Supporting Information

Puglia et al. 10.1073/pnas.1422096112

SI Methods and Materials

Image Acquisition. One hundred and seventy-six high-resolution T1-weighted anatomical images were first acquired using Siemens' magnetization-prepared rapid-acquired gradient echo pulse sequence with the following specifications: echo time (TE), 2.53 ms; repetition time (TR), 1,900 ms; flip angle (FA), 9°; fieldof-view (FOV), 250 mm; image matrix, 256 mm × 256 mm; slice thickness, 1 mm. Whole-brain functional images were then acquired using a T2*-weighted echo planar imaging sequence sensitive to BOLD contrast with the following specifications: TE, 40 ms; TR, 2,000 ms; FA, 90°; FOV, 192 mm; image matrix, 64 mm \times 64 mm; slice thickness, 3.5 mm; slice gap, 22%—using 125 (n = 27) or 130 (n = 71) successive brain volumes of 28 slices coplanar with the anterior and posterior commissures. Stimuli were presented with Psychophysics Toolbox for MATLAB using an LCD AVOTEC projector onto a screen located behind the subject's head and viewed through an integrated head-coil mirror.

1. Smith SM, et al. (2004) Advances in functional and structural MR image analysis and implementation as FSL. *Neuroimage* 23(Suppl 1):S208–S219.

 Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. *Neuroimage* 17(2):825–841. Preprocessing. Data preprocessing was carried out using FEAT (FMRI Expert Analysis Tool) Version 6.00, part of FSL (FMRIB's Software Library) (1). Motion was assessed by center of mass measurements (BXH/XCEDE Tools, version 1.8.16, Bioinformatics Information Research Network) to ensure that no participants had greater than a 3-mm deviation in the x, y, or zdimensions. The following prestatistics processing was applied: motion correction using MCFLIRT (2), nonbrain removal using BET (3), spatial smoothing using a Gaussian kernel of 5.0 mm full width at half maximum to reduce noise, grand-mean intensity normalization of the entire 4D dataset by a single multiplicative factor, and high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma equal to 50.0 s). Additionally, each functional volume was registered to the participant's high-resolution anatomical image and then to FSL's standard Montreal Neurologic Institute (MNI 152, T1 2 mm) template brain using FSL's linear registration tool (2, 4).

- Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3): 143–155.
- Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. *Med Image Anal* 5(2):143–156.

Fig. S1. Functional ROI search space created using Neurosynth.org meta-analysis feature set keywords "face" and "emotion." Image is depicted in MNI space (*Top*, x = 3, y = -2, z = 0; *Bottom*, x = 38, y = -54, z = -16).

Fig. S2. Methylation of *OXTR* is associated with increases in brain response to angry and fearful faces. Mean Z statistic values from clusters of voxels within ROI show a significant positive main effect of methylation on BOLD response (extent threshold $k \ge 10$ voxels) are plotted against percent *OXTR* methylation for each participant (n = 98). Gray shading indicates 95% confidence interval around the best-fit line.

Fig. S3. Positive main effect of *OXTR* methylation on BOLD activity within whole-brain analysis. *Z* statistic map of voxels shows a significant positive main effect of *OXTR* methylation on BOLD activity for faces > ovals contrast within the whole-brain analysis, FDR corrected at q < 0.05. Images are depicted in MNI space (*Top, x* = 2, *y* = -80, *z* = 32; *Middle, x* = 34, *y* = -62, *z* = -24; *Bottom, x* = -44, *y* = -8, *z* = -4). ACC, anterior cingulate cortex; FG, fusiform gyrus; Ins, insular cortex; LOC, lateral occipital cortex; MFG, medial frontal gyrus; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; PCUN, precuneus; PoCG, postcentral gyrus; PUT, putamen; SMG, supramarginal gyrus; STG, superior temporal gyrus; Thal, thalamus.

S A

Fig. S4. Relationship between *OXTR* methylation and BOLD activity within areas identified in whole-brain analysis. Mean *Z* statistic values from clusters of voxels within whole-brain analysis showing a significant positive main effect of methylation on BOLD response (extent threshold $k \ge 10$ voxels) are plotted against percent *OXTR* methylation for each participant (n = 98). Gray shading indicates 95% confidence interval around the best-fit line.

Fig. S5. Increased *OXTR* methylation attenuates amygdala connectivity with brain regions important for emotion regulation and face perception. Mean *Z* statistic values from clusters of voxels within ROI showing a significant negative main effect of methylation on right amygdala functional connectivity (extent threshold $k \ge 10$ voxels) are plotted against percent *OXTR* methylation for each participant (n = 98). Gray shading indicates 95% confidence interval around the best-fit line.

