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Variable descriptions 

Lobar white = the sum of frontal, parietal, temporal, and occipital lobe white matter for both hemispheres divided by baseline intra-

cranial volume (ICV). 

Lobar gray = the sum of frontal, parietal, temporal, and occipital lobe gray matter for both hemispheres divided by baseline ICV. 

CSF = cerebrospinal fluid divided by baseline ICV. 

Hippo = hippocampus divided by baseline ICV. 

Globus = globus pallidus divided by baseline ICV. 

TMS = total motor score from the Unified Huntington Disease Rating Scale (UHDRS). Standardized ratings of oculomotor function, 

dysarthria, chorea, dystonia, gait and postural stability.
1
 

Brady = bradykinesia subscale from the UHDRS. Rating of abnormal slowness or rigidity of movement.
1
  

Ocular = ocular subscale from the UHDRS. Rating of eye movement and tracking.
1
 

SDMT = Symbol Digit Modalities Test. The SDMT is an adaptation of the Wechsler Digit Symbol subtest that measures working 

memory, complex scanning, and processing speed.
2,3

 Participants use a key presented at the top of the test page to match symbols with 

numbers presented in horizontal rows. The task requires that the participant fill in the appropriate symbols below the matching 

numbers as quickly as possible. Raw scores indicate the number of items correctly completed in 90 seconds.
4
 

Stroop = Stroop Color and Word Test –consists of three 45-second trials.
5
 The first two trials (color identification and word reading) 

measure basic attention and processing speed. In the first trial, participants must correctly identify the color of ink patches on a 

stimulus card. In the second trial, participants read the names of colors printed in black ink. In the third trial, the interference trial, 

participants must consistently inhibit an overlearned response by identifying the color of ink (red, green, blue) that the stimulus color 

words are printed in rather than reading the word aloud. Raw scores indicate the number of items correctly completed per trial.
6
 

Timing = time production or paced tapping. Participants were presented with a 1·8 Hz tone and were instructed to tap along with it 

when ready. After 11 more presentations of the tone, the tone stopped, and participants attempted to continue to tap at the same pace 

for 31 more taps. The variable analyzed is the reciprocal of the standard deviation of the intertap interval for an alternating thumbs trial 

(smaller values indicate worse performance) over five trials.
7
 

Sp-Tapping = speeded tapping. Finger tapping speed was assessed by calculating the mean intertap interval of five 10-second trials of 

tapping as quickly as possible with the nondominant finger (smaller values indicate better performance).
7
 

Smell-ID = University of Pennsylvania Smell Identification Test (UPSIT). The smell identification test is a multiple-choice measure of 

olfactory recognition. Participants scratched a scented patch in a test booklet and identified the corresponding scent label from four 

multiple choice options.
8
 Some participants completed the full four-booklet version of the UPSIT, others completed an abbreviated, 

20-item version. The percentage of correctly identified scents was analyzed.
8 
 

TMT = Trail Making Test. In TMT-A, participants draw lines connecting numbered circles as quickly as possible. Raw scores indicate 

the number of seconds required to complete each test.
9,10

 In TMT-B, participants alternate between connecting numbered and lettered 

circles according to ascending, alphabetical order (i.e., 1-A, 2-B, 3-C, etc.). Raw scores indicate the number of seconds required to 

complete each test.
9,10
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EmoRec = emotion recognition test. Emotion recognition was assessed by two emotion-labeling tasks.
11

 One of the tasks employed 

static photographs of human faces, while the other used the same stimuli with simulated movement.
12

 In both tasks, participants were 

asked to identify the emotion displayed by a target face. In the static condition, an expression of moderate intensity was presented for 

one second. The options were fear, disgust, happy, sad, surprise, anger, and neutral. In the simulated movement condition, an 

expression of mild intensity presented for 500 milliseconds transformed into an expression of moderate intensity for 500 milliseconds. 

The variables analyzed for each are the number of negative emotions correctly identified.
11,13

  

TFC = total functional capacity from the UHDRS. A list of independent and common daily tasks that can be accomplished.
1
 

ECog-C = Everyday Cognition Rating Scale – Companion Rating Scale. An adult familiar with the participant rates the participant’s 

memory, language, semantic knowledge, visuospatial abilities, planning, organization, and divided attention.
14

 

FAS = functional activity scale from the UHDRS.
1
 

WHODAS-C = World Health Organization Disability Assessment Schedule – companion rating scale. A generic assessment for 

health and disability as related by a close companion.
15

 

S-OC-C = Symptom Checklist 90 – obsessive compulsive scale – companion rating scale. A 90-item assessment taking 15 minutes to 

administer, with this subscale focusing on obsessive-compulsive disorders as rated by companions.
16

 

F-Exc-C = Frontal Systems Behavioral Scale – executive subscale – companion rating scale. Part of a 46-item behavior rating scale 

focusing on abstraction, problem solving, and hypothesis generation as rated by a companion focusing on dorsolateral prefrontal 

circuitry.
17

 

