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Parameters of Bose-Einstein condensate. A cigar-shaped Bose-Einstein condensate (BEC) with Thomas-Fermi
radii (3.1, 3.3, 26.8)µm and Na ≈ 105 87Rb-atoms, prepared in the upper hyperfine component of the ground
state |F = 2,mF = 2〉, is confined by three centimeter-sized solenoids [1, 2] arranged in a quadrupole Ioffe
configuration [3], thus providing a magnetic trap with a nonzero bias field parallel to the z-axis with trap frequencies
ω/2π = (215.6× 202.2× 25.2) Hz. The particle number in the atomic sample is measured by absorption imaging and
by recording the cavity resonance shift due to forward scattering of a probe beam, coupled through one of the cavity
mirrors. We thus find less than 10 % shot to shot fluctuations.

Cavity parameters. The high finesse of the standing wave cavity (F = 3.44 ± 0.05 × 105) together with
the narrow beam waist (w0 ≈ 31.2 ± 0.1µm) yield a Purcell factor ηc ≡ 24F

π k2w2
0
≈ 44 ± 0.7 (k ≡ 2π/λ, and λ =

wavelength of the pump light) [4, 5]. Due to the mirror separation of 48.93 ± 0.002 mm, the cavity exhibits an
extremely low bandwidth of κ = 2π×4.45±0.05 kHz, which is smaller than 2ωrec, with ωrec = ~k2/2m = 2π×3.55 kHz
denoting the recoil frequency. The cavity is oriented parallelly to the z-axis, such that the BEC is well matched to
the mode volume of its TEM00-modes with its elongated axis aligned parallel to the cavity axis. Note that the BEC
extends across approximately 130 lattice sites of the intra-cavity standing wave and thus position fluctuations in
the BEC preparation process yield only small population fluctuations between adjacent sites. For a uniform atomic
sample the resonance frequency for right (+) and left (−) circular photons is shifted due to the dispersion of a single

atom by an amount ∆±/2 with ∆± = 1
2ηcκΓ

(
f1,±
δ1

+
f2,±
δ2

)
and δ1,2 denoting the pump frequency detunings with

respect to the relevant atomic D1,2 lines at 795.0 nm and 780.2 nm [5]. Γ = 2π× 6 MHz is the intra-cavity field decay
rate and the decay rate of the 5P state of 87Rb, respectively. The prefactors f1,± and f2,± account for the effective
line strengths of the D1- and D2-line components connecting to the |F = 2,mF = 2〉 ground state. The values of
these factors are (f1,−, f2,−) = (2

3 ,
1
3 ) and (f1,+, f2,+) = (0, 1).

The quoted expressions for ∆± use the rotating wave approximation and assume that the contributions from
different transition components may be added. Finite size effects of the atomic sample and deviations of the
intra-cavity field geometry from a plane wave are neglected. A more realistic value, used in our work, is obtained
experimentally: The dispersive resonance shift for Na atoms and left polarized light δ− = 1

2Na∆− is measured by
coupling a weak left polarized probe beam through one of the cavity mirrors to the TEM00-mode. Its frequency is
tuned across the resonance with and without atoms. At sufficiently low power levels of the probe the resonance is not
affected by spatial structuring of the atoms due to back-action of the cavity field and hence merely results from the
dispersion of the homogeneous sample. Accounting for the particle number Na, known from absorption imaging with
about 10 % precision, we find ∆− ≈ −2π×0.36±0.04 Hz and ∆+ ≈ −2π×0.16±0.02 Hz. Hence with Na = 105 atoms
δ− = 2π×18 kHz, which amounts to 4κ, i.e., the cavity operates well within the regime of strong cooperative coupling.

Pump lattice parameters. The pump lattice with wp = 80 ± 0.4µm radius is oriented along the y-axis,
i.e., perpendicularly with respect to its weakly confined z-axis. Its linear polarization is oriented parallelly to the
x-axis and it operates at a wavelength λ = 803 nm, i.e., with 8 nm detuning to the red side of the D1-transition
of 87Rb. The pump strength is specified in terms of the magnitude of the antinode light shift εp ≥ 0 induced by
the pump lattice in units of the recoil energy Erec = ~ωrec. In order to calibrate the pump strength, the BEC is
adiabatically loaded into the pump lattice and the excitation spectrum is recorded and compared to a numerical
band calculation. This yields a relative (absolute) uncertainty of εp of 1% (10%).

Our experiments require to tune the pump frequency with sub-kilohertz resolution across the resonance frequency
of the TEM00-mode interacting with the BEC. This is accomplished as follows (see also Ref. [6]): A reference laser
operating at 803 nm is locked on resonance with a TEM11-mode, which provides a cloverleaf-shaped transverse
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profile. This mode exhibits a nodal line at the cavity axis such that the interaction with the BEC, which is positioned
well in the center of the TEM00-mode, is suppressed with respect to the TEM00-mode by a geometrical factor
9 × 10−5. Adjusting right circular polarization for the reference beam and hence σ+-coupling of the BEC yields
another suppression factor ≈ 0.43. The pump laser, matched to couple the TEM00-mode, is locked with an offset
frequency of about 2.5 GHz to the reference laser. This offset is tunable over several MHz such that the vicinity of
the resonance frequency of the TEM00-mode can be accessed.

