
Text S11

In text S1, we provide details for the stochastic optimal control framework used to model2

reach and eye movements.3

1 Hand modeling.4

To preserve interpretability, it is important to use a model no more complex than absolutely nec-5

essary. In the current study, we modeled the dynamics of the hand as a “point of mass” (m =6

1 Kg), in Cartesian coordinates, with 2-dimensional position pht = [xh(t), yh(t)]
T and velocity7

ṗht = [ẋh(t), ẏh(t)]
T 1. The combined actions of all muscles is represented by the force vector8

ft = [fx(t), fy(t)]
T . The motor command ut is transformed into these forces ft through second-9

order muscle-like low-pass filters with constants τ1 and τ2, and by adding control-dependent mul-10

tiplicative noise 1.11

τ1τ2f̈t + (τ1 + τ2)ḟt + ft = ut (1)

The second-order low pass filters can be written as a pair of coupled first-order filters with outputs12

g and f, as:13

τ1ġt + gt = ut, τ2ḟt + ft = gt (2)

Given that pG = [xG, yG] is the position that the hand is planned to arrive, at the end of the14

movement (i.e., the current goal of the task), the discrete-time state is described by the following15

10th-dimensional vector xt.16
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xt = [xh(t), yh(t), ẋh(t), ẏh(t), fx(t), fy(t), gx(t), gy(t), xG, yG]T (3)

The discrete-dynamics of the hand are given by Eq. (4):17

pht+δt = pht + ṗht δt

ṗht+δt = ṗht + ft
δt

m

ft+δt = ft

(
1− δt

τ2

)
+ gt

δt

τ2

gt+δt = gt

(
1− δt

τ1

)
+ ut (1 + σcεt)

δt

τ1

(4)

where δt = 0.01s is the sampling period of discretization. In the current framework, we as-18

sume that the motor control signal ut is corrupted by multiplicative noise described by the product19

term σcεtut, with σc = 1, which is a unitless variable defined as the noise magnitude related to the20

control signal magnitude 1.21

2 Reaching to a single goal.22

In the current study, each controller is linked with a neuron i from the “motor plan formation field”.23

The purpose of the controller is to generate an optimal policy that drives the hand to a distance r24

from the current location, towards the preferred direction φ of the neuron i. Within the stochastic25
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optimal control framework, control policies originate as the solution of an optimization problem.26

The basic idea is to find a sequence of motor commands that acquire as much reward as possible,27

while spending as little effort as possible. For reaching tasks, given the kinematics of the hand28

and the sensory and motor noise in estimating and controlling the state of the hand, the stochastic29

optimal control framework finds an optimal policy u∗, for time instances t = [t1, t2, · · · tT ] that30

optimizes the cost function J described in Eq. (5), for each state of the hand and the environment31

xt.32

J(xt, π) = ‖phT − pG‖2 + ‖ṗhT‖2 + ‖fT‖2 +
T∑
t=1

π(xt)
TRπ(xt) (5)

The first 3 terms define that current task of the controller - i.e., drive the hand to the position33

pG = [rcos(φ) rsin(φ)] (first term) and stop there (second and third term). The last term is the34

motor command cost (i.e., action cost) that penalizes the effort required to arrive at the position pG35

after time T starting from the current state. The matrixR = 1
T

 rx 0

0 ry

 is the control-dependent36

cost of the hand motion in the x and y dimension.37

We can write Eq. (5) in the general form of optimal control cost function as follows:38

J =
(
xT − SpG

)T
QT

(
xT − SpG

)
+

T−1∑
t=1

π(xt)
TRπ(xt) (6)
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where S matrix picks out the actual position of the hand and the current goal-position pG at39

the end of the movement, from the state-vector. The time-varying matrix QT describes the state-40

dependent cost and is the zero matrix for any time t < T and is equal to the Hessian matrix of the41

cost function evaluated at the end of the movement T .42

To minimize the cost function in Eq. (6), a model of the system dynamics and sensory feed-43

back must be incorporated. A plethora of experimental studies provide evidence that the sensory44

system uses an internal forward model to predict the next state of the system at time t + 1, x̂t+1|t,45

based on the sensory feedback yt, the current state estimate x̂t and the control commands ut 2. This46

prediction is necessary to overcome control instabilities due to noisy sensors and temporal delays.47

In the current study, we modeled the hand and the state space using linear dynamics and measure-48

ment as a discrete linear system, Eq. (7), considering that the motor commands are corrupted by49

multiplicative noise, normally distributed with zero mean and standard deviation proportional to50

the magnitude of the control commands and the state variables 1.51

xt+1 = Axt +But + ξt + C(ut)εt

yt = Hxt + ωt (7)

where A, B and H are the actual system dynamics and observation matrices, respectively.52
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A=