F-Apa-C = Frontal Systems Behavioral Scale – apathy subscale – companion rating scale. Part of a 46-item behavior rating scale 

associated with anterior cingulate circuitry.
17

 

S-GSI-C = Symptom Checklist 90 – Global Severity Index – companion rating scale. A 90-item assessment taking 15 minutes to 

administer. Global severity is one of the three major indices.
16

 

S-Dep-C = Symptom Checklist 90 – depression subscale – companion rating scale. A 90-item assessment taking 15 minutes to 

administer, with this subscale focusing on depressive symptoms as rated by companions.
16

 

S-Anx-C = Symptom Checklist 90 – anxiety subscale – companion rating scale. A 90-item assessment taking 15 minutes to 

administer, with this subscale focusing on anxiety as rated by companions.
16

 

BDI = Beck Depression Inventory–II. A 21-question inventory to measure the severity of depression.
18

 

F-Dis-C = Frontal Systems Behavioral Rating Scale – disinhibition subscale – companion rating scale. Part of a 46-item scale 

associated with orbitofrontal circuitry.
17

 

S-Hos-C = Symptom Checklist 90 – hostility subscale – companion rating scale. A 90-item assessment taking 15 minutes to 

administer with this subscale focusing on outward hostility toward others as rated by companions.
16

 

Available measures and sample size variation  

The initial National Institutes of Health study grant was funded from 2000-2003 and budgeted for 400 participants; the second grant 

was funded from 2004-2007 and budgeted for 650 participants; the third grant was funded from 2008-2013 and budgeted for 1000 

participants. CHDI, Inc. funded the additional 300 participants. Participants could only be consented for the funded project for which 

they enrolled. We then invited their participation in the renewal grant when possible.  We are fortunate that many (most) participants 

chose to continue in the study and our dropouts were less than initially calculated.  

Several measures were introduced and discontinued throughout the study. PREDICT-HD was a natural history study designed to 

develop measures sensitive to disease progression in premanifest HD. When a specific measure was found to be less sensitive than 
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Figure S1. Count of total motor score values for converters at 

time of conversion. 

another, the task was discontinued (or modified) and another test was developed in its place. For example, it was found that the 

functional measures were not sensitive to premanifest HD (TFC and FAS) so we abbreviated them both by only administering the 

items which showed the earliest changes in premanifest HD (i.e., did not ask about toileting since it was always independent in 

premanifest HD). We then developed a new scale, the Work Function measure, to see if we could measure earlier functional declines. 

We have since published studies that show good sensitivity of the Work Function measure as an indicator of earlier functional decline 

in premanifest HD. Such tools will be critical should we choose to provide treatments before diagnosis. The Food and Drug 

Administration is likely to request evidence of outcomes important to the individual and showing functional impact.    

Heterogeneity of Total Motor Score 

As discussed in the text, relatively wide variability was observed in the TMS. Figure S1 shows the bar graph of the TMS at conversion 

(time=0) for the N=225 converters. Early in PREDICT-HD, substantial TMS variation was noted and the following efforts were made 

to assure data integrity: 1) new standardized training and certification criteria were immediately implemented into the study in the first 

few years; new videotapes were made by the European Huntington’s Disease Network and new certification guidelines were mandated 

for all motor raters; 2) all motor examinations were videotaped and all tapes are digitized and archived for further viewing and 

analyses; 3) all outliers and extreme ranges were queried by the data management staff directly to the sites and motor raters; and 4) 

experienced motor raters were invited to view videotapes and discuss efforts to improve standardized motor ratings for clinical trials. It 

is our intent to continue to make this database available for further analyses and to continue to encourage the leaders in our field to 

provide guidance on improved reliability and validity of motor ratings for HD. From our study perspective, however, these are real 

data that have undergone quality assurance and quality control and the data are as we report them.  

 

In addition to the efforts made above to improve rater training 

and to query for errors, we have analyzed our normal control 

data for motor ratings. Table S1 below shows the 99
th

 percentile 

of total motor score for our normal controls binned in to five-

year age groups. The percentiles are based on a fitted linear 

mixed effects regression (LMER) model with only the non-

gene-expanded controls. The idea was to examine what total 

motor scores might be candidates for cutoffs using the extremes 

of the distributions for each age category. We decided on the 

criterion that no more than 1% of controls be classified as cases 

and thus, our goal was to identify TMS cutoffs for this purpose. 

These data are consistent with those reported in the literature 

suggesting that minor motor abnormalities or “soft signs” are 

evident in a large proportion of individuals without known 

cerebral involvement, which increases with age. Table S1 

shows the popular cutoff of total motor score=5 might be too 

low even for a 30-year-old, in the sense that many more than 

1% of controls with no known neurologic or psychiatric 

syndrome would be classified as cases. Table S1 indicates that a 

total motor score greater than 10 has better predictive validity 

for the average person at risk for HD. This number corresponds 

to the extreme (99
th

 percentile) of the control group distribution 

for age 50 and is a rough approximation for neighboring age 

categories. Figure S2 shows the empirical total motor score trajectories for cases (gray) and controls (red) as a function of age. The 

blue line is the fitted curve from the LMER model for the 99
th

 percentile. The blue line denotes the cutoff value for each age category 

as shown in the aforementioned table. As expected, the total motor score increases over time with age for both groups. The variation in 

the CAG-expanded group is much more extreme, however. As the figure shows, the total motor scores for the controls often surpass 5 

and we think a higher cutoff is appropriate. Further research and analyses like we present here are warranted.     
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Table S1. The 99th percentile of total motor score as a function of age, based on analysis of the non-gene-expanded controls. 