Detection of cavity photons. The light leaking out of the cavity is split into orthogonal circular polariza-
tion components and the photons of each component are counted with 56% quantum efficiency. The right circular
photons, predominantly belong to the TEM11-mode used to operate the stabilization of the pump beam frequency
with respect to the cavity resonance (for details see Ref. [6]). Only a small fraction of these photons arises in the
TEM00-mode and results from the scattering of pump photons. In our experiments the ratio between left and right
circularly polarized photons found in the TEM00-mode was about 4. The photon counting signal is binned within a
time-window of 4µs and a variable number of data sets is averaged.

Mean field model. We consider a BEC of two-level atoms scattering light from an external standing wave
mode with the scalar electric field amplitude αp(t) cos(ky) (pump mode) into a cavity mode with the scalar electric
field α(t) cos(kz). Neglecting collisional interaction the system is described by the set of mean field equations [7]

i
∂

∂t
ψ(y, z, t) =

(
− ~

2m

[
∂2

∂2y
+

∂2

∂2z

]
+ ∆0|α(t) cos(kz) + αp(t) cos(ky)|2

)
ψ(y, z, t) (1)

i
∂

∂t
α(t) =

(
−δc + ∆0〈cos2(kz)〉ψ − iκ

)
α(t) + ∆0〈cos(kz) cos(ky)〉ψ αp(t) ,

with the matter wave function ψ normalized to Na particles, and the electric fields normalized such that |αp|2 and
|α|2 denote the number of photons in the pump mode and the cavity mode, respectively. The light shift per intra-
cavity photon is denoted by ∆0. 〈. . . 〉ψ indicates integration over the BEC volume weighted with |ψ|2. A plane
wave expansion of ψ(y, z, t) with respect to the relevant (y, z)-plane yields the corresponding scaled momentum space
equations

i
∂

∂t
φn,m = ωrec

(
n2 +m2 − 1

2
|β|2 − 1

2
εp

)
φn,m

− 1

4
ωrec |β|2 (φn,m−2 + φn,m+2)− 1

4
ωrec εp (φn−2,m + φn+2,m)

+
1

2
ωrec
√
εp Im(β) (φn−1,m−1 + φn+1,m−1 + φn−1,m+1 + φn+1,m+1)

i
∂

∂t
β =

[
−δeff +

1

2
Na∆0

∑
n,m

Re[φn,mφ
∗
n,m+2]− iκ

]
β (2)

− i
1

8
Na∆0

√
εp
∑
n,m

φn,m(φ∗n+1,m+1 + φ∗n+1,m−1) + φ∗n,m(φn+1,m+1 + φn+1,m−1) ,

with φn,m denoting the normalized (
∑
n,m |φn,m|2 = 1) amplitude of the momentum state (n,m) ~k. Upon the

assumption of negative ∆0 the intra-cavity field β is scaled such that |β|2 = −|α|2∆0/ωrec denotes the magnitude of
the induced anti-node light-shift in units of the recoil energy. The pump strength parameter εp ≡ −|αp|2∆0/ωrec is
defined as the antinode light-shift induced by the pump wave in units of the recoil energy. The effective detuning is
δeff ≡ δc − 1

2Na∆0 with the detuning δc between the pump frequency and the empty cavity resonance. Eq. (2) is the
mean-field approximation to the Heisenberg equation for a Dicke Hamiltonian generalized to the case of a collection
of Na identical multi-level systems each consisting of the momentum states φn,m. The additional term iκ accounts for
damping of the intra-cavity light field. The conventional two-level Dicke-Hamiltonian [8] arises, if only the two most
relevant matter modes φ0,0 and φ ≡ 1

2 (φ1,1 + φ1,−1 + φ−1,1 + φ−1,−1) are accounted for. In our recoil selective cavity
set-up, this approximation is well justified since initially the atoms populate the BEC mode φ0,0 and near resonant
coupling via the cavity is practically limited to φ, which corresponds to the motional state excited, if a single photon
from the standing pump wave is scattered into the cavity. Note that within the sub-space spanned by the states
φ±1,±1 the superposition φ represents the minimal energy state, because the associated density grating localizes the
particles in the minima of the intra-cavity lattice potential induced by photon scattering into the cavity.
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A steady state solution of Eqs. (2) is the homogeneous phase β = 0 and φn,m = δn,0 δm,0, which describes the
unperturbed condensate with no photons in the cavity. The stability properties of this solution may be studied by
reducing Eqs. (2) to the two matter modes φ0,0 and φ. Switching to a basis such that the condensate has zero energy
and neglecting its depletion, i.e., φ0,0 ≈ 1, one finds the system of linear equations

i
∂

∂t


β
β∗

φ
φ∗

 =


−δeff − iκ 0 i λ1 i λ1

0 δeff − iκ i λ1 i λ1

−iλ2 iλ2 2ωrec 0
iλ2 −iλ2 0 −2ωrec




β
β∗

φ
φ∗

 (3)

