). These genes and pathways were 
selected based on two hypotheses about BD’s genetic causes.  

First, we hypothesized that genes influencing risk for BD 
will be enriched for those with intrinsic neuronal functions. 
Imaging studies, animal models, and other evidence suggest 
that mood disorders arise from structural and physiological 
changes in the brain. It is therefore reasonable to confine an 
initial search for rare risk variants to genes with predicted 
functions in neurons. Of course, peripheral tissues and non-
neuronal cells in the brain (e.g., glia) could contribute to 
mood disorders. Also, genes with both neuronal and non-
neuronal functions (e.g., metabolic enzymes) may contribute 
to disease. We anticipate that an unbiased genome-wide 
search will become possible as sample sizes increase. Since 
the specific neuronal functions perturbed in mood disorders 
have yet to be ascertained, we aimed to include a broad 
spectrum of genes with neuronal functions. Synaptic function 
appears to be especially relevant, since synapses are highly 
enriched for proteins that contribute to neuronal activity. We 
therefore included all the genes that encode proteins that have 
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been localized to synapses through proteomics studies from 
the SynaptomeDB database. A second category of neuronal 
genes of special interest are those with characterized small 
molecule agonists or antagonists. Genetic findings for these 
genes may be especially actionable, since they are attractive 
therapeutic targets. We therefore added to our list any ion 
channel or G-protein coupled receptor (GPCR) included in 
the International Union of Pharmacology (IUPHAR) database 
of drug targets. 

Second, we hypothesize that loci with evidence of an 
association to BD from GWAS are likely to harbor causal 
rare variants. Although only a handful of genome-wide 
significant loci have been discovered in BD GWAS, scores of 
additional loci have sub-threshold associations. These 
“suggestive” loci are enriched for voltage-gated calcium 
channels and other pathways (14–16). Also, polygenic risk 
scores based on the combined genotypes at all nominally 
significant loci classify cases from controls in independent 
cohorts (14). These results suggest that some of the genes at 
loci with sub-threshold associations from GWAS harbor true 
risk variants. Some of the common SNPs identified by 
GWAS may tag true causal variants that are more rare. Genes 
that contain common risk variants may also contain 
additional rare variants that are not linked to common SNPs. 
We therefore used data from two recent publications by the 
Psychiatric Genomics Consortium on Bipolar Disorder to 
characterize genes with prior evidence from GWAS. 

Our final list of candidate genes included: 
• 1,887 genes encoding proteins localized to the pre- and 
post-synaptic densities from the SynaptomeDB database.(17) 
• 280 genes encoding ion channels from the IUPHAR 
database.(18) 
• 411 genes encoding G-protein coupled receptors from the 
IUPHAR database.(18) 
• 461 genes located within 100 kb of loci with suggestive 
associations to BD (p < 1e-4) in the mega-analysis by the 
Psychiatric Genomics Consortium (PGC-BD1).(16) 
• 226 genes with empirical p-values < 0.05 in a meta-analysis 
of bipolar disorder GWAS by Nurnberger et al.(15) 
These 3,087 candidate genes were used in single-variant 
association tests and gene burden tests. 

In addition to variant- and gene-level tests, we conducted 
pathway-level association and enrichment tests, focusing on 
gene sets enriched among our 3,087 candidate genes. We 
downloaded the Gene Ontology, KEGG, and BioCarta 
pathways from MSigDB. We used Fisher’s exact tests to 
identify pathways that were statistically over-represented 
among our 3,087 candidate genes (FDR < 0.05). Since the 
power of pathway-level tests depends on the number of genes 
in the pathway, we then filtered gene sets by size. For 
pathway burden association tests (Supplementary Methods 
Section 7.2), we considered the 269 pathways that contained 
between 5 and 100 genes. For enrichment analyses of gene-
disrupting variants we considered the 325 pathways that 
contained between 5 and 200 genes (Supplementary Methods 
Section 7.3). Different size filters reflect the differing power 
of these tests to detect significance across small vs. large 
gene sets, respectively. 
 

6. Mixed model association test of uncommon SNVs. We 
used EMMAX (19) to test for associations between BD and 
uncommon (1-5% MAF) coding and non-coding SNVs. We 
integrated the genotypes of the 200 genomes from BD 
pedigrees with 254 genomes from non-BD pedigrees, also of 
European descent. For this analysis, we considered 
individuals with a diagnosis of bipolar disorder type I, bipolar 
disorder type 2, or schizoaffective disorder to be affected; 
individuals in BD pedigrees who had no mental illness and all 
individuals in non-BD pedigrees were considered to be 
unaffected; individuals with major depression or any other 
DSM-V diagnosis, and individuals in BD pedigrees for whom 
a phenotype was not ascertained were coded as unknown. In 
total, there were 108 affected individuals, 309 unaffected 
individuals, and 35 unknown. 5,730 uncommon coding and 
non-coding SNVs were selected for analysis as described in 
Section 4, above. We used emmax-kin to construct a Balding-
Nichols kinship matrix, based on these 5,730 genome-wide 
SNVs. We then performed association testing with emmax. 
We evaluated the success of this approach in accounting for 
pedigree and population structure with quantile-quantile plots 
and lambda statistics, implemented with the qqman and 
GenABEL (20) R packages, respectively. 
 
7. Gene and pathway burden tests.  

7.1. Overview of the method. Association tests for the 
effects of individual rare variants (MAF < 1%) have low 
power because each variant is observed in only a few 
individuals. Therefore, tests that aggregate the effects of 
multiple rare variants are commonly used in rare-variant 
association studies. Typically, these rare-variant tests 
aggregate the variants in a region into a statistic for 
association testing, either by collapsing them into a meta-
variable (“burden” tests) or by combining them in a variance-
component model (e.g., SKAT (21)). At least two challenges 
have arisen in applying these rare-variant association tests to 
real data. First, they have low power when only a small 
fraction of the variants in a region contribute to disease risk. 
Second, differences in gene size, mutation rate, level of 
positive and negative selection, sequence depth and rate of 
sequencing errors at each locus, and other factors lead to 
biases in the number of transmitted variants observed in each 
gene or gene set. These biases can lead to uneven power 
across the genome and to spurious results.  

We developed a strategy to test for the effects of rare 
variants in our family-based sample that is designed to 
overcome both of the previously mentioned challenges. To 
enrich for risk-associated variants in each gene, we used 
segregation patterns within pedigrees in combination with 
other forms of functional annotation prior to association 
testing across affected and unaffected pedigrees. This 
approach may have better power than other methods when 
only a subset of variants at a locus contribute to risk. 

We used an empirical null distribution from control 
pedigrees to assign p-values that correct for differences in the 
background rate of transmitted variants. Other groups have 
used theoretical distributions that account for some of the 
factors contributing to bias (especially gene length). 
Empirical distributions are appealing when sufficient 
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numbers of comparable control genomes are available, since 
they correct for both known and unknown biases.  