Age: 30 35 40 45 50 55 60 65 70 75 

Total motor score: 7 8 8 9 10 11 12 12 13 14 

 

Figure S2. Total motor score trajectories as a function of age for gene-expanded cases (gray lines) and controls (red lines).  

 
The blue line is the 99th percentile line based on the fitted linear mixed effects regression model for the controls. 
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Table S2. Variable descriptive statistics for gene-expanded groups (Converters, Non-Converters, Combined) at study entry.  

 

All Gene-Expanded Non-Converters (Gene-Expanded) Converters (Gene-Expanded) 

Variable Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Accumben 0.0003 0.0001 0.0002 0.0006 0.0003 0.0001 0.0002 0.0006 0.0003 0.0000 0.0002 0.0005 

F-Apa-C 12.0385 5.2428 8.0000 38.0000 11.6989 4.9562 8.0000 38.0000 13.2754 6.0288 8.0000 37.0000 

BDI 8.0122 8.7265 0.0000 48.0000 7.5664 8.2197 0.0000 47.0000 9.2605 9.9248 0.0000 48.0000 

Brady 1.9329 2.3566 0.0000 17.0000 1.4965 1.9358 0.0000 12.0000 3.5778 2.9947 0.0000 17.0000 

Caudate 0.0037 0.0008 0.0013 0.0062 0.0039 0.0008 0.0014 0.0062 0.0031 0.0008 0.0013 0.0055 

Chorea 0.9404 1.6555 0.0000 13.0000 0.7075 1.3225 0.0000 8.0000 1.8178 2.3505 0.0000 13.0000 

CSF 0.1552 0.0334 0.0462 0.2689 0.1516 0.0320 0.0462 0.2660 0.1708 0.0347 0.0919 0.2689 

F-Dis-C 16.6826 5.2706 12.0000 55.0000 16.5119 5.2388 12.0000 55.0000 17.3043 5.3516 12.0000 39.0000 

DCL 0.8285 0.8300 0.0000 3.0000 0.6757 0.7304 0.0000 3.0000 1.4044 0.9263 0.0000 3.0000 

Dystonia 0.1062 0.4691 0.0000 6.0000 0.0825 0.3672 0.0000 3.0000 0.1956 0.7301 0.0000 6.0000 

ECOG-C 1.1817 0.2437 1.0000 2.4118 1.1713 0.2278 1.0000 2.3235 1.3859 0.4276 1.0882 2.4118 

ECOG-P 1.3350 0.3359 1.0000 2.7647 1.3262 0.3381 1.0000 2.7647 1.5119 0.2389 1.0882 1.8529 

F-Exc-C 24.3195 9.3023 16.0000 60.0000 23.6088 8.9656 16.0000 60.0000 26.9082 10.0424 16.0000 59.0000 

FAS 24.8237 0.7652 14.0000 25.0000 24.8779 0.5823 19.0000 25.0000 24.6682 1.1247 14.0000 25.0000 

Globus 0.0106 0.0008 0.0084 0.0134 0.0107 0.0008 0.0084 0.0134 0.0103 0.0008 0.0088 0.0132 

Hippo 0.0022 0.0002 0.0015 0.0031 0.0023 0.0003 0.0015 0.0031 0.0022 0.0002 0.0016 0.0028 

EmoRec 25.3346 6.1478 5.0000 39.0000 26.1395 5.8971 8.0000 39.0000 23.0048 6.2774 5.0000 37.0000 

TMS 4.8220 5.2136 0.0000 35.0000 3.8160 4.3085 0.0000 34.0000 8.6133 6.4515 0.0000 35.0000 

Ocular 1.4520 2.2024 0.0000 14.0000 1.1474 1.9710 0.0000 14.0000 2.6000 2.6169 0.0000 12.0000 

Putamen 0.0050 0.0010 0.0022 0.0079 0.0051 0.0009 0.0027 0.0079 0.0042 0.0009 0.0022 0.0065 

Rigidity 0.3905 0.7490 0.0000 4.0000 0.3821 0.7419 0.0000 4.0000 0.4222 0.7760 0.0000 4.0000 

Smell-ID 0.8392 0.0998 0.3500 1.0000 0.8533 0.0922 0.3500 1.0000 0.7877 0.1094 0.5250 1.0000 

Stroop-Co 77.4220 14.0616 35.0000 135.0000 79.2122 13.6874 35.0000 135.0000 70.7467 13.4424 36.0000 114.0000 