with the coupling parameters λ1 ≡ −1
2 Na∆0

√
2εp and λ2 ≡ 1

2 ωrec

√
εp/2, which formally resembles a Schrödinger

equation for a four-level system with a non-Hermitian Hamiltonian [9]. It is equivalent to the mean field approximation
of the Heisenberg equation obtained from the Dicke Hamiltonian after applying the Holstein-Primakoff transformation,
introducing the thermodynamic limit, and adding cavity dissipation [10]. If the imaginary part of one of the eigenvalues
of the matrix on the right hand side of Eq. (3) is positive, an exponential instability arises and hence the system
is rapidly driven away from the homogeneous phase. For negative detuning δeff < 0 the instability boundary is the
known equilibrium Dicke phase boundary.

In order to compare experimental observations with the model in Eq. (2) and Eq. (3), the experimental parameters
∆±, εp and the model parameters ∆0, εp must be connected accounting for the fact that in the model two-level atoms
are assumed and the vectorial character of the electric field is neglected. In the experiment, the strongest coupling
to the atoms arises for left circular light with respect to the natural quantization axis fixed by the magnetic offset
field along the z-axis. Hence, we identify ∆0 = ∆−. Inside the cavity, the linear x̂-polarization of the pump beam
may be decomposed into equally strong left and right circular components with respect to the z-axis. Only the left
circular component can scatter into the left circularly polarized cavity mode. Hence, the light shift εp induced by
the pump beam in the experiment is related to the number of pump photons |αp|2 used in the model description by
εp = −|αp|2(∆+ + ∆−)/ωrec and thus εp/εp = (∆+ + ∆−)/∆0 = 1.44. A more involved description, which is deferred
to forthcoming work, should account for two orthogonal polarization modes of the cavity operating with different
effective detunings.

In Fig. 2(c) of the main text the maximum of the imaginary parts of the four eigenvalues of the matrix on the
right hand side of Eq. (3) is plotted versus δeff and εp. For δeff = ±2π × 20 kHz the real and imaginary parts of all
eigenvalues are plotted in Fig. 2(d) and (e), respectively. Figures 3(b) and (c) in the main text were obtained by
solving Eqs. (2) including all modes with −4 ≤ n,m ≤ 4. A small initial deviation from φ0,0(0) = 1 is required in
order to leave the unstable homogeneous phase. In the experiment, this deviation is naturally provided by thermal or
quantum fluctuations. We assumed that the first excited modes (±1,±1) ~k are populated according to a Boltzman
factor with a temperature T = 0.2Tc (Tc = critical temperature of the BEC). Hence, we set φ0,0(0) = cos(θ),
φ±1,±1(0) = eiξ sin(θ)/2 with θ = arctan(2 e−~ωrec/kBT ), and φn,m(0) = 0 if |n|, |m| > 1. The choice of equal
φ±1,±1(0) corresponds to low energy excitations for which the atoms are localized in the intra-cavity light shift
potential with a spatial phase determined by the positions of the cavity mirrors and the position of the pump wave.
The choice of ξ determines the phase of the oscillations in the upper trace of Fig. 3(c), which are washed out, if an
average over ξ is applied. For T < Tc, the exponents of the power law behavior in this figure does not show notable
dependence on ξ or the value of T . Note that the higher orders φn,m with |n|, |m| > 1 remain small in the calculation
of Fig. 3(b) and the hysteresis is also reproduced in the simplified case −1 ≤ n,m ≤ 1, which corresponds to a
description in terms of the Dicke model for a collection of two-level systems.

Power law scaling, relation to Kibble Zurek model. We consider a quench across the equilibrium
Dicke phase transition implemented by tuning the pump strength parameter εp(t) = εp,c+(−1)µ∆ε

τQ
(t− tc) across the

critical value εp(tc) = εp,c, with ∆ε denoting the interval of εp(t) scanned during the quench time τQ. For µ ∈ {1, 2}
we identify εp,c = εp,µ(∞), where εp,µ(∞) denote the threshold values found in a quench with negative (µ = 1)
or positive (µ = 2) slope in the limit of infinite τQ. According to our experimental observations, the quantities
∆εp,µ(τQ) ≡ εp,µ(τQ)− εp,µ(∞) follow power laws, i.e., ∆εp,µ ∝ τ

nµ
Q with n1 = −0.57 and n2 = −0.85. At this point

we argue in the spirit of the Kibble Zurek model [11], that the time lag between the threshold value for the transition
to occur in a quench of duration τQ and the equilibrium critical point, i.e. τQ ∆εp,µ(τQ), equals the relaxation time

τ of the system, and hence τ ∝ τ
nµ+1
Q . As a second input from the Kibble Zurek scenario, we assume a power law

scaling τ ∝ ∆ε
−zµνµ
p,µ . This results in the relation zµνµ = −(1 + 1/nµ), and hence z1ν1 = 0.75 and z2ν2 = 0.18.
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