We developed three implementations of our approach for 
testing the effects of (i) single genes, (ii) oligogenic 
combinations of uncommon variants within a pathway, and 
(iii) heterogeneous effects of very rare variants within a 
pathway. 

7.2. Gene burden test. The first step of all three burden 
tests was to identify rare, functional variants that co-
segregated with disease in each BD pedigree. Co-segregation 
was defined by allele sharing among affected and unaffected 
individuals in a pedigree, according to the affection status 
models shown in Figures S1-S4 and described in 
Supplementary Methods Section 3. We allowed slight 
deviations from perfect co-segregation to account for reduced 
penetrance and phenocopies. Thresholds for allele sharing in 
each pedigree are shown in Table S1. Rare and uncommon 
variants (MAF < 5%) with functional annotations were 
characterized as described in Section 4. The selection of 
3,087 genes for analysis is described in Section 5. We 
identified a total of 7,783 variants that passed all filtering 
criteria across all 41 BD pedigrees. These variants are 
predicted to impact the functions of 2,375 genes, with a 
median of 146 genes impacted per pedigree.  

In order to define an empirical null distribution for the 
gene burden test, we identified non-bipolar (control) 
pedigrees from ISB’s in-house database that had similar size 
and structure to the BD pedigrees and which were also of 
European ancestry. We identified 34 suitable pedigrees in our 
collection. In each control pedigree, we arbitrarily assigned a 
subset of individuals as “affected”, such that the transmission 
rate from parents to offspring and the relative risk among 
siblings matched the values in the sequenced BD pedigrees. 
We then identified variants that were shared among the 
“affected” individuals and not the “unaffected” individuals in 
each control pedigree. A total of 6,686 variants passed all 
thresholds in control pedigrees, and these variants are 
predicted to impact 2,283 genes. The distribution of candidate 
gene counts per pedigree was similar between the BD and 
control pedigrees (Kolmogorov-Smirnov test: p = 0.35). The 
similarity in the number of genes identified in BD vs. control 
pedigrees suggests that the structure of the BD vs. control 
pedigrees was sufficiently similar that the variants in these 
control pedigrees represent an appropriate null distribution 
for testing gene enrichments. For each gene, we counted the 
number of BD pedigrees and control pedigrees in which we 
observed a variant that co-segregated with affection status. 
We calculated a p-value for each gene using Fisher’s exact 
test. A quantile-quantile plot indicates that the p-values from 
this approach are uniformly distributed across all the genes 
tested (Fig. S11A). 

7.3. Pathway burden for uncommon and rare 
functional variants. Disease risk in an individual may arise 
from the additive and epistatic effects of rare or uncommon 
variants across several genes in a protein complex or pathway. 
Likewise, variants in distinct genes from the same complex or 
pathway could occur in different pedigrees and have similar 
effects on disease risk. In these scenarios, the genetic signal 
from an individual gene may be too weak or too rare to be 

detected with single-gene burden tests. We developed two 
approaches to test for an increased burden of variants across 
multiple genes in a pathway.  

In the first pathway burden test, we hypothesize that risk 
for BD increases with the number of mutated genes in a 
pathway. To test this hypothesis, we used a score test based 
on the normalized count of genes per pathway that contained 
segregating variants in BD vs. control pedigrees. For each of 
the 269 pathways in our analysis (see Section 5), we counted 
the number of pathway genes (Npathway) in the variant list from 
each of the 41 BD pedigrees and from each of the 34 control 
pedigrees. We then calculated a Fractional Pathway Score in 
each pedigree as Npathway / Ntotal, where Ntotal is the total 
number of genes with a candidate variant in that pedigree. 
Dividing by Ntotal normalizes for differences in the number of 
candidate genes arising from segregation analysis in each 
pedigree (which is itself a function of pedigree structure). We 
used Wilcoxon’s rank-sum test to evaluate the hypothesis that 
the Fractional Pathway Score for each gene set was larger in 
BD vs. control pedigrees. A low p-value for a given pathway 
suggests that segregating variants in BD pedigrees are over-
represented for genes within that pathway. Quantile-quantile 
plots suggest that the distribution from this test is uniform 
across most pathways, with a single pathway (the BioCarta 
GABA Pathway) having a large deviation from the null 
distiribution (Fig. S11B). 

7.4. Pathway burden for rare, gene-disrupting 
variants. A distinct hypothesis is that risk for BD increases if 
there is a mutation in any of the genes in a pathway. In 
Boolean terms, the hypothesis in 7.3 proposes an “AND” 
relationship between the genes in a pathway and risk for 
disease, whereas the hypothesis in this section proposes an 
“OR” relationship. We formulated this problem as an 
enrichment test for pathways that were over-represented for 
rare, segregating variants in BD pedigrees. This test assumes 
that each variant has an independent effect on disease risk, 
and it will be better powered if these effects are large. We 
therefore focused on rare gene-disrupting variants, which 
have been shown in other psychiatric diseases to be more 
strongly enriched than other classes of variants for those with 
large effects on risk (22).  

For each BD pedigree, we identified all likely damaging 
(CADD score > 10), rare (MAF < 0.01), gene-disrupting 
variants that co-segregated with disease. 437 genes contained 
a gene-disrupting variant in one or more of the BD pedigrees. 
416 of these 437 genes were disrupted in only one of the 41 
BD pedigrees, and 21 genes were disrupted in two pedigrees. 
This genetic evidence is not strong enough to make 
inferences to individual genes. We calculated p-values for 
each pathway by comparing the rate of transmitted gene-
disrupting variants in that pathway in BD pedigrees to the 
empirical null distribution in control pedigrees. Because 
gene-disrupting variants are rare even in aggregate, we found 
that a larger set of control genomes was necessary for this 
analysis than for other burden tests. We therefore calculated 
the rate of gene-disrupting variants in each gene from a total 
of 242 non-BD parent-offspring trios in our in-house 
collection. A small number of genes are common false 
positives with disrupting variants in a large fraction of trios. 
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True risk variants in these genes would be indistinguishable 
from noise. We removed from analysis the top 1% of genes 
with the highest rate of disrupting variants. 

We analyzed 325 pathways that contained between 5 and 
200 genes (Section 5). We recorded the overlap of each of 
these pathways with the set of genes disrupted in BD 
pedigrees. To test for significance, we then drew a same-
sized set of variants at random from the empirical distribution 
in non-BD trios and recorded whether the overlap of this 
random set with each of the pathways was greater than or 
equal to the number observed in BD pedigrees. We repeated 
this procedure 100,000 times. The empirical p-value for each 
pathway is calculated as (N + 1) / (100,000 + 1), where N is 
the number of times out of 100,000 that the overlap to the 
pathway in variants drawn at random was equal to or greater 
than the number observed in BD pedigrees. A quantile-
quantile plot for the distribution of observed vs. expected p-
values across the 325 suggests that this empirical p-value is 
uniformly distributed except for a handful of pathways with a 
strong enrichment of disrupting variants in BD pedigrees (Fig. 
S11C). 