Fig. S6. Negative main effect of *OXTR* methylation on right amygdala functional connectivity within whole-brain analysis. *Z* statistic map of voxels showing a significant negative main effect of *OXTR* methylation on right amygdala functional connectivity for faces > ovals contrast within whole-brain analysis, FDR corrected at q < 0.05. Images are depicted in MNI space (*Top*, x = -36, y = 16, z = 4; *Bottom*, x = -16, y = -78, z = -18). (*Inset*) Right amygdala seed region (y = -4). ACC, anterior cingulate cortex; C/Pu, caudate/putamen; FG, fusiform gyrus; FP, frontal pole; IFG, inferior frontal gyrus; Ins, insular cortex; LOC, lateral occipital cortex; MFG, medial frontal gyrus; OFC, orbitofrontal cortex.

Fig. S7. Relationship between *OXTR* methylation and right amygdala functional connectivity within areas identified in PPI whole-brain analysis. Mean *Z* statistic values from clusters of voxels within whole-brain analysis showing a significant negative main effect of methylation on right amygdala functional connectivity (extent threshold $k \ge 10$ voxels) are plotted against percent *OXTR* methylation for each participant (n = 98). Gray shading indicates 95% confidence interval around the best-fit line.

Anatomical region	Hem	x	у	z	Ζ	k
Anterior cingulate gyrus	R	6	-6	38	4.93	413
Fusiform gyrus	L	-36	-10	-40	4.36	17
Fusiform gyrus	R	38	-60	-16	3.63	12
Insular cortex	L	-38	22	-4	4.09	36
Insular cortex	R	40	-18	-8	4.36	46
Insular cortex	R	32	16	6	4.15	32
Insular cortex	R	34	10	-6	4.06	27
Lateral occipital cortex	L	-26	-82	26	4.41	193
Lateral occipital cortex	R	34	-78	26	4.86	265
Lateral occipital cortex	R	36	-58	8	4.05	44
Middle frontal gyrus	L	-42	36	20	3.69	11
Orbitofrontal gyrus	L	-28	14	-28	3.95	20
Postcentral gyrus	В	0	-36	64	4.02	32
Postcentral gyrus	L	-18	-34	62	3.78	12
Posterior cingulate gyrus	В	0	-34	20	4.6	31
Posterior cingulate gyrus	L	-8	-40	30	3.97	41
Posterior cingulate gyrus	R	12	-28	36	4.35	49
Precuneous	R	10	-48	54	3.96	33
Precuneous	R	24	-62	8	3.73	13
Putamen	R	30	-16	6	3.65	10
Superior frontal gyrus	L	-14	12	58	3.82	19
Superior parietal lobe	R	24	-52	56	3.74	47
Superior temporal gyrus	L	-46	-8	-18	4.57	22
Supramarginal gyrus	L	-62	-32	36	4.29	60
Supramarginal gyrus	L	-62	-28	24	3.76	13
Supramarginal gyrus	R	64	-24	30	4.16	26
Thalamus	L	-2	-4	12	4.23	19

Table S1. Whole-brain analysis local maxima statistics

Significant cluster threshold: FDR (q) < 0.05, $k \ge 10$ voxels. B, bilateral; Hem, hemisphere; L, left; R, right; x, y, z, coordinates of local maxima in MNI space; Z, maximum Z statistic.

Anatomical region	Hem	x	у	z	Ζ	k
Anterior cingulate gyrus	L	-20	32	18	4.26	20
Caudate	L	-12	16	2	4.35	11
Frontal pole	L	-30	38	6	4.96	77
Frontal pole	L	-34	52	12	4.16	13
Fusiform gyrus	L	-16	-88	-14	4.37	17
Inferior frontal gyrus	L	-52	8	4	4.56	44
Insular cortex	L	-38	26	4	4.43	22
Lateral occipital cortex	R	42	-78	-18	4.22	17
Middle frontal gyrus	L	-30	32	30	4.62	31
Orbitofrontal cortex	L	-22	26	0	4.27	12
Orbitofrontal cortex	L	-36	32	-20	4.23	16
Paracingulate gyrus	L	-12	38	-4	4.12	14
Putamen	L	-18	14	-8	5.25	45
Putamen	L	-18	6	4	4.15	15

Table S2. Whole-brain PPI analysis local maxima statistics

Significant cluster threshold: FDR (q) < 0.05, $k \ge 10$ voxels. Hem, hemisphere; L, left; R, right. x, y, z, coordinates of local maxima in MNI space; Z, maximum Z statistic.

PNAS PNAS