1 Auxiliary Material

2

3 Trend Analysis

- 4 Auxiliary Figure 1 shows time series and trend lines in analogy to Figure 2 of the main paper,
- 5 but for the seven individual stations. This helps to illustrate station-to-station variations in
- 6 addition to Table 1 of the main paper. Auxiliary Table 1 adds further detail to Table 1 of the
- 7 main paper by providing trends and correlations between wind and dust variables for
- 8 individual seasons.

9 Data Availability

- 10 <u>To check that the station trends are not the symptom of biases in data availability we</u>
- 11 computed trends at the main SYNOP hours of 0000, 0600, 1200 and 1800 UTC for mean
- 12 wind, DUP, and FDE. Aux Figs.. 2a,b and c show consistently negative trends through the
- 13 day and night for all parameters. There are no correlations above 0.5 between the wind
- 14 parameters and the number of observations. Although the number of available observations at
- 15 <u>each station varies from 67582 at Nouakchott to 29777 at Nema (Table 1), there are no</u>
- 16 notable seasonal differences in the number of available reports (Fig. 2d), which increases
- 17 <u>confidence in the negative seasonal trends we observe (Table 1, rows 5-7). Generally, the</u>
- 18 <u>number of reports at the hours 0300, 0900, 1500 and 2100 UTC have increased, but these</u>
- 19 <u>make a relatively small contribution to the dataset anyway (Aux Fig 3).</u>

20 Instrument Issues

- 21 As SYNOP observations are reported in knots, we adjust our analysis to compare the number
- 22 of reports of 0 kts with reports of 1, 2, and 3 kts. In Auxiliary Fig. $\frac{24}{24}$ we refer to the two
- different series as 0 ms^{-1} and 1.5 ms⁻¹, as 3 kts is equal to 1.54 ms⁻¹. We calculate the

24	significance of trends in 1.5 ms ⁻¹ and 0 ms ⁻¹ reports as well as the correlations between mean
25	wind and 0 ms ⁻¹ reports and 0 ms ⁻¹ and 1.5 ms ⁻¹ (Aux Table 2). Agadez, Nema, Gao, and
26	Nouakchott do not show any suspicious behavior. A significant negative correlation of -0.4
27	between 0 ms ⁻¹ and 1.5 ms ⁻¹ is found at Niamey (Aux Fig. <u>2e4c</u> , Aux Table 2). This appears
28	to be mainly due to a period from the mid-1990s to the early 2000s when the number of 0 ms ⁻
29	¹ reports is significantly enhanced (Aux Fig. $\frac{2e4c}{2}$). The reason for this is not clear, but the
30	good correspondence between the mean wind V, DUP, and the independently measured FDE
31	shown in Aux Fig. 1c suggests that there is no significant influence on our analysis. Gouré
32	has no available wind data in the period 2000 to 2003 (Aux Fig. 2b4b). The high percentage
33	of 0 ms ⁻¹ reports just before this period signify a problem with the instrument, which might
34	have been replaced after the gap. The continuation of the trend after the gap, and good
35	correspondence with the independently measured FDE, support the usefulness of the record
36	from this station. The steep drop in the percentage of 0 ms ⁻¹ reports from 1985 to 1991 in the
37	Tombouctou time series (Aux Fig. 2e4e) is suspicious. However, for 1984–1992 alone, when
38	0 ms^{-1} reports are high, the correlation with 1.5 ms ⁻¹ is insignificant. The large percentage of 0
39	ms ⁻¹ reports at the start of the record is reflected in the mean wind and therefore contributes to
40	the overall positive mean wind trend, which is opposite of what is observed at the other
41	stations (Table 1.). For the remaining period (1993–2010) the correlation between 0 ms ⁻¹ and
42	1.5 ms ⁻¹ is highly significant at -0.64. This would be consistent with instrument degradation,
43	but the negative trend in the number of 0 ms^{-1} reports does not support this (Aux Fig. $\frac{2e4e}{2}$,
44	Aux table 2). We chose to include Tombouctou because ultimately, this analysis did not
45	produce any clear signs of instrument degradation.