7.5. Additional considerations. There are limitations of 
our approach. Sample size is effectively reduced from the 
number of sequenced individuals to the number of 
independent pedigrees. Also, if disease risk within a family is 
polygenic, then the fully- and nearly-fully segregating 
variants in a pedigree will represent only a subset of the 
causal variants. Although the use of control pedigrees 
accounts for various sources of false positives in sequencing 
studies, the power of this test may be different in large vs. 
small genes. Future implementations could explore strategies 
to weight variants based on the strength of the genetic 
evidence in each pedigree. 

Despite these limitations, our statistical approach has 
several attractive features. First, because the linkage of 
individual variants to disease is detected within pedigrees, the 
test is robust to population stratification. Second, it combines 
evidence from (within-pedigree) linkage and (between-
pedigree) association in an intuitive way and allows us to test 
the linkage of individual variants to disease within families 
while collapsing evidence across families into a gene burden 
test. In contrast to the well-controlled p-value distributions 
resulting from our method (Fig. S11), evaluation of other 
rare-variant association tests for family-structured data 
suggested that they often give anti-conservative results (data 
not shown). 
 
8. Targeted sequencing of 26 genes in 3,014 cases and 
1,717 controls. 

8.1. Selection of target regions. We performed targeted 
resequencing of 185 pools of samples (23) to evaluate 
associations of BD with rare variants in the coding and non-
coding regions of candidate genes (Table S10). Our initial 
design included 30 candidate genes. Results for 26 of these 
genes are presented here. Data for 4 genes were not analyzed 
because WGS analyses conducted after the initial design of 
the targeted sequencing study revealed poor sequence quality 
at these loci. 20 of the targeted genes were identified by WGS 
analysis in this study, and six were identified by GWAS. We 

targeted all UCSC knownGene exons, as well as the 
following non-coding regions with putative regulatory 
functions. 5’ and 3’ untranslated regions were targeted based 
on knownGene models, downloaded on December 10, 2012. 
The core promoter was defined as the region 1-1000 bp 
upstream of each transcriptional start site (TSS), also based 
on UCSC knownGene models. We used DNase 
hypersensitive regions from the ENCODE project (24) to 
identify putative enhancers. We downloaded the 
wgEncodeRegDnaseClusteredV2 track from the UCSC 
Genome Browser and selected hypersensitive regions with 
quality scores > 300. For the ten voltage-gated channel genes 
in our study, we targeted the DNase hypersensitive regions 
starting 5 kb upstream of the first transcriptional start site and 
spanning the entire gene body. For the remaining genes, we 
targeted DNase hypersensitive regions 5 kb upstream and 
downstream of each TSS.  

8.2. Amplicon design. We used Design Studio (Illumina, 
San Diego, CA) to design TruSeq Custom Amplicons for 
each target region. PCR amplicons passing Design Studio’s 
quality threshold were successfully designed for 90.1% of the 
targeted regions, spanning a total of 462 kb. Each amplicon 
was approximately 250 bp and avoided homology to other 
genomic regions, as well as common SNPs. The TruSeq 
Custom Amplicon system can target a maximum of 1536 
amplicons per assay. We therefore divided these regions into 
two assays, with 1,536 and 1,525 amplicons, respectively. 

8.3. Sample cohort. The data presented in this study are 
from sequencing of 3,014 BPI cases and 1,717 neurologically 
cleared controls of European-American ancestry.  Samples 
were primarily from the GAIN (6) and TGEN (25) 
collections, and also included 169 BD cases from a new 
prospective sample of lithium responsiveness in BD. These 
samples were distributed across 149 of the 185 sample pools 
that were sequenced in parallel. The remaining 36 sample 
pools contained DNA from African-American BPI cases and 
controls. Data from the African-American sample will be 
published elsewhere. 

8.4. Sample pooling. DNA was quantified with 
PicoGreen (Life Technologies, Carlsbad, CA), and equimolar 
quantities from each individual were combined into 185 pools. 
Pools contained from a minimum of 16 to a maximum of 37 
samples with 152 of the 185 pools containing 32 samples. 
The samples in each pool were matched for phenotype, 
ethnicity, and cohort. There were 95 pools with BD cases of 
European-American (EA) ancestry, 54 pools with EA 
controls, 14 pools with African-American (AA) cases, and 22 
pools with AA controls. 

8.5. Library preparation and sequencing. DNA from 
each pool was aliquoted into multiple 96-well plates to enable 
parallel library construction from the two sets of amplicons. 
Each TruSeq Custom Amplicon assay is designed for 
barcoding of up to 96 samples. We therefore divided the 185 
sample pools into two batches, with equal numbers of 
case/control and EA/AA pools in each batch. As technical 
controls, we included in each batch a built-in “Illumina QC” 
pool and two replicate pools of HAPMAP (26) samples. To 
measure variance between plate preparations, a single EA BD 
case pool was replicated between the plates.  
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We generated a separate sequencing library from each of 
the two batches of samples, for each of the two sets of 
TruSeq Custom Amplicons (a total of four libraries). We 
utilized 8 bp dual indexing to provide unique barcodes for 
each of the 96 sample pools in each batch. We performed 
paired-end, 2*250 bp Rapid mode sequencing of each library 
on a HiSeq2500 flowcell. To evaluate replicability, we 
performed a second round of Rapid mode sequencing of each 
library on an additional flowcell with paired-end 2*100 bp 
reads. 

8.6. Read alignment, variant calling, and quality 
control. Sequence reads were aligned to the human reference 
genome (GRCh37d5) using Burrows-Wheeler Alignment 
(27), followed by indel realignment with the Genome 
Analysis Toolkit (28). TruSeq Custom Amplicon library 
construction incorporates adaptor sequences onto the ends of 
each amplicon during PCR amplification, and there is no 
fragmentation step. Therefore, each sequence read starts at 
either the beginning or end of an amplicon, and reads with an 
identical start position are not likely to be optical duplicates. 
Since some of the amplicons were shorter than 250 bp, we 
clipped reads at the expected length of each amplicon. These 
steps led to a total of 390 BAM files, one per amplicon set 
per pool. 

We sorted and merged the aligned reads from the two 
sets of amplicons from each sample pool, using samtools (29). 
We then used SNVer (30) to call single-nucleotide variants 
(SNVs) separately in each pool and to estimate per-pool 
allele frequencies. We used default thresholds of base quality 
≥17 and mapping quality ≥20. We excluded variants 
observed on only one strand. We combined the variant calls 
from all 185 pools. We retained for further analysis all 3,715 
SNVs located at positions with at least 640x total read depth 
(approximately 20x per diploid), in every pool for which the 
SNV was called.  

The outputs from the steps above were tables of allele 
frequencies in each of the 185 pools, for 3,715 high-quality 
SNVs. Statistical association tests require allele counts in 
each individual (rather than pooled allele frequencies). We 
constructed a genotype matrix of 3,715 variants x 4,731 
individuals by assigning the non-reference alleles from each 
pool at random to each of the haplotypes in that pool.  