Stroop-In 44.9097 10.4630 13.0000 82.0000 46.3588 10.2985 13.0000 82.0000 39.4821 9.2363 18.0000 73.0000 

Stroop-Wo 98.9211 17.5804 38.0000 155.0000 101.0226 17.2327 44.0000 155.0000 91.0756 16.6553 38.0000 142.0000 

SDMT 50.5122 11.4492 16.0000 110.0000 52.1430 11.1004 23.0000 110.0000 44.4311 10.6765 16.0000 75.0000 

Sp-Tapping 252.0797 54.3451 161.5300 581.5800 241.0491 42.7676 161.5300 435.0700 283.8925 69.6495 176.8500 581.5800 

Dysrhythmia 51.5977 24.8441 18.9800 225.7300 46.7395 20.3450 18.9800 151.0300 65.4212 30.6766 20.2600 225.7300 

S-Anx-C 49.1366 11.0890 41.0000 116.0000 48.7302 10.6786 41.0000 116.0000 50.5514 12.3351 41.0000 109.0000 

S-Dep-C 52.7404 13.7361 41.0000 145.0000 51.9168 13.2688 41.0000 145.0000 55.6075 14.9338 41.0000 113.0000 

TFC 12.8085 0.7117 7.0000 13.0000 12.8430 0.6720 7.0000 13.0000 12.6786 0.8333 7.0000 13.0000 

Thalamus 0.0095 0.0007 0.0078 0.0120 0.0095 0.0007 0.0078 0.0118 0.0094 0.0007 0.0079 0.0120 

S-Hos-C 53.3279 15.9044 42.0000 141.0000 52.5013 15.1221 42.0000 133.0000 56.2710 18.1579 42.0000 141.0000 

S-OC-C 52.7582 13.4443 41.0000 131.0000 51.8360 13.0431 41.0000 131.0000 56.0421 14.3420 41.0000 111.0000 

Lobar Gray 0.2429 0.0182 0.1816 0.2951 0.2447 0.0180 0.1816 0.2951 0.2354 0.0174 0.1951 0.2820 

Lobar White 0.2296 0.0149 0.0992 0.3036 0.2303 0.0138 0.0992 0.3036 0.2266 0.0187 0.1087 0.2635 

TMT-A 27.1190 10.4170 9.0000 138.0000 25.6391 8.6166 9.0000 65.0000 32.6044 14.0731 14.0000 138.0000 

TMT-B 67.3089 33.3671 20.0000 300.0000 63.5054 29.2698 20.0000 300.0000 81.7763 42.8066 29.0000 300.0000 

S-GSI-C 51.5787 13.2059 40.0000 129.0000 50.7973 12.7953 40.0000 129.0000 54.2991 14.2455 40.0000 100.0000 

WHODAS-C 41.4361 6.4305 36.0000 69.0000 41.3781 6.4807 36.0000 69.0000 43.2000 4.8166 38.0000 50.0000 

WHODAS-P 41.4461 8.8770 36.0000 85.0000 41.3672 9.0173 36.0000 85.0000 43.4286 3.7353 39.0000 48.0000 

See “Variable descriptions” section for abbreviations 
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Table S3. Variable descriptive statistics for gene-expanded converters at the time of conversion. 

