Supporting information

Characterization of novel cannabinoid based T-type calcium channel blockers with analgesic effects.

Chris Bladen¹, Steven W. McDaniel², Vinicius M. Gadotti¹, Ravil R. Petrov², N. Daniel Berger¹, Philippe Diaz² and Gerald W. Zamponi¹

¹Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine. University of Calgary, Canada.

²Core Laboratory for Neuromolecular Production, The University of Montana, Missoula, MT, USA.

Corresponding Authors:

For biology: Dr. Gerald W. Zamponi, Mailing address: Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Canada T2N 4N1. Telephone.[403] 220-8687. E-mail: <u>zamponi@ucalgary.ca</u>

For chemistry: P.Diaz: phone: (406) 243-4362; fax: (406) 243-5228; E-mail: <u>Philippe.diaz@umontana.edu</u>.

Contents

¹ H-NMR of <i>N</i> -((1-(2-(tert-butylamino)-2-oxoethyl)piperidin-4-yl)methyl)-9-pentyl-9H-carbazole-3- carboxamide (9)
¹ H-NMR of <i>N</i> -tert-butyl-2-[4-(9-pentyl-9H-carbazole-3-carbonyl)piperazin-1-yl]acetamide (10)
¹ H-NMR of <i>N</i> -((1-(2-(tert-butylamino)-2-oxoethyl)piperidin-4-yl)methyl)-9-propyl-9H-carbazole-3-carboxamide (13)
¹ H-NMR of <i>N</i> -((1-(2-(tert-butylamino)-2-oxoethyl)piperidin-4-yl)methyl)-9-butyl-9H-carbazole-3- carboxamide (16)
¹ H-NMR of <i>N</i> -((1-(2-(<i>tert</i> -butylamino)-2-oxoethyl)pyrrolidin-4-yl)methyl)-9-pentyl-9 <i>H</i> -carbazole-3-carboxamide (19)
¹ H-NMR of <i>N</i> -{[1-(3,3-dimethylbutyl)piperidin-4-yl]methyl}-9-pentyl-9H-carbazole-3-carboxamide (20)
LC/MS analyses

```
<sup>1</sup>H-NMR of N-((1-(2-(tert-butylamino)-2-oxoethyl)piperidin-4-yl)methyl)-9-pentyl-9H-carbazole-3-carboxamide (9)
```


¹H-NMR of *N*-tert-butyl-2-[4-(9-pentyl-9H-carbazole-3-carbonyl)piperazin-1-yl]acetamide (10)


```
<sup>1</sup>H-NMR of N-((1-(2-(tert-butylamino)-2-oxoethyl)piperidin-4-
yl)methyl)-9-propyl-9H-carbazole-3-carboxamide (13)
```



```
<sup>1</sup>H-NMR of N-((1-(2-(tert-butylamino)-2-oxoethyl)pyrrolidin-4-
yl)methyl)-9-pentyl-9H-carbazole-3-carboxamide (19)
```


¹H-NMR of *N*-{[1-(3,3-dimethylbutyl)piperidin-4-yl]methyl}-9-pentyl-9H-carbazole-3-carboxamide (20)

LC/MS analyses

LC/MS analyses were obtained on a Waters ACQUITY UPLC-series liquid chromatography system equipped with a diode array detector and a Waters Quattro Premier Tandem Quadrupole mass spectrometer (ionization type electrospray). The liquid chromatrography conditions were as follows: a Waters ACQUITY UPLC column (BEH, C18, 1.7 um, 1.0x100 mm) was used, and it was eluted with a gradient made up of two solvent mixtures. Solvent A consisted of water and 0.2% formic acid. Solvent B consisted of methanol. The gradient was processed as follows:

Flow (ml/min)	%A	<u>%B</u>
0.200	90.0	10.0
0.200	90.0	10.0
0.200	5.0	95.0
0.200	5.0	95.0
0.200	90.0	10.0
0.200	90.0	10.0
	Flow (ml/min) 0.200 0.200 0.200 0.200 0.200 0.200 0.200	Flow (ml/min)%A0.20090.00.20090.00.2005.00.2005.00.20090.00.20090.0

Compound purity was assigned on the basis of 254-nM detection data assessed by comparing relative peak areas of the signals.

Compound	Molecular weight	MW+H ⁺	Purity (%)	Retention Time (min)
16	477.32	477.32	98	9.33
13	463.31	463.31	96	9.12
19	477.33	477.32	97	9.01
10	463.28	463.31	96	8.47
9	491.34	491.34	98	6.35
20	462.35	462.35	96	8.12