47 ERA-Interim versus station observations

48	In the main paper, various parameters averaged over the seven Sahelian stations are
49	compared to ERA-Interim re-analysis averaged over a larger box encompassing these stations
50	(blue box in Aux. Figure 45). It is an interesting and valid to question to what extent the
51	stations can be regarded representative for this larger area. The seasonal cycle of 10-m winds
52	shows how the Sahel changes from predominantly northeasterly Harmattan winds in DJF and
53	SON to the southwesterly monsoon winds in JJA (Aux. Fig. <u>35</u>). In these seasons, the wind
54	field is quite homogeneous over the entire ERA-Interim box and can therefore be compared
55	to the station mean. The only critical season is MAM (Aux Fig. $\frac{3b5b}{5b}$) when the region is in
56	transition from Harmattan to monsoon flow such that the stations might not necessarily fully
57	represent the regime over the entire box well. In addition, station data will be affected by the
58	local environment surrounding it in any given season, leading to disagreement with ERA
59	data. This is particularly pronounced in summer, when deep moist convection creates
60	dramatic changes in wind on small time and space scales, which are most likely not well
61	represented in ERA in general, leading to low correlations between stations and ERA on an
62	interannualinter-annual basis (Aux. Table 3, row 4). Correlations in all other seasons are
63	above 0.5 peaking in DJF with 0.71. This is also the time when ERA mean winds are
64	correlated highest with ERA DUP (Aux. Table 3, row 3) and when largest trends in ERA
65	data are observed (Aux. Table 3, rows 1–2). Not surprisingly, winter is also the season when
66	correlations with the NAO are highest. This holds for ERA winds and station-observed winds
67	and FDE (Aux. Table 4).

69 Changes in roughness versus surface heat exchange

70 A change in vegetation cover will affect both roughness and the exchange of sensible and

71 latent heat between the surface and the atmosphere via evapo-transpiration. More latent

72	heating implies less sensible heating and therefore less turbulence and weaker winds. The
73	latter can be expected to be only significant during the day and during the moist part of the
74	year, i.e., JJA and SON. The fact that station-mean trends in wind and DUP are negative day
75	and night throughout the year (Aux. Table 5) indicates very strongly that the roughness effect
76	dominates. Absolute changes in mean wind and DUP are greater during the day, when mean
77	values are larger. Relative changes are slightly greater at night, except for DUP during the
78	vegetation maximum in SON (Aux. Table 5, rows 7 and 8). This suggests that the influence
79	of latent heating may be a little more pronounced in this season.

80 **Reference**

- 81 Klink, K. (1999), Trends in mean monthly maximum and minimum surface wind-speeds in
- the conterminous United States, 1961 to 1990. Clim. Res., 13, 193–205,

83 doi:10.3354/cr013193.

84

85 Auxiliary Figures & Tables

86 a)

c)

90 e)

Formatted: Font: Not Bold
Formatted: Centered

116 Auxiliary Figure 3: Bar plots of the number of observations at each SYNOP hour, for each

- 117 <u>5-year period between 1985 and 2010 at: a) Agadez, b) Gouré, c) Niamey, d) Gao, e)</u>
- 118 <u>Tombouctou, f) Nema, and g) Nouakchott.</u>

119

120 Auxiliary Table 1: Seasonality of wind speed and dust trends.

		DJF	MAM	JJA	SON	Year
1	% change in V	-31	-23	-26	-30	-27
2	% change in FDE	-49	-34	-47	-72	-68
3	% change in DUP	-84	-83	-90	-91	-86
4	% change in V > 5 m s ^{-1}	-16	-14	-21	-30	-20
5	% change in V < 5 m s ^{-1}	-4	6	4	-2	1
6	V / FDE corr	0.74	0.55	0.41	0.83	0.92
7	V / DUP corr	0.92	0.93	0.88	0.76	0.95
8	FDE / DUP corr	0.61	0.53	0.46	0.72	0.93

121

- 122 Auxiliary Table 1: Relative changes (in %) for rows 1–5 are computed in the same way as
- rows 1–3 in Table 1 in the main text. Rows 6–8 give linear correlation coefficients for seven-

station means of V, FDE, and DUP. Statistical significance of trends and correlations at the

125 95% and 99% levels are denoted in bold and in bold italics, respectively.