Variable Mean SD Min Max 

Accumben 0.0003 0.0001 0.0002 0.0005 

F-Apa-C 15.8798 7.5888 8.0000 40.0000 

BDI 10.8175 11.3832 0.0000 50.0000 

Brady 8.1429 4.6353 0.0000 22.0000 

Caudate 0.0028 0.0008 0.0012 0.0060 

Chorea 6.3170 3.3149 0.0000 20.0000 

CSF 0.1831 0.0378 0.1110 0.3000 

F-Dis-C 19.4809 7.4685 12.0000 48.0000 

DCL 4.0000 0.0000 4.0000 4.0000 

Dystonia 1.0982 1.8724 0.0000 13.0000 

ECOG-C 1.6597 0.5146 1.0000 3.7941 

ECOG-P 1.6951 0.6210 1.0000 3.5882 

F-Exc-C 31.1257 12.0831 16.0000 76.0000 

FAS 23.6715 2.2066 14.0000 25.0000 

Globus 0.0100 0.0007 0.0083 0.0123 

Hippo 0.0021 0.0002 0.0016 0.0026 

EmoRec 20.8916 7.4539 5.0000 39.0000 

TMS 22.0804 9.3546 2.0000 56.0000 

Ocular 5.6830 3.4657 0.0000 21.0000 

Putamen 0.0037 0.0008 0.0026 0.0059 

Rigidity 0.8393 1.2095 0.0000 6.0000 

Smell-ID 0.7284 0.1511 0.2000 1.0000 

Stroop-Co 64.4658 14.4778 20.0000 110.0000 

Stroop-In 37.1142 10.1254 12.0000 84.0000 

Stroop-Wo 80.8265 17.7626 29.0000 122.0000 

SDMT 39.8676 10.6790 11.0000 66.0000 

Sp-Tapping 336.5634 97.4325 210.7300 656.6300 

Dysrhythmia 83.9441 36.7680 30.8800 171.1700 

S-Anx-C 54.8820 16.9370 41.0000 142.0000 

S-Dep-C 58.7809 16.8453 41.0000 120.0000 

TFC 11.6161 1.7346 6.0000 13.0000 

Thalamus 0.0092 0.0006 0.0075 0.0110 

S-Hos-C 58.1277 17.0928 42.0000 130.0000 

S-OC-C 62.1862 17.4341 41.0000 111.0000 

Lobar Gray 0.2289 0.0182 0.1771 0.2676 

Lobar White 0.2261 0.0200 0.1094 0.2665 

TMT-A 36.2530 22.0434 13.0000 240.0000 

TMT-B 97.1790 50.8713 27.0000 300.0000 

S-GSI-C 58.8090 17.7196 40.0000 126.0000 

WHODAS-C 59.9080 23.6957 36.0000 113.0000 

WHODAS-P 56.9664 23.3205 36.0000 115.0000 

See “Variable descriptions” section for abbreviations 
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Table S4. Variable descriptive statistics for controls (non-gene-expanded) at study entry. 

Variable Mean SD Min Max 

Accumben 0.0004 0.0001 0.0002 0.0006 

F-Apa-C 11.0735 4.0370 8.0000 32.0000 

BDI 4.5043 5.3282 0.0000 32.0000 

Brady 1.4361 2.0237 0.0000 15.0000 

Caudate 0.0043 0.0006 0.0019 0.0059 

Chorea 0.2754 0.7364 0.0000 4.0000 

CSF 0.1439 0.0296 0.0661 0.2907 

F-Dis-C 15.9338 3.9847 12.0000 33.0000 

DCL 0.4557 0.6060 0.0000 3.0000 

Dystonia 0.0492 0.2706 0.0000 2.0000 

ECOG-C 1.2022 0.2511 1.0000 2.2353 

ECOG-P 1.2698 0.2957 1.0000 2.8125 

F-Exc-C 22.0625 6.6388 16.0000 49.0000 

FAS 24.9658 0.2243 23.0000 25.0000 

Globus 0.0109 0.0008 0.0077 0.0129 

Hippo 0.0023 0.0002 0.0015 0.0030 

EmoRec 28.0913 5.1260 15.0000 40.0000 

TMS 2.8000 3.4635 0.0000 25.0000 

Ocular 0.7541 1.4448 0.0000 8.0000 

Putamen 0.0057 0.0006 0.0035 0.0074 

Rigidity 0.2852 0.6544 0.0000 3.0000 

Smell-ID 0.8606 0.0940 0.3500 1.0000 

Stroop-Co 81.1242 13.0372 34.0000 146.0000 

Stroop-In 46.1812 9.7449 17.0000 89.0000 

Stroop-Wo 102.3433 16.3259 32.0000 180.0000 

SDMT 53.6000 9.3958 26.0000 83.0000 

Sp-Tapping 231.4075 31.5304 147.9900 390.7400 

Dysrhythmia 39.6318 15.3772 17.4900 127.3700 

S-Anx-C 47.9857 11.5489 41.0000 131.0000 

S-Dep-C 50.1821 11.9916 41.0000 118.0000 

TFC 12.9638 0.3178 8.0000 13.0000 

Thalamus 0.0096 0.0007 0.0067 0.0114 

S-Hos-C 49.6157 10.5395 42.0000 119.0000 

S-OC-C 49.5658 10.5872 41.0000 118.0000 

Lobar Gray 0.2434 0.0182 0.1570 0.2890 

Lobar White 0.2317 0.0155 0.1030 0.2676 

TMT-A 25.1348 8.4655 12.0000 57.0000 

TMT-B 58.7903 24.0083 24.0000 205.0000 

S-GSI-C 49.5464 11.3969 40.0000 112.0000 

WHODAS-C 41.4375 8.1880 36.0000 70.0000 

WHODAS-P 42.6730 12.0733 36.0000 95.0000 

See “Variable descriptions” section for abbreviations 
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Table S5. Counts of waves of annual measures (number of repeated measures) by variable (total N=1078). 

  

Waves Annual Measures (Number of Repeated Measurements) 