8.7. Quality control and normalization. We performed 
several experiments and analyses to evaluate the accuracy of 
allele frequency estimates from pooled sequencing. As 
detailed below, these steps led to the general conclusion that 
allele frequency estimates were accurate and replicable across 
most of the allele frequency range. The presence of possible 
counting errors among very rare variants led us to perform 
additional normalization steps that improved performance. 

In total, targeted sequencing generated 1.28 billion high-
quality sequencing reads covering 320 billion base pairs 
(Table S7). 65-80% of base pairs in each pool reached a read 
depth threshold of >640x total read depth (~20x coverage per 
diploid individual; Fig. S7). Across all individuals, per-
position read depth was unimodally distributed around a 
mode of 40x coverage per individual (Fig. S8). These results 
suggest that sequencing depth was consistent and deep across 
sample pools and libraries. 

We next compared allele frequencies derived from 
targeted sequencing to the frequencies of these alleles in the 
Kaviar database (12). Of the 3,715 SNVs identified through 
targeted sequencing, 1,960 of these SNVs were present in the 
Kaviar database on January 29, 2014. Allele frequencies for 
these known SNVs were tightly correlated between targeted 
sequencing and public data (r = 0.88; Fig. S8).  

To further evaluate the replicability of allele frequency 
estimates from targeted sequencing, we performed a second 
round of sequencing on each of the four sequencing libraries. 
In the second round of sequencing we used paired 100 bp 
reads, meaning that only a subset of the positions were 
targeted. 1,728 alleles were observed at positions with >640x 
coverage in both sequencing runs. Visual inspection (Fig. S9) 
indicated that allele frequency estimates were nearly perfectly 
replicable for common variants and were strongly correlated 
at allele frequencies as low as 10 copies / 12,002 sequenced 
haplotypes (MAF = 0.001). At allele frequencies < 0.001 
considerably more scatter was present. Still, allele 
frequencies for the majority of variants at these frequencies 
(including singleton variants) were estimated identically in 
the two sequencing runs. These results indicate that results 
from our targeted sequencing are accurate at MAF > 0.001. 
Allele frequencies < 0.001 should be treated with caution but 
provide useful information. 

A common source of noise in pooled sequencing arises 
from the difficulty in estimating an exact copy number for 
variants present in a small fraction of reads (23). For instance, 
in a pool of 32 individuals sequenced to 640x depth, each 
haplotype is represented by 10 reads on average. However, 
random variation during amplification and sequencing can 
lead to uneven representation of the haplotypes among the 
sequencing reads, which in turn can lead to inaccurate 
estimation of allele counts. These counting errors are likely to 
be especially important to account for when analyzing very 
rare variants. 

We evaluated possible counting errors by comparing the 
distribution of estimated counts of each variant in each 
sample pool to simulated distributions assuming Hardy-
Weinberg equilibrium. In simulated distributions, all variants 
with MAF < 0.001 are expected to be observed in only one 
haplotype per pool. 97% of variants with MAF < 0.005 were 
predicted to be observed in only one haplotype per pool. 76% 
of variants with MAF ~ 0.005-0.01 were predicted to be in 
only one haplotype per pool. At allele frequencies > 1%, 
variants are predicted to occur in multiple haplotypes in the 
majority of pools. Simulated distributions for each allele 
frequency bin are shown in Figure S11. 

Comparison of these simulated distributions to the 
haplotype count estimates reported by SNVer suggested 
deviations from the simulated distribution for variants present 
in 0-2 copies per pool. Specifically, single-copy variants were 
under-represented at allele frequencies up to 0.05, and 2-copy 
variants were over-represented at allele frequencies up to 
0.005. At allele frequencies > 0.05, the observed distribution 
approximated simulated values.  

Since the vast majority of low-frequency variants are 
expected to be present in a single haplotype per pool, the 
most parsimonious explanation for these deviations from 
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Hardy-Weinberg equilibrium is that some single-haplotype 
variants are under-called as not present in a pool, and others 
are over-called as being present in two (or more) haplotypes. 
These counting errors represent a small fraction of overall 
genotype calls, but effects on individual rare variants may be 
significant. We therefore applied two strategies to correct for 
counting errors. First, we applied an expectation-
maximization procedure to normalize allele counts for 
variants with frequencies < 0.01. Alternatively, we removed 
from our analysis the extremely rare variants (MAF < 0.001) 
whose frequency estimates are likely to be less accurate. 

The expectation-maximization procedure was applied to 
all variants with allele frequencies in our data < 0.01. For a 
variant with a frequency of 0.01 (95/9472 total haplotypes in 
our study), 70% of pools containing that variant are expected 
to have only one variant haplotype. For a variant with a 
frequency of 0.001 (5/9472 haplotypes), >99% of pools 
containing that variant are expected to have only one variant 
haplotype. Thus, haplotype counts in a pool that are > 1 are 
predicted to be incorrect the majority of the time for an allele 
with a frequency of 0.01, and nearly always incorrect for an 
allele with a frequency of 0.001. As a corrective, we therefore 
adjusted allele haplotype counts to 1 for each pool in which 
the variant was observed. This procedure maximizes the 
expectation that rare variants will be present in one copy per 
pool. We applied this normalization only to variants with 
MAF < 0.01, since the expectation of 1 haplotype per pool 
does not hold for variants with MAF > 0.01.  

Comparison of normalized allele counts to simulations 
under Hardy-Weinberg equilibrium suggests that our 
normalization procedure succeeded in correcting haplotype 
counts per pool to be nearly identical to expected (simulated) 
values (Fig. S11). Slight deviations from the simulated 
distribution are still apparent for variants with allele 
frequencies > 0.01, which were not normalized. However, 
three considerations suggest that these remaining counting 
errors will have very little effect on results. First, any 
counting errors represent only a small fraction of the calls for 
each common allele. Second, common alleles are given very 
small weights in the sequence kernel association test (SKAT) 
used to assess significance. Third, the C-alpha test included 
only variants with MAF < 0.01 and gave similar results to 
SKAT (Tables S8, S9). 

As an alternative to the normalization procedure 
described above, we also calculated rare-variant associations 
while removing all variants with allele frequencies < 0.001. 
These variants, represented by fewer than 10 haplotypes in 
our dataset are the most sensitive to counting errors. We 
chose a cutoff of < 0.001 because the technical 
reproducibility of allele frequencies for variants above this 
threshold improved dramatically (Fig. S10). 

8.8. Rare-variant association tests. We used SKAT 
(31), C-alpha (32), and the unidirectional gene burden test 
implemented in the SKAT R package to test for associations 
between BD and rare variants in each of the 26 candidate 
genes. We tested for associations of BD separately for coding 
vs. regulatory variants. We defined non-synonymous coding 
variants as those that change the amino-acid sequence of a 
knownGene gene model, as predicted by ANNOVAR (33). 
We defined regulatory SNVs as non-coding SNVs with an 
annotation in RegulomeDB (34). 