134	Auxiliary Figure 24: Instrument degradation analysis. Time series of mean wind V (black),
135	% of 0 ms ⁻¹ reports (green) and % of 1.5 ms ⁻¹ reports (red) for the individual stations a)
136	Agadez, b) Gouré, c) Niamey, d) Gao, e) Tombouctou, f) Nema, and g) Nouakchott.
137	Percentage lines are calculated relative to all observations available for a given year. Trend
138	line values for the green and red lines can be found in Aux. Table 2 and for the black line in
139	Table 1 of the main paper.
140	
141	
142	
143	
144	
145	

	146	Auxiliary	Table 2:	Instrument	degradation	trends and	correlations
--	-----	-----------	----------	------------	-------------	------------	--------------

		Agadez	Gouré	Niamey	Gao	Tomb.	Nema	Nouakchott
1	0 ms ⁻¹ trend	-52	-186	-33	39	112	-190	49
2	<1.5 ms ⁻¹ trend	-1228	-176	-220	-2	-119	<i>99</i>	-1909
3	Correlation:	0.65	0.52	-0.4	-0.29	-0.07	-0.16	-0.02
	<1.5 ms ⁻¹ /0 ms ⁻¹							

148	Auxiliary Table 2. Rows 1 and 2 contain the 0 ms ⁻¹ trend (green lines) and <1.5 ms ⁻¹ trend
149	(red lines) values as plotted in Aux. Figure 3. Row 3 gives the corresponding linear
150	correlation. Statistical significance of trends and correlations at the 95% and 99% levels are
151	denoted in bold and in bold italics, respectively.
152	
153	
154	
155	
156	
157	

158 a)

Sahel Observation stations, DJF Vectors

Auxiliary -Figure 35: Seasonality of ERA mean wind vectors. Map of the Sahel with station
locations and the ERA-Interim 10 m mean wind vectors for a) DJF, b) MAM, c) JJA, and d)
SON similar to Fig. 1 of the main paper. The blue box is the area domain used for averaging
ERA 10-m winds in the trend and correlation analysis.

167

168

		DJF	MAM	JJA	SON	Year
1	% change in ERA V	-7	-4	2	-5	-3
2	% change in ERA DUP	-31	-5	2	-27	14
3	ERA V / ERA DUP correlation	0.85	0.83	0.50	0.80	0.60
4	ERA V / Obs V correlations	0.71	0.56	-0.07	0.53	0.56

169 Auxiliary Table 3: Seasonality of ERA mean wind and DUP

170

- 171 Auxiliary Table 3: Seasonality of ERA mean wind and DUP. Relative changes (in %) of
- 172 ERA-Interim mean wind V and DUP. Rows 1 and 2 are computed in the same way as rows
- 173 1–3 in Table 1 in the main text. Statistical significance of trends and correlations at the 95%

175

176

and 99% levels are denoted in bold and in bold italics, respectively.

		DJF	MAM	JJA	SON	Year
1	V ERA	0.77	0.31	-0.21	0.43	0.58
2	V OBS	0.5	0.14	0.43	0.28	0.46
3	FDE	0.58	0.36	0.26	0.3	0.52

180 Auxiliary Table 4: Correlations of mean wind and observed dust with the NAO index.

182	Auxiliary	Table 4:	Correlations	of mean	wind and	observed	dust with	the NAO	index.
-----	-----------	----------	--------------	---------	----------	----------	-----------	---------	--------

183 Seasonal correlations of ERA-Interim mean wind V (row 1), observation mean wind V (row

184 2), and observed FDE (row 3) with the seasonal Jones NAO Index (as described in Section

185 2). Significance of trends and correlations at the 95% and 99% levels are denoted in bold and

186 in bold italics, respectively.

. -

			DJF	MAM	JJA	SON	Year
Absolute trends	1	Day V	-0.07	-0.05	-0.05	-0.06	-0.06
$(ms^{-1}a^{-1})$	2	Night V	-0.09	-0.05	-0.05	-0.04	-0.04
	3	Day DUP	-9.5	-8.1	-5.5	-4.9	-7
	4	Night DUP	-3.8	-2.6	-3.8	-1.7	-3
relative change	5	Day V	-30	-25	-27	-36	-28
(%)	6	Night V	-59	-35	-39	-53	-31
	7	Day DUP	-83	-86	-87	-92	-86
	8	Night DUP	-105	-91	-98	-79	-97

194 Auxiliary Table 5: Day/night station trends comparison

195

Auxiliary Table 5: Day/night station trends comparison. Seasonal absolute and relative trends of day and night data from station averaged observations. Absolute trends in rows 1–4 are calculated as the average change in wind speed per year, while rows 5–8 represent the total change in wind speed during the study period 1984–2010 as a % of the initial value. Significance of trends at the 95% and 99% levels are denoted in bold and in bold italics, respectively.