Variable Domain 0 (Missing) 1 2 3 4 5 6 7 8 9 10 11 12 

Brady Motor 1 118 126 144 147 86 118 103 76 52 58 37 12 

Chorea Motor 1 118 126 144 147 86 118 103 76 52 58 37 12 

Dystonia Motor 1 118 126 144 147 86 118 103 76 52 58 37 12 

TMS Motor 1 118 126 144 147 86 118 103 76 52 58 37 12 

Ocular Motor 1 118 126 144 147 86 118 103 76 52 58 37 12 

Rigidity Motor 1 118 126 144 147 86 119 102 76 52 58 37 12 

Accumbens Imaging 90 309 268 193 129 67 20 2 0 0 0 0 0 

Caudate Imaging 90 309 268 193 129 67 20 2 0 0 0 0 0 

CSF Imaging 85 310 267 196 131 67 20 2 0 0 0 0 0 

Globus Imaging 90 309 268 193 129 67 20 2 0 0 0 0 0 

Hippocampus Imaging 90 309 268 193 129 67 20 2 0 0 0 0 0 

Putamen Imaging 90 309 268 193 129 67 20 2 0 0 0 0 0 

Thalamus Imaging 90 309 268 193 129 67 20 2 0 0 0 0 0 

Lobar Gray Imaging 101 317 263 195 131 63 8 0 0 0 0 0 0 

Lobar White Imaging 116 323 257 187 127 62 6 0 0 0 0 0 0 

EmoRec Cognitive 259 183 289 120 167 60 0 0 0 0 0 0 0 

Smell-ID Cognitive 45 210 253 140 154 110 75 65 26 0 0 0 0 

Stroop-Co Cognitive 6 121 128 150 138 89 117 97 77 59 48 37 11 

Stroop-In Cognitive 6 121 128 152 138 87 117 97 79 57 49 36 11 

Stroop-Wo Cognitive 6 121 128 149 138 90 116 97 78 59 48 37 11 

SDMT Cognitive 4 123 128 147 138 96 113 99 76 59 48 36 11 

Sp-Tapping Cognitive 258 190 289 120 164 57 0 0 0 0 0 0 0 

Timing Cognitive 264 189 282 117 168 58 0 0 0 0 0 0 0 

TMT-A Cognitive 6 175 208 171 142 121 91 62 53 39 10 0 0 

TMT-B Cognitive 6 176 214 167 143 127 81 64 51 40 9 0 0 

F-Apa-C Psychiatric 71 146 156 127 131 87 109 87 69 45 26 18 6 

BDI Psychiatric 260 90 80 112 201 115 158 62 0 0 0 0 0 

F-Dis-C Psychiatric 71 146 156 127 131 87 109 87 69 45 26 18 6 

F-Exc-C Psychiatric 71 146 156 127 131 87 109 87 69 45 26 18 6 

S-Anx-C Psychiatric 84 178 145 106 119 102 109 98 64 44 29 0 0 

S-Dep-C Psychiatric 85 178 144 106 119 102 109 98 64 44 29 0 0 

S-Hos-C Psychiatric 64 155 136 131 129 89 112 90 73 44 31 17 7 

S-OC-C Psychiatric 64 155 136 131 129 89 112 90 73 44 31 17 7 

S-GSI-C Psychiatric 84 178 145 106 119 102 109 98 64 44 29 0 0 

ECOG-C Functional 467 209 220 161 21 0 0 0 0 0 0 0 0 

ECOG-P Functional 391 193 239 220 35 0 0 0 0 0 0 0 0 

FAS Functional 249 97 81 108 207 107 164 65 0 0 0 0 0 

TFC Functional 3 119 128 143 146 87 123 93 80 57 47 40 12 

WHODAS-C Functional 539 239 201 95 4 0 0 0 0 0 0 0 0 

WHODAS-P Functional 489 195 258 128 8 0 0 0 0 0 0 0 0 

See “Variable descriptions” section for abbreviations 
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Table S6. Converter information in other studies 

Author Year Participants Years Converters Comments 

Brandt20 2008 49 

 

3 21 Only cognitive predictors considered; Wisconsin Card Sort Test performance predicted diagnosis 

Langbehn22 2007 226 

 

4.5 58 

Unified HD Rating Scale predictors considered; motor soft signs, symbol digit worse than fluency, 

subjective symptoms 

Marder24 2013 211 2.5 31 PHAROS database: Mediterranean diet did not predict diagnosis 

Paulsen25 2001 260 

 

2 70 

Huntington Study Group database: Only cognitive predictors considered; Symbol Digit Modalities 

Test, Stroop Color and Word Test, and verbal fluency predicted diagnosis 

Snowden26 2002 51 

 

5 24 

Only cognitive predictors considered; Object memory, card sorting, Stroop reading, Stroop color 

performances predicted diagnosis 

Solomon27 2008 43 

 

NA 21 

Only cognitive predictors considered; Reaction time, movement time, button tapping speed, and 

Wechsler Adult Intelligence Scale-Revised Digit Symbol Coding predicted diagnosis 

Tabrizi28  2013 104 

 

3 43* 

TRACK-HD database; several cognitive, quantitative motor and imaging measures were predictive 

of conversion* 

*non traditional diagnosis of total motor score=5. 

 

Image processing 

Basal ganglia structures had different imaging processing than lobar white and lobar gray. We begin with a description of the former.  