For the SKAT test, we used default parameters to weight 
the effects of rare vs. common variants (alpha = 1, beta = 25). 
These parameters assign strong weights to variants with MAF 
< 0.01, weak weights to variants with MAF 0.01-0.05, and 
near-zero weights to variants with MAF > 0.05. P-values 
reported in Table 1 are based on 100,000 re-sampling 
permutations. Permutation p-values were nearly identical to 
the asymptotic p-values reported by SKAT (Tables S8, S9).  

We performed a primary SKAT analysis and two 
secondary analyses. The primary analysis used the allele 
frequencies with expectation-maximization normalization. 
The second analysis used “raw” allele frequency estimates 
but removed variants with MAF < 0.001. The third analysis 
used raw allele frequency estimates, including all allele 
frequencies. The p-values from the first and second 
approaches were nearly identical. The third approach yielded 
anti-conservative p-values compared to the other approaches. 
We performed the SKAT gene burden test using normalized 
allele frequencies. 

We performed the C-alpha test using normalized allele 
frequencies. Since C-alpha assigns an equal weight to each 
variant regardless of its frequency, we set a hard allele 
frequency cutoff, MAF < 0.01. We used an implementation 
of C-alpha in the AssotesteR R package and performed 
100,000 permutations. 
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III. Figures S1-S12 
 
Figure S1. Pedigree diagrams 1-9: WGS from one case and one control. Letters indicate the individuals from whom whole-
genome sequences were obtained. Each of these individuals was designated affected (A) or unaffected (U) as described in 
Supplementary Methods Section 3. 
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Figure S2. Pedigree diagrams 10-17: WGS from a family quartet or trio. Letters indicate the individuals from whom 
whole-genome sequences were obtained. Each of these individuals was designated affected (A) or unaffected (U) as described 
in Supplementary Methods Section 3. 
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Figure S3. Pedigree diagrams 18-33: WGS from several BD cases. Letters indicate the individuals from whom whole-
genome sequences were obtained. Each of these individuals was designated affected (A) or unaffected (U) as described in 
Supplementary Methods Section 3. 
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Figure S4. Pedigree diagrams 34-41: WGS from all available individuals. Letters indicate the individuals from whom 
whole-genome sequences were obtained. Each of these individuals was designated affected (A) or unaffected (U) as described 
in Supplementary Methods Section 3. 
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Figure S5. Distribution	  of	  coding	  and	  non-‐coding variation in voltage-gated calcium	  channels	  and	  GABA	  receptors	  
across	  bipolar	  disorder	  cases	  and	  controls. A mixed model was implemented in EMMAX to test for associations 
between BD and uncommon (<5% MAF), bi-allelic SNVs in voltage-gated calcium channels and GABA receptors, using WGS 
from 108 affected individuals from BD pedigrees (“A”), 57 unaffected individuals from BD pedigrees (“U”), and 254 
individuals from control, non-BD pedigrees (“U”). Plots are shown for SNVs in GABA receptors and voltage-gated calcium 
channels that were associated with risk or protection for BD (P < 0.05). Each row represents an SNV, and each column 
represents an individual person. Individuals are ordered by pedigree along the horizontal axis. Dark blue lines indicate that an 
individual is heterozygous or homozygous for the SNV in that row. The higher density of SNVs in affected individuals 
indicates a pathway-wide association of voltage-gated calcium channels and GABAA receptors with risk for BD. The sparse 
representation of each SNV suggests that the specific risk variants are heterogeneous among the unaffected individuals. The 
presence of multiple risk variants in some individuals raises the possibility of additive or epistatic interactions among variants 
within each pathway. 
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Figure S6. Oligogenic combinations of risk variants in bipolar disorder pedigrees. Combining results from variant- and 
pathway-level models suggested that most affected individuals inherited multiple risk variants. For this analysis, we defined as 
risk variants all SNVs with p-values < 0.001 and odds ratios > 1 by mixed model analysis (“EMMAX”, 14 SNVs), as well as 
SNVs with mixed-model p-values < 0.05, odds ratios > 1, and an annotation to one of the following enriched pathways: 
BioCarta GABA pathway (9 SNVs), calcium channels (38 SNVs), CaM kinases (10 SNVs), GTPases (88 SNVs), and 
glycolysis / tricarboxylic acid cycle (“Metabolism”, 13 SNVs). For each category, we report the number of risk variants 
identified in each affected BD case (“A”, orange), unaffected relative in a BD pedigree (“UR”, light blue), or population 
control (“PC”, dark blue). The widths of polygons are proportional to the number of individuals with each variant count. The 
figure showing combined risk variant scores is reproduced from Fig. 2D. 
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Figure S7. Per-base coverage profiles of the four targeted sequencing libraries. Set1of1	  =	  sample	  batch	  #1	  +	  amplicon	  
set	  1,	  Set1of2	  =	  sample	  batch	  #1	  +	  amplicon	  set	  2,	  Set2	  of1	  =	  sample	  batch	  2	  +	  amplicon	  set	  1,	  Set2of2	  =	  sample	  batch	  2	  
+	  amplicon	  set	  2. 
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Figure S8. Distribution of average read depth per base in targeted sequencing. Histogram shows all targeted regions, 
across all sequenced individuals.  
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Figure S9. Allele frequencies from pooled sequencing are correlated with allele frequency estimates from public 
databases. We identified a total of 3,715 distinct SNVs located at positions with at least 20x coverage per individual in every 
pool in which the variant was observed. 1,960 of these SNVs are present in the Kaviar database (12). Allele frequencies for 
these known SNVs were tightly correlated between our targeted sequencing and public data (r = 0.88). Allele frequencies in 
public genomes are based on all data in the Kaviar database on January 29, 2014. 
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Figure S10. Allele frequency estimates from targeted sequencing are highly replicable across multiple sequencing runs. 
To evaluate replicability of allele frequency estimates from pooled sequencing, we performed a second round of sequencing on 
all libraries at a subset of positions. 1,728 alleles were observed at positions with >600x coverage in both sequencing runs. We 
estimated the number of haplotypes (out of 12,002) containing each minor allele, separately for the primary sequencing run (x-
axis) and for the duplicate sequencing run (y-axis). Plots are shown at varying levels of resolution to emphasize both common 
and rare alleles. In the plot showing the rarest variants, values indicate the number of variants with each haplotype count. MAF, 
Minor allele frequency. 
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Figure S11. Distribution of alternate allele haplotype counts per pool. To assess the accuracy of allele count estimates 
within pools, we compared the observed distribution of allele counts to the expected counts if alleles are randomly distributed 
across pools (dashed red lines). Raw allele counts per pool (black dotted lines) deviated from expected values for counts of 0-2 
per pool. Following normalization (solid black lines), allele count estimates were similar to expected values. Association tests 
reported in the main text and in Table 1 are based on normalized allele counts. 
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Figure S12. Quantile-quantile plots for gene and pathway burden tests. A. Gene burden p-values were calculated for 3,087 
genes. B. Oligogenic pathway burden p-values were calculated for 269 pathways. C. gene-disrupting variant pathway burden p-
values were calculated for 325 pathways. We used quantile-quantile plots to compare the observed (y-axis) vs. null expectation 
(x-axis) p-value distributions for each test. Each point describes a single gene or pathway. The diagonal line on each plot 
indicates the distribution of p-values that is expected to occur if no genes or pathways have true associations with disease risk. 
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III. Tables S1-S10 
 