1 0 δt 0 0 0 0 0 0 0

0 1 0 δt 0 0 0 0 0 0

0 0 1 0 δt
m 0 0 0 0 0

0 0 0 1 0 δt
m 0 0 0 0

0 0 0 0 1− δt
τ2

0 δt
τ2

0 0 0

0 0 0 0 0 1− δt
τ2

0 δt
τ2

0 0

0 0 0 0 0 0 1− δt
τ1

0 0 0

0 0 0 0 0 0 0 1− δt
τ1

0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


53

B =



06×2

δt
τ1

0

0 δt
τ1

02×2



, H =

 I6×6 | 06×4

 (8)

54

The noise variables ξt, ωt and εt are normally distributed variables with zero mean and co-55

variance Ωξ ≥ 0, Ωω ≥ 0 and Ωε = I , respectively. C(ut) is a scaling matrix for control-dependent56
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system noise, such as C(u)ε =
∑

iCiuε
i, where εi is the ith component of the random variable ε.57

Given the belief about the state at time t and the current task of the controller, the controller58

will suggest an optimal policy π∗(xt) = u∗ that minimizes the expected cost function in Eq. (5).59

This form of optimal control is a modified version of the Linear Quadratic Gaussian (LQG) regu-60

lator, since the dynamics of the system are linear, the expected cost function is quadratic and the61

noise is Gaussian, but with signal-dependent noise 1.62

The optimal policy is incorporated into the system model to generate a feedback controller63

that uses its forward model to make predictions ŷt from knowledge of controls, dynamics and64

sensory measurements. These predictions are combined with actual sensory feedback yt using65

Eq. (9) to update the belief about the state in time t+ 1.66

x̂t+1|t+1 = (A−BLt)x̂t+1|t +Kt

(
yt −Hx̂t+1|t

)
(9)

where Kt is the Kalman gain at time t.67

3 Eye modeling68

In the current study, we modeled the globe and the surrounding tissues of the eye by an elastic69

element with stiffness k that pulls the eye away from the equilibrium point (x = 0), and a viscous70

element µ that resists in this motion (for more details about this eye model see 3). The one-71

dimensional dynamics of the eye is given by Eq. (10).72

mẍ = −kx− µẋ+ u (10)
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where m is the inertia of the eye and u are the motor commands.73

We used a simple model to translate motor commands u into forces: α1ḟ + α2f = u, where74

f describes the instantaneous force generated by the extra-ocular muscles to move the eye.75

Let’s assume that the current goal is to move the eye at the position pG = [xG, yG]T . The76

discrete-time state is given by the 8th-dimensional vector xt, Eq. (11).77

xt = [xe(t), ẋe(t), yh(t), ẏe(t), fx, fy, xG, yG]T (11)

We extended this one-dimensional model of the eye to a more realistic two-dimensional model, in78

which the discrete-time dynamics of the eye are given by Eq. (12):79

pet+δt = pet + ṗetδt

ṗet+δt = −δt k
m
pet +

(
1− δt µ

m

)
ṗet +

δt

m
ft

ft+δt =

(
1− δtα2

α1

)
ft + ut (1 + σcεt)

δt

α1

(12)

where pet = [xe(t), ye(t)]
T and ṗet = [ẋe(t), ẏe(t)]

T is the 2-dimensional position and velocity80

of the eye, respectively. Similarly, with the hand model, the product term σcεtut describes the81

multiplicative noise added to the control signal ut, with σc = 1 and εt a vector of zero-mean82

random variables with covariance Ωe = I. Additionally, δt = 0.001s is the sampling period of83

discretization.84
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4 Saccade to a single goal85

Even though saccades are brief in time and sensory information seems to have no role in the control86

of eye movements, recent findings suggest that saccades are not open-loop movements. Instead,87

the motor commands that generate saccades benefit from a forward internal model that monitors88

the motor commands and predicts their consequences 4.89

We modeled eye movements within the stochastic optimal control framework using a similar90

approach with the hand movements presented in a previous section. However, the difference with91

eye movements is that the sensory feedback does not affect the control of the eye movements. Each92

controller is linked to a neuron i from the motor plan formation field, and generates a policy that93

drives the eye towards the preferred direction φ of the neuron i. The cost function is the same as94

the one used in reaching movements (see Eq. (5)).95

The dynamics of the eye can be transformed into the form of Eq. (7), with the following96

matrices:97
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A=



1 δt 0 0 0 0 0 0

−kδt
m 1− µδt

m 0 0 1
mδt 0 0 0

0 0 1 δt 0 0 0 0

0 0 −kδt
m 1− µδt

m 0 1
mδt 0 0

0 0 0 0 1− α1δt
α2

0 0 0

0 0 0 0 0 1− α1δt
α2

0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



B=



04×2

δt
α1

0

0 δt
α1

02×2



(13)

98

For a monkey eye, we used time constants τ1 = 0.260 s and τ2 = 0.012 s as proposed by99

Keller 5 and Robinson 6. These time constants are related with the constants of the system dynamic100

matrices A and B as follows: µ = τ1 + τ2, m = τ1τ2. Based on these studies 5, 6, we set k = 1,101

α1 = 0.004 and α2 = 1.102
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