Basal ganglia structures. Imaging measures included intracranial-corrected volumes for putamen, accumbens, caudate, hippocampus, 

thalamus, cerebral spinal fluid,
29

 lobar white and gray matter.
30,31

 All imaging analysis was performed at the University of Iowa 

Scalable Informatics, Neuroimaging, Analysis, Processing, and Software Engineering (SINAPSE) laboratory. Acquired scans are 

processed through a fully automated procedure, Brain Research: Analysis of Images, Networks, and Systems (BRAINS) AutoWorkup 

(BAW),
29

 improved with SyN
32

 registration from the Advanced Normalization Toolkit in the BRAINSTools software package.
a
 All 

scans begin with visual inspection of the raw data, so only images of sufficient quality are processed. Each dataset, T1 and/or T2-

weighted images, was processed together to improve the robustness of the procedure from complimentary information provided by 

multiple modalities. The best-rated T1-weighted image is spatially normalized to an “AC-PC” alignment, where the anterior 

commissure is located at physical location (0,0,0) based on prominent landmarks in MRI, including anterior and posterior commissure, 

and mid-sagittal plane.
33

 The remaining scans acquired in the same session are then rigidly aligned to the spatially normalized T1 

image, and simultaneously processed by the automated bias-field correction (ABC) algorithm, BRAINSABC.
34

 For each given 

modality, BRAINSABC produces an average of independently bias-field corrected MR images resampled in 1mm x 1mm x 1mm, and 

their respective corresponding 17 tissue probability maps, including white matter, grey matter, and CSF. At this point, all longitudinal 

scan sessions for a single subject are used jointly to build a subject-specific atlas. The subject-specific atlas best represents the average 

longitudinal shape for that subject with respect to minimum mean square error of spatial displacement to each time point. This joint 

session template building step is used to maximize consistency by regularizing inherent scanner variation in longitudinal studies. The 

resulting data set of bias-corrected average T1 and/or T2 images are subsequently segmented for subcortical structures using an 

automated segmentation framework, BRAINSCut. BRAINSCut is an extension of previous work that now employs robust random 

forest machine learning that has been validated on multi-site MR data.
b,35

 The subcortical structures of interest include nucleus 

                                                           
a
"BRAINSTool Package". (https://github.com/BRAINSia/BRAINSTools). 

b
Kim, E. Y., Magnotta, V. A., Johnson, H.J., et al. (2014). Automated Segmentation Framework: Determining Robust Machine-Learning Algorithm 
and Intensity Normalization for Scalable Brain MRI. Submitted for review. 
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accumbens, caudate, putamen, hippocampus, and thalamus. The results of this procedure were again visually inspected and resulted in 

a success rate greater than 90%. All the development processing was blinded to clinical data, such as HD gene-expansion status, 

gender, and age. 

Lobar white and lobar gray. To extract reliable volumetric segmentations, images were automatically processed with the longitudinal 

stream
36

 in FreeSurfer which is documented and freely available for download (http://surfer.nmr.mgh.harvard.edu/). Specifically, an 

unbiased within-subject template space and image is created using robust, inverse consistent registration.
37

 Several processing steps, 

such as skull stripping, Talairach transforms, atlas registration spherical surface maps and parcellations are then initialized with 

common information from the within-subject template, significantly increasing reliability and statistical power.
36

 The technical details 

of these procedures are described in prior publications.
 30, 36-48

 Briefly, this processing includes removal of non-brain tissue using a 

hybrid watershed/surface deformation procedure,
48

 automated Talairach transformation, segmentation of the subcortical white matter 

and deep gray matter volumetric structures,
30,42

 intensity normalization,
49

 tessellation of the gray matter white matter boundary, 

automated topology correction,
41,50

 and surface deformation following intensity gradients to optimally place the gray/white and 

gray/cerebral spinal fluid borders at the location where the greatest shift in intensity defines the transition to the other tissue class.
38-40

 

FreeSurfer morphometric procedures have been demonstrated to show good test-retest reliability across scanner manufacturers and 

across field strengths.
36,46

 

Statistical analysis 

Joint model. The longitudinal markers considered in the analysis were collected on the participants under study and were hypothesized 

to be related to motor diagnosis, the event of interest. When a marker’s path is directly informative about the time to the event, it is 

known as an endogenous covariate.
51

 The Cox model and its extensions cannot properly handle endogenous covariates.
52

 Therefore, 

joint modeling of longitudinal and time-to-event data was used for the main analysis.
53

 The joint model consists of a linear mixed 

effect regression (LMER) component for the longitudinal marker and a Cox regression model for the time-to-event (time to motor 

diagnosis or censoring). In this analysis, the time metric for both portions was age scaled by corrected CAG length, which is the CAG-

Age Product (CAP; see main article text). The LMER portion was a cubic spline model
54

 with five knots consisting of the 1
st
, 25

th
, 50

th
, 

75
th

, and 99
th

 CAP percentiles. Two joint models were fit for every variable: (1) a reduced joint model that had only random intercepts 

in the LMER portion, and (2) a full joint model that included random intercepts and random slopes. The Cox model always included 

the covariates of gender and education, and additional covariates were added depending on the type of response variable (see below). 

Reduced model. The reduced model used random intercepts to predict the hazard controlling for the covariates, indicating the 

conditional association between the individual deviations from the mean variable level at baseline CAP=290 and the instantaneous rate 

of motor diagnosis (see main text for why CAP=290 was selected as the baseline).  

