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Response speed-up by homodimerization

To get some analytical insight into the potential role of TAA:IAA dimer formation, we consider the sole
TAA dynamics, and compare the cases when homodimers form or not. In equations, we consider the
populations of monomers I and dimers Dyy:
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The choice of a production rate written as 77d is designed to ensure that the (unique) equilibrium found
in absence of homodimerization is equal to the single parameter ;.
Assuming for simplicity that the dimers are at equilibrium (as would occur for instance with large «, ),
we find:
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Using these relations gives a unique simplified ODE:
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Two steady states are found by solving a quadratic equation, one of which is positive:
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This steady state I* is always smaller than the value 7; found for v = 0:
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Moreover, it can be shown by differentiating I'* that it decreases as a function of :
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So, the steady state value is maximal without homodimerization and decreases as the latter becomes
more prominent.

As we proceed to assess the influence of v on the response time of the system, we rescale the production
rate of I to ensure that steady state value is always 1 regardless of v, i.e. we seek 7; such that
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Note that in the limit v — 0 this gives 77 = 1 as expected. So, we are now considering the rescaled
system
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Let us fix 1(0) = 0 for simplicity in the following. For this initial condition, it is possible to derive a

closed form solution for Equation (2)!:
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Using this closed form solution, it is also possible to compute the time taken to reach a given percentage
0 < p < 1 of the equilibrium, i.e. the non-negative time 7, such that the solution I(t) to the equation
above with I(0) = 0 verifies:
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Then, a direct calculation gives
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which takes the value %log (%p) when v = 0. One can show in fact that this limit is an upper bound

and 7, decreases with «y for any value of p (see below). From the expression above, one can also verify
that lim, 7 = 0.

Proof that 7, decreases as a function of ~.
We compute explicitly its partial derivative of 7,, Equation (4), with respect to 7:

o7, _ p2y+9) ps
o (2v+5)210 < (1+p)7+5> T T (Ao +0)

which has the same sign as
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Then, from log(1 — ) < —x for all 0 < z < 1 we find
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And thus 27 < p
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Positive feedback and bistability

As discussed in the main text we implemented feedback on ARF+ as follows
e the production rate if I is a constant 7y,

e 74 is replaced by w4 R.

ICalculated with the aid of sage, see http://www.sagemath.org/



Furthermore, we considered a specific parameter regime for the main ODE system, which made some
analytic calculations feasible. Namely, we supposed the following:

e the formation of all dimers and promoter-protein complexes are supposed at steady state
e ARF:ARF dimers form at a negligible rate, i.e. @44 ~0 and aag, =~ 0.

Under these assumptions, only the three variables A, I and R are non-steady, and straightforward cal-
culations show that their dynamics follow an ODE system of the from
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To consider the possible occurrence of multiple stable equilibria, let us compute the steady state
equations of this system. Firstly,
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and this can be injected in the last equation to give
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a steady state solution I to (5) such that the nonzero steady state R is positive, the system (5)-(7) is
bistable.
As performing these computations analytically is not feasible, we simulated numerically solutions of
(5)-(7) for various parameters, using the formulas above as a guide for intuition. We found some cases
where bistability was occurring, see Figure 10.

in other words R € {0, } are two steady state solutions for (7). If there exists