Table S1. Summary of sequenced pedigrees and individuals. The first column lists the numeric identifier for each of the 41 
BD pedigrees. The next two columns describe the number of affected and unaffected individuals from each pedigree with 
WGS. The last two columns describe thresholds for genetic segregation (i.e., allele sharing among affected and unaffected 
individuals). These thresholds were used to define candidate variants in each pedigree, as described in the supplementary 
methods. In pedigrees 33 and 34, two distinct affection status models (ASMs) were considered, and both designations of 
affected vs. unaffected status are shown. 
 

Pedigree	  ID	   #	  of	  Affected	  
Individuals	  Sequenced	  

#	  of	  Unaffected	  
Individuals	  Sequenced	  

Minimum	  #	  of	  Affected	  
Individuals	  with	  Variant	  

Maximum	  #	  of	  Unaffected	  
Individuals	  with	  Variant	  

1	   1	   1	   1	   0	  
2	   1	   1	   1	   0	  
3	   1	   1	   1	   0	  
4	   1	   1	   1	   0	  
5	   1	   1	   1	   0	  
6	   1	   1	   1	   0	  
7	   1	   1	   1	   0	  
8	   1	   1	   1	   0	  
9	   1	   1	   1	   0	  
10	   2	   1	   2	   0	  
11	   2	   2	   2	   1	  
12	   1	   3	   1	   1	  
13	   2	   2	   2	   0	  
14	   2	   1	   2	   0	  
15	   1	   2	   1	   0	  
16	   2	   1	   2	   0	  
17	   3	   1	   3	   0	  
18	   2	   1	   2	   0	  
19	   3	   1	   2	   0	  
20	   3	   0	   3	   0	  
21	   2	   0	   2	   0	  
22	   4	   1	   3	   0	  
23	   2	   0	   2	   0	  
24	   3	   0	   2	   0	  
25	   2	   0	   2	   0	  
26	   4	   0	   3	   0	  
27	   4	   1	   3	   0	  
28	   4	   1	   3	   0	  
29	   3	   1	   3	   0	  
30	   4	   1	   2	   0	  
31	   4	   1	   3	   0	  
32	   5	   1	   4	   0	  
33	   5	  /	  4	   1	  /	  2	   4	  /	  3	   0	  /	  0	  
34	   4	  /	  6	   6	  /	  4	   3	  /	  5	   1	  /	  1	  
35	   7	   3	   6	   1	  
36	   8	   5	   7	   1	  
37	   6	   5	   5	   1	  
38	   7	   1	   6	   0	  
39	   8	   2	   7	   1	  
40	   9	   8	   7	   3	  
41	   6	   2	   5	   1	  
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Table S2. SNVs significantly associated (q < 0.1) with BD in a mixed-model association test of 454 individuals from BD 
and non-BD pedigrees. We tested for associations of BD with 5,730 SNVs with 1-5% minor allele frequencies and predicted 
coding or regulatory effects. We compared WGS from 108 cases (BP1, BP2, or SA-BP) within 41 multiply affected pedigrees, 
to a total of 309 unaffected relatives and population controls. We used linear mixed models implemented with EMMAX(19). 
These mixed models are designed to test for the associations of single SNVs while accounting for relatedness within pedigrees, 
population structure, and polygenes. The table provides annotation and association statistics for four SNVs reaching study-
wide significance, defined by a False Discovery Rate (q-value) < 10%. Chromosomal position (Chr, Pos) is in 1-based 
GRCh37 coordinates. Reference (Ref) and alternate (Alt) nucleotides are also based on GRCh37. Gene annotations (Gene, 
Region, Amino Acid Change) are based on RefSeq gene models. Frequencies of each variant in affected (Freq. Aff.) and 
unaffected (Freq. Unaff.) individuals, are based on observed genotypes and are not corrected for family structure. No-call rate 
indicates the fraction of missing genotypes for each SNV. Beta coefficients and p-values are from EMMAX. A beta coefficient 
< 0 indicates that the SNV is associated with an increased risk for bipolar disorder. Q-values for each SNV were calculated 
using the method of Benjamini and Hochberg(35), and may be conservative in the presence of non-independence among SNVs. 
 

Chr Pos Ref	   Alt	   Gene	  	   Region	  
A.A.	  
Change	  

Freq.	  
Aff. 

Freq.	  
Unaff. 

No-‐Call	  
Rate Beta P-‐Value Q-‐Value 

5 161116672 C T GABRA6	   Exonic	   T187M	   0.060 0.003 0.002 -‐0.49 3.0e-‐5 9.0e-‐2 
10 134902253 C T GPR123	   5'UTR	   -‐-‐	   0.097 0.010 0.012 -‐0.37 4.3e-‐5 9.0e-‐2 
20 61392681 G A NTSR1	   3'UTR	   -‐-‐	   0.097 0.021 0.000 -‐0.31 6.3e-‐5 9.0e-‐2 
20 61393859 G A NTSR1	   3'UTR	   -‐-‐	   0.097 0.021 0.000 -‐0.31 6.3e-‐5 9.0e-‐2 
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Table S3. Genes with a suggestive burden of fully and nearly segregating uncommon, coding and non-coding variants in 
bipolar disorder pedigrees. We identified uncommon and rare functional variants that co-segregated with disease in each BD 
pedigree and used the empirical distribution of segregating variants in 34 matched control pedigrees to identify genes with an 
increased burden of rare variants. We calculated a p-value for each gene using Fisher’s exact test. Although no gene was 
significant in this analysis after correcting for multiple testing, there were several genes in which we observed segregating 
variants in many more BD pedigrees than control pedigrees. We show results for all genes with p-values ≤ 0.01. The top gene, 
GABRA4, is a GABA receptor. This result, together with study-wide significant associations from single-variant tests and 
pathway burden tests, supports a role for GABA receptors in risk for BD. 
 
Gene BD	  Pedigrees	  (41) Ctrl	  Pedigrees	  (34) Odds	  Ratio P-‐Value 
GABRA4 13 1 14.9 1.1e-‐3 
TFAM 13 1 14.9 1.1e-‐3 
GFAP 11 1 11.8 4.4e-‐3 
TPP1 8 0 Inf 5.7e-‐3 
GRIK2 7 0 Inf 1.1e-‐2 
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Table S4. Protein complexes and signaling pathways with an increased burden of fully and nearly-fully segregating 
variants in bipolar disorder pedigrees. P-values were calculated by comparing the frequency of segregating variants from 
each pathway in each pedigree, using Wilcoxon’s signed rank test (see Methods). Q-values represent a False Discovery Rate 
calculated using the Benjamini-Hochberg method. 
 