Suppose Yij is the response for the ith person (i=1, …, N) at the jth time point (j=1, …, ni). Further assume that measurement     is 

taken at CAP equal to      . Let       ij) denote the kth natural spline basis function (k=1, …, 6). Then the cubic spline LMER 

model was 

             ∑           

 

   

     

where  denotes a fixed effect, 0 is the fixed intercept, b0i is the random intercept, and     is random (possibly measurement) error. It 

is assumed that the random effect is normally distributed with zero mean and non-zero variance, and it is uncorrelated with the random 

error that also is normally distributed with zero mean and non-zero variance over time. The Cox hazard model was 

                  {                       } 

It is assumed that right-censoring is non-informative and that the hazards are proportional (evaluation of the proportional hazards 

assumption is discussed below). Note the LMER and Cox models are linked by the common random intercept term,    .  

Full model. The full model used random intercepts and random spline coefficients to predict the hazard, which represented the 

association between the subjects’ deviation from the population mean trajectory over a range of times (not just CAP=290) and the 

instantaneous rate of motor diagnosis. For the full model, the LMER equation was 

                               ∑           

 

   

     

It is assumed that the random effects have a joint-normal distribution with zero-mean vector and positive-definite variance-covariance 

matrix, and the random effects are uncorrelated with the normally distributed random error. The Cox model was 

http://surfer.nmr.mgh.harvard.edu/
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                  {                                     } 

Based on the selected knots, the first natural spline basis function,          , had non-zero values up to the third quantile of the CAP 

distribution. This constituted the range over which the hazard could be modified by the subject-specific deviation from the mean 

trajectory (i.e., by b1i).   

In the joint model, the deviation of the longitudinal marker either at CAP=290 (reduced model) or the deviation over a range of CAP 

(full model) is used to predict the hazard, and the gamma association parameter () represents the variable’s prediction effect. Because 

CAP is a form of age adjusted for CAG expansion, variables with a statistically significantly  account for variability in the timing of 

diagnosis over and above CAG expansion and age (see Figure 2 of the main article text). When 0 (or 01) has a positive sign, a given 

individual with a higher score has an increased risk of motor diagnosis relative to another given individual with a lower score. When 0 

(or 01) has a negative sign, a given individual with a lower score has an increased risk of motor diagnosis. To facilitate the comparison 

of the gamma coefficients among the variables, each variable was scaled to zero mean and unit variance using the mean and standard 

deviation (SD) among all the participants and all the time points. The standardization indicates that 0 (or 01) is the effect on the hazard 

for a one standard deviation (1SD) difference among two given individuals (controlling for the covariates).  

The joint model was estimated using maximum likelihood methods (the parameters of the LMER and Cox models are simultaneously 

estimated). Standard errors (SE) were calculated using a bootstrap procedure in which the original data was resampled with 

replacement and the models refitted (participants’ repeated measures matrices were resampled). The hazard ratio (HR) for each model 

was computed as exp(0) or exp(01) and represented the multiplicative increase in risk attributable to the level of the longitudinal 

variable, either deviations from the group mean at CAP = 290 (reduced model), or deviations from the mean trajectory over a range of 

CAP (full model). When 0 < 0 or 01 < 0, HR
-1

 was used as the effect size. The bootstrap SE was used to compute an approximate 95% 

confidence interval (CI) and a Z-test of the null hypothesis that the gamma parameter is zero (no association). The covariates in all 

models were gender and education. If a longitudinal variable was from the cognitive domain, then depression was added as a covariate 

because of evidence that mood affects cognitive performance. If a longitudinal variable was an imaging variable, then field strength 

(1·5T, 3T) was added as a covariate because some sites updated their scanners during the study.
55

 The HR or HR
-1

 was the primary 

effect size and the variables were rank-ordered based on the absolute Z-value for 01 (full model).  

Cumulative hazard profiles. A subsequent analysis was performed to characterize the risk of motor diagnosis over the lifespan with 

and without predictor information (see Figure 2 of the text). Individual fitted values at CAP=290 from the LMER spline model for 

each variable were used in a separate (not joint) Cox model to predict time of diagnosis for the span of CAP>290. The Cumulative 

hazard as a function of CAP was estimated based on the fitted Cox model.
56

  

Proportional hazards assumption. The proportional hazards assumption was evaluated by examining plots of the scaled Schoenfeld 

residuals by log CAP for each variable based on the cross-sectional Cox model described in the last section. A statistical test of 

proportional hazards was also conducted for each variable.
57

 Both the residual plots and statistical tests indicated that the proportional 

hazards assumption was reasonable for the analysis. None of the global tests were statistically significant and the residual plots did not 

show extreme non-linearity or other irregularities. 

Computer software. All analysis was performed with the R computer software.
58

 Joint modeling was accomplished using the joineR 

package,
59

 cross-sectional Cox modeling and proportionality testing was carried out using the survival package,
56

 spline fitting was 

performed with the gamm4 package,
60

 and the lme4 package was used for additional LMER modeling (Bates et al., 2014).
61 
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