1	Additional file 1
2	
3	Tree dating calibration and Bayesian priors
4	The nodes used to calibrate the ML phylogeny (fig. S1) are identified in fig. S2 and the
5	parameters used in the calibration are specified in table S2 [1].
6	CAFE model fitting under alternative topology
7	Models of gene family evolution were fitted in CAFE using a phylogeny with a
8	paraphyletic Paraneoptera, similar to the topology in [1]. The best models were selected
9	using likelihood-ratio tests, fitting the null distributions to χ^2 distributions with degrees of
10	freedom equal to the difference in number of parameters between the two models.
11	

12 13 Figure S1: Unrooted ML phylogeny inferred in RAxML.

0.2

15 Fig. S2: Calibrated phylogeny used as starting point of Bayesian inference. The labeled

16 nodes refer to the calibration point in table S2 used for the time calibration.

References

- 18 1. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J,
- 19 Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J,
- 20 Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR,
- 21 Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, et al.:
- 22 Phylogenomics resolves the timing and pattern of insect evolution. Science 2014,
- 23 **346**:763–768.

25 Table S1: Taxonomy of the species used in the phylogenetic inference.

Species	Superfamily	Sub-order	Order	Super order	
Acyrthosiphon pisum	Aphidoidea				
Planococcus citri	Coccoidea	Sternorrhycha			
Bemisia tabaci	Aleyrodidea	Sternormyena	Unintara		
Bactericera cockerelli	Psylloidea		memptera	Paraneoptera	
Rhodnius prolixus	Reduvidoidea	Heteroptera			
Diceroprocta semicincta	Cicadoidea	Auchenorrhyncha			
Pediculus humanus		Anoplura	Phthiraptera		
Nasonia vitripennis	Chalcidoidea	Apocrita	Hymenontera		
Apis mellifera	Apoidea	Apoenta	Trymenoptera	Holometabola	
Tribolium castaneum	Tenebrionoidea	Polyphaga	Coleoptera		
Bombyx mori	Bombycoidea	Glossata	Lepidoptera		
Drosophila melanogaster	Ephydroidea	Brachycera	Diptora		
Anopheles gambiae	Culicoidea	Nematocera	Dipicia		

27 Table S2: Nodes and divergence times used to calibrate the ML phylogeny. Node number refers

Node	Divergence lower bound	Divergence upper bound	Calibrated value
1	346	401	373.33
2	233	346	289.38
3	182	307	244.34
4	334	390	361.32
5	318	372	344.87
6	301	353	327.13
7	244	329	285.83
8	107	207	156.48

to the labels in fig. S2. All dates in million years before present.

29

	Model	# Parameters	ML	AIC
APC	Parsimony	1	24.13	50.26
	Parsimony+G	2	24.32	52.65
	BDO	2	23.88	51.76
	BDI	3	23.68	53.37
	BDI+G	4	23.88	55.76
	BDIE	4	23.68	55.36
	BDIE+G	5	23.88	57.75
AAAP	Parsimony	1	24.46	50.92
	Parsimony+G	2	24.66	53.31
	BDO	2	23.95	51.90
	BDI	3	23.75	53.50
	BDI+G	4	23.95	55.90
	BDIE	4	23.74	55.48
	BDIE+G	5	25.13	60.26

31 Table S3: Akaike Information Criterion (AIC) of models in the DupliPHY-ML algorithm.

39 Table S4: Results of a Likelihood-ratio test comparing models with a global λ rate of gene duplication to models with a rate shift in

40 Sternorrhyncha. The models were fitted using a phylogeny with a paraphyletic Paraneoptera (fig. S2). λ represents the probability of

41 gene duplication/loss per gene per million years.

	Model	$\lambda_{\text{Background}}$	$\lambda_{\text{Sternorrhyncha}} X$	Fold increase	-ML	#	Likelihood	<i>p</i> -value
		x 10 ³	103			Parameters	ratio	
	Single λ	1.419	-	-	35.27	1	2.845	0.097
APC	Multiple λ	0.7235	3.4201	4.73	33.85	2		
	Single λ	1.3793	-	-	38.41	1	6.039	0.018
AAAP	Multiple λ	0.3774	3.7511	9.94	35.39	2		

43 Table S5: Results of the Likelihood-ratio test comparing models differentiating λ and μ to models with equal birth-death parameters. 44 For APC, the estimated parameters are global across the phylogeny. For AAAP, the parameters were rates were allowed to shift in 45 sternorrhynchan species. The models were fitted using a phylogeny with a paraphyletic Paraneoptera (fig. S2). λ represents the

46 probability of gene duplication/loss (Single/Multiple λ), or gene duplication only (Single/Multiple $\lambda + \mu$) per gene per million years. μ

47 represents the probability of gene loss per gene per million years.

	Model	$\lambda_{\mathrm{Background}} \ \mathrm{X} \ 10^3$	$\lambda_{\text{Sternorrhyncha}} \propto 10^3$	$\mu_{\text{Background}} x \\ 10^3$	$\mu_{\mathrm{Sternorrhyncha}}$ x 10 ³	-ML	# parameters	Likelihood ratio	<i>p</i> -value
	Single λ	1.419	-	-	-	35.27	1	0.03	0.855
APC	Single $\lambda + \mu$	1.3923	-	1.4517	-	35.25	2		
AP	Multiple λ	0.3774	3.7511	-	-	35.39	2	8.57	0.011
AA	Multiple $\lambda + \mu$	1.14 x 10 ⁻¹⁰	3.01	0.5096	1.8965	31.11	4		