Pathway 
BD	  /	  
Ctrl 

Genes	  in	  
Pathway 

Genes	  with	  
Segregating	  Variant P-‐Value Q-‐Value 

BioCarta	  GABA	  Pathway 4.3 10 8 1.5e-‐4 4.1e-‐2 
GTPase	  Activity 1.7 99 88 6.8e-‐3 >	  0.1 
BioCarta	  PGC1A	  Pathway 2.1 26 20 7.3e-‐3 >	  0.1 
BioCarta	  Ca/CaM	  Pathway 2.3 16 10 1.4e-‐2 >	  0.1 
BioCarta	  Glycolysis	  Pathway 2.8 10 9 2.5e-‐2 >	  0.1 
Calcium	  Channel	  Activity 1.5 33 29 3.1e-‐2 >	  0.1 
KEGG	  Pathogenic	  Escherichia	  
coli	  Infection 1.6 59 47 3.5e-‐2 >	  0.1 
Voltage	  Gated	  Calcium	  Channel	  
Complex 1.6 15 13 3.6e-‐2 >	  0.1 
Tricarboxylic	  Acid	  Cycle	  
Intermediate	  Metabolic	  Process 2.0 11 10 5.0e-‐2 >	  0.1 
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Table S5. Protein	  complexes	  and	  signaling	  pathways	  enriched	  for	  fully	  and	  nearly-‐fully	  segregating,	  gene-‐
disrupting	  variants	  in	  bipolar	  disorder	  pedigrees. For each of 325 functionally-related gene sets from Gene 
Ontology(36), KEGG(37), and BioCarta, we calculated an empirical p-value by comparison of observed gene-disrupting 
variants (GDVs) to the genome-wide null distribution of transmitted GDVs in 242 control trios. Results are shown for gene sets 
with empirical p-values < 0.05. 
 

Gene	  Set 
Genes	  
in	  Set	  

Observed	  
GDVs 

P-‐
Value Q-‐Value Genes 

Nicotinic	  Acetylcholine	  Gated	  
Receptor	  Channel	  Complex 11	   3 4.5e-‐4 7.3e-‐2 CHRNA6,	  CHRNB4,	  CHRND 
Nicotinic	  Acetylcholine	  Activated	  
Cation	  Selective	  Channel	  Activity 11	   3 4.5e-‐4 7.3e-‐2 CHRNA6,	  CHRNB4,	  CHRND 
Excitatory	  Extracellular	  Ligand	  
Gated	  Ion	  Channel	  Activity 21	   3 2.1e-‐3 >	  0.1 CHRNA6,	  CHRNB4,	  CHRND 
Extracellular	  Ligand	  Gated	  Ion	  
Channel	  Activity 22	   3 2.1e-‐3 >	  0.1 CHRNA6,	  CHRNB4,	  CHRND 

Metal	  Ion	  Transmembrane	  
Transporter	  Activity 147	   11 3.7e-‐3 >	  0.1 

CACNA1G,	  CCS,	  CHRNA6,	  
CHRNB4,	  CHRND,	  KCNQ5,	  KCNS1,	  
MS4A2,	  SLC39A2,	  SLC40A1,	  
TRPM1 

Acetylcholine	  Binding 17	   2 1.2e-‐2 >	  0.1 CHRNA6,	  CHRNB4 
Amine	  Binding 23	   2 1.3e-‐2 >	  0.1 CHRNA6,	  CHRNB4 

Cation	  Channel	  Activity 119	   8 1.8e-‐2 >	  0.1 

CACNA1G,	  CHRNA6,	  CHRNB4,	  
CHRND,	  KCNQ5,	  KCNS1,	  MS4A2,	  
TRPM1 

KEGG	  Pathogenic	  Escherichia	  Coli	  
Infection 59	   3 2.9e-‐2 >	  0.1 NCL,	  TUBB3,	  TUBB4B 

Ion	  Channel	  Activity 149	   9 2.9e-‐2 >	  0.1 

CACNA1G,	  CHRNA6,	  CHRNB4,	  
CHRND,	  CLCA1,	  KCNQ5,	  KCNS1,	  
MS4A2,	  TRPM1 

Substrate	  Specific	  Channel	  
Activity 156	   9 3.6e-‐2 >	  0.1 

CACNA1G,	  CHRNA6,	  CHRNB4,	  
CHRND,	  CLCA1,	  KCNQ5,	  KCNS1,	  
MS4A2,	  TRPM1 

Response	  To	  Nutrient 17	   2 3.6e-‐2 >	  0.1 CCKAR,	  ENPP1 

Coated	  Vesicle 47	   4 3.6e-‐2 >	  0.1 
COPB1,	  FURIN,	  KIAA0368,	  
NECAP2 

Regulation	  Of	  MAP	  Kinase	  
Activity 67	   4 3.8e-‐2 >	  0.1 ERBB2,	  MAP3K10,	  MAP3K5,	  TRIB3 
Positive	  Regulation	  Of	  MAP	  
Kinase	  Activity 47	   3 4.1e-‐2 >	  0.1 ERBB2,	  MAP3K10,	  MAP3K5 
BioCarta	  Shh	  Pathway 16	   2 4.2e-‐2 >	  0.1 PRKACB,	  PTCH1 
Neurotransmitter	  Binding 53	   3 4.2e-‐2 >	  0.1 CCKAR,	  CHRNA6,	  CHRNB4 
Neurotransmitter	  Receptor	  
Activity 50	   3 4.2e-‐2 >	  0.1 CCKAR,	  CHRNA6,	  CHRNB4 

Positive	  Regulation	  Of	  Catalytic	  
Activity 165	   7 4.3e-‐2 >	  0.1 

CASP8AP2,	  ERBB2,	  MALT1,	  
MAP3K10,	  MAP3K5,	  NLRC4,	  
TNNT2 
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Table S6. Enrichment of pathways with an increased burden of rare variants in BD pedigrees for differentially 
expressed genes in dorsolateral prefrontal cortex from BD cases vs. controls. We analyzed RNA-seq gene expression 
profiles from the dorsolateral prefrontal cortex of 11 BD cases and 11 age- and gender-matched controls (38). We identified 
3,059 genes with evidence for differential expression (p < 0.05) between cases and controls. Using hypergeometric tests, we 
evaluated enrichments of these differentially expressed genes for each of the 27 pathways with a significant burden of rare 
variants in BD pedigrees (Tables S4, S5). DEGs, differentially expressed genes. 
 

Pathway 
#	  of	  Genes	  in	  
Pathway #	  DEGs Overlap P-‐value 

BioCarta	  SHH	  Pathway 25 3059 9 1.7e-‐4 
BioCarta	  PGC1A	  Pathway 3 3059 11 1.5e-‐3 
Voltage	  Gated	  Calcium	  Channel	  Complex 8 3059 7 3.0e-‐3 
Metal	  Ion	  Transmembrane	  Transporter	  Activity 14 3059 39 1.0e-‐2 
Calcium	  Channel	  Activity 6 3059 11 1.5e-‐2 
BioCarta	  Ca/CaM	  Pathway 4 3059 6 2.0e-‐2 
BioCarta	  GABA	  Pathway 1 3059 4 2.7e-‐2 
Cation	  Channel	  Activity 17 3059 30 3.0e-‐2 
Ion	  Channel	  Activity 19 3059 35 7.3e-‐2 
Substrate	  Specific	  Channel	  Activity 20 3059 36 8.0e-‐2 
Coated	  Vesicle 22 3059 10 2.7e-‐1 
KEGG	  Pathogenic	  Escherischia	  coli	  Infection 7 3059 11 4.6e-‐1 
GTPase	  Activity 2 3059 18 5.3e-‐1 
Positive	  Regulation	  of	  MAP	  Kinase	  Activity 24 3059 8 5.6e-‐1 
Positive	  Regulation	  of	  Catalytic	  Activity 28 3059 30 5.7e-‐1 
Nicotinic	  Acetylcholine	  Gated	  Receptor	  Channel	  
Activity 10 3059 1 6.5e-‐1 
Nicotinic	  Acetylcholine	  Activated	  Cation	  Selective	  
Channel	  Activity 11 3059 1 6.5e-‐1 
Excitatory	  Extracellular	  Ligand	  Gated	  Ion	  Channel	  
Activity 12 3059 2 8.0e-‐1 
Extracellular	  Ligand	  Gated	  Ion	  Channel	  Activity 13 3059 2 8.2e-‐1 
Amine	  Binding 16 3059 2 8.4e-‐1 
Regulation	  of	  MAP	  Kinase	  Activity 23 3059 9 8.5e-‐1 
Response	  to	  Nutrient 21 3059 1 8.6e-‐1 
Acetylcholine	  Binding 15 3059 1 8.6e-‐1 
BioCarta	  Glycolysis	  Pathway 5 3059 0 8.8e-‐1 
Tricarboxylic	  Acid	  Cycle	  Intermediate	  Metabolic	  
Process 9 3059 0 9.0e-‐1 
Neurotransmitter	  Binding 26 3059 3 9.9e-‐1 
Neurotransmitter	  Receptor	  Activity 27 3059 3 9.9e-‐1 
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Table S7. Genes targeted for sequencing in 3,014 BD cases and 1,717 controls. 10 calcium channels, 5 GABA receptors, 
and 5 calmodulin-dependent protein kinases were selected for sequencing based on a significant pathway burden in BD 
pedigrees. An additional six genes were selected based on evidence from GWAS and candidate gene association studies. 
 
Gene Group Reference 
CACNA1B Calcium channel    
CACNA1D Calcium channel    
CACNA1E Calcium channel    
CACNB2 Calcium channel    
CACNB3 Calcium channel    
CACNB4 Calcium channel    
CACNG1 Calcium channel    
CACNG2 Calcium channel    
RYR3 Calcium channel    
CACNA1C Calcium channel; GWAS Ferreira et al. (2008)(39) 
CAMK2A Calmodulin-dependent protein kinase signaling    
CAMK2B Calmodulin-dependent protein kinase signaling    
CAMK2D Calmodulin-dependent protein kinase signaling    
CAMKK1 Calmodulin-dependent protein kinase signaling    
CREB1 Calmodulin-dependent protein kinase signaling    
GABRA1 GABA receptor    
GABRA2 GABA receptor    
GABRA4 GABA receptor    
GABRA6 GABA receptor    
GABRG1 GABA receptor    
ANK3 GWAS Ferreira et al. (2008)(39) 
NGF GWAS Sklar et al. (2011)(16) 
NTRK2 GWAS Smith et al. (2009)(6) 
TENM4 GWAS Sklar et al. (2011)(16) 
BDNF Candidate gene association studies Sklar et al. (2002)(40); Neves-Perreira et al. (2002)(41) 
NTRK1 Candidate gene association studies    
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Table S8. Quality control metrics for targeted re-sequencing data. Targeted sequencing was performed across four lanes of 
a HiSeq2500 sequencer, so that each of the two sets of amplicons was sequenced in each of the two batches of samples on a 
single lane. In total, we analyzed 1.28 billion high-quality sequencing reads covering 320 billion base pairs. The table shows 
quality metrics for individual sequencing lanes, indicating stable performance across the four lanes. Gb, billion base pairs; bp, 
base pairs. 
 
Lane Sample 

Pool 
Amplicon 

Set 
Raw 

Reads (M) 
High-

Quality 
Reads (M) 

Read 
Length 

(bp) 

Quality 
Yield 
(Gb) 

Reads with 
perfect 
barcode 

Bases 
> Q30 

1 1 1 368.34 314.96 250 78.7 84.9% 70.5% 
2 1 2 373.58 326.72 250 81.7 86.7% 74.9% 
3 2 1 360.04 320.62 250 80.2 87.9% 76.3% 
4 2 2 352.64 318.52 250 79.6 89.1% 81.0% 
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Table S9. Associations between rare coding variants in 26 candidate genes and risk for BD, based on targeted 
sequencing of 3,014 cases and 1,717 controls. Rare-variant association tests were used to evaluate associations between 
regulatory variants at each locus and BD affection status. Coding variants were defined as SNVs with predicted effects on the 
sequence of a protein produced by any of a gene’s knownGene transcripts. We report results from our primary statistical model 
(Model 1), as well as for four alternate models with distinct variant aggregation statistics and normalization procedures. For 
further information see Supplementary Methods Section 8. For each test, we report the number of single-nucleotide variants 
aggregated in that test (“SNVs”), an asymptotic p-value from the test’s theoretical distribution (“P-Asym”), an empirical p-
value derived from 100,000 permutations (“P-Perm”), and a false discovery rate for P-Perm based on the method of Benjamini 
and Hochberg (“Q-Val”). 
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Table S10. Associations between rare regulatory variants in 26 candidate genes and risk for BD, based on targeted 
sequencing of 3,014 cases and 1,717 controls. Rare-variant association tests were used to evaluate associations between 
regulatory variants at each locus and BD affection status. Coding variants were defined as SNVs with predicted effects on the 
sequence of a protein produced by any of a gene’s knownGene transcripts. We report results from our primary statistical model 
(Model 1), as well as for four alternate models with distinct variant aggregation statistics and normalization procedures. For 
further information see Supplementary Methods Section 8. For each test, we report the number of single-nucleotide variants 
aggregated in that test (“SNVs”), an asymptotic p-value from the test’s theoretical distribution (“P-Asym”), an empirical p-
value derived from 100,000 permutations (“P-Perm”), and a false discovery rate for P-Perm based on the method of Benjamini 
and Hochberg (“Q-Val”). 
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