**Supplementary Figure 1. Immunoblot analysis of Sesn1 and Sesn2 proteins.** Sesn1/2 were analyzed in WT and Sesn3-LKO liver tissues by Western blots.



 $\label{eq:constraint} \ensuremath{\mathbb{C}}\xspace{2014} American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db14-0539/-/DC1 and the state of the state of$ 

Supplementary Figure 2. The area-under-curve (AUC) analysis of the GTT and ITT data in main Fig. 2. *A*, *B*: The AUC analysis of GTT and ITT data in chow and HFD fed WT and Sesn3-LKO mice. *C*, *D*: The AUC analysis of GTT and ITT data in chow and HFD fed WT and TgSesn3 mice. Data are presented as mean  $\pm$  SEM. \**P*<0.05, \*\**P*<0.0, 1 and \*\*\**P*<0.001.



**Supplementary Figure 3. Signaling analysis in skeletal muscle and white adipose tissue.** *A-H*: Akt and GSK3 phosphorylated and total protein levels were analyzed by Western blots in skeletal muscle and white adipose tissue from chow-fed WT, Sesn3-LKO, and TgSesn3 mice under starvation and refeeding conditions.



Supplementary Figure 4. Analysis of insulin signaling in chow-fed WT, Sesn3-LKO, and TgSesn3 livers. *A*, *B*: Western blot analysis of insulin signaling proteins in the liver of WT, Sesn3-LKO and TgSesn3 mice after insulin stimulation, respectively. *C*, *D*: Quantitative analysis of panels A and B, respectively. Normalization was performed by calculating the ratio of each signaling event in the Sesn3-LKO or TgSesn3 to that in the WT mice. Data are presented as mean  $\pm$  SEM. \**P*<0.05.



Supplementary Figure 5. Insulin signaling analysis in HFD-fed WT and TgSesn3 mice. A: Western blot analysis of insulin signaling in the liver of WT and TgSesn3 mice fed with a HFD. B: Quantitative analysis of Panel A. Normalization was performed by calculating the ratio of each signaling event to that in the insulin-stimulated WT mice. C, D: Insulin signaling analysis in skeletal muscle and white adipose tissue of HFD-fed WT and TgSesn3 mice by Western blots, respectively. Data are presented as mean  $\pm$  SEM. \*P<0.05.



Supplementary Figure 6. The AUC analysis of GTT and ITT data in main Figure 5 (C and D). A, B: The AUC presentation of the GTT and ITT data in WT and AMPK-LDKO mice. Data are presented as mean  $\pm$  SEM. \*\*\**P*<0.001.



Supplementary Figure 7. Quantitative analysis of insulin signaling in the liver of WT and AMPK-LDKO mice. The quantitative analysis was performed for Panels E and F in main Figure 5. Normalization was performed by calculating the ratio of each signaling event to that in the GFP-transduced WT mice. Data are presented as mean  $\pm$  SEM. \**P*<0.05.



**Supplementary Figure 8. Microscopic analysis of colocalization of Sesn3 and mTORC2 complex.** (A-C) HEK293T cells were seeded on coated glass cover slips and then transfected with mCherry-Sesn3 and GFP-Rictor, GFP-Sin1 or GFP-Protor1 plasmids. Fluorescence was recorded using a confocal microscope.



**Supplementary Figure 9. Analysis of Sesn3/mTORC2/Akt interactions.** *A*: IP analysis of Sesn3-mTORC2 interaction in mouse primary hepatocytes transduced with shGFP (GFP shRNA) or shSin1 (Sin1 shRNA) adenoviruses together with GFP or Sesn3 expressing adenoviruses. *B*: IP analysis of Sesn3-mTORC2 interaction in mouse primary hepatocytes transduced with shGFP or shmTOR (mTOR shRNA) adenoviruses together with GFP or Sesn3 expressing adenoviruses.



**Supplementary Figure 10. Confirmation of Sesn2/3-mTORC2 interactions.** Specific sestrinmTORC2 interaction was analyzed in mouse primary hepatocytes transduced with either shGFP, shSesn2, or shSesn3 by IP using specific antibodies against Sesn2 and Sesn3.



# Supplementary Table 1.

| Primer Name                    | Sequence (5' to 3')                                          |
|--------------------------------|--------------------------------------------------------------|
| pShuttle-mSesn3HA-F1           | ATCAGCTAGCCACCATGAACCGCGGTGGCAG                              |
| pShuttle-mSesn3HA-R1           | ATCACTCGAGGGTCAGATGCCGAGTTATGGC                              |
| pcDNA-mSesn3HA-from-Shuttle-F1 | ATCTGCGGCCGCAGTA                                             |
| pcDNA-mSesn3HA-from-Shuttle-R1 | ATCTGCGGCCGCTATTAAGCGTAGTCAGGTACATC                          |
| pcDNA-FLAG-mSesn3-F1           | ATCAGCTAGCAACCGCGGTGGCAGCAG                                  |
| pcDNA-FLAG-mSesn3-R1           | ATCACTCGAGTCAGGTCAGATGCCGAGTTATGGCTC                         |
| pShuttle-FLAG-mSesn3-F1        | TCTATGGATATCGCCGCCACCATGGATTATAAAG                           |
| pShuttle-FLAG-mSesn3-R1        | CCCTCTAGATGCATGCTCGAG                                        |
| pcDNA-FLAG-mAkt1-F1            | ATCGGCTAGCAACGACGTAGCCATTGTGAAG                              |
| pcDNA-FLAG-mAkt1-F1            | ATCGGCTAGCTCAGGCTGTGCCACTGG                                  |
| pcDNA-FLAG-mAkt2-F1            | ATCGGCTAGCAATGAGGTATCTGTCATCAAAGAAG                          |
| pcDNA-FLAG-mAkt2-R1            | ATCGGCTAGCTCACTCTCGGATGCTGG                                  |
| pcDNA-FLAG-mPdpk1-F1           | ATCAGCTAGCATGGCCAGGACCACCAGC                                 |
| pcDNA-FLAG-mPdpk1-R1           | ATCACTCGAGTCACTGCACAGCATCTG                                  |
| pcDNA-FLAG-mPras40-F1          | ATCAGCTAGCATGGCGTCTGGGCGGCCA                                 |
| pcDNA-FLAG-mPras40-R1          | ATCACTCGAGTTAATATTTCCGCTTCAGCTTCTGGAAGTCG                    |
| pcDNA-mProtor1-FLAG-F1         | TAGCGGCCGCCATGAGGACTCTCCGCAGGTTGA                            |
| pcDNA-mProtor1-FLAG-R1         | AATTGCTAGCCACAACACTTGGCCGGCCT                                |
| pcDNA3-NSF-mSin1-F1-NheI       | ATC AGC TAG CAT GGC CTT CTT GGA CAA TCC AAC                  |
| pcDNA3-NSF-mSin1-R1-XhoI       | ATC ACT CGA GTC ACT GCT GCC CTG ATT TCT TC                   |
| pShuttle-mSin1-F1              | TCTATGGCTAGCGCCGCCACCATGGATTATAAAG                           |
| pShuttle-mSin1-R1              | CCCTCTAGATGCATGCTCGAG                                        |
| mSesn3-shRNA2-top              | CACCGGAGAAGAACATTTGCCAACATTCAAGAGATGTTGGCAAATGTTCTTCTCC      |
| mSesn3-shRNA2-bottom           | AAAAGGAGAAGAACATTTGCCAACATCTCTTGAATGTTGGCAAATGTTCTTCTCC      |
| mSin1-shRNA1-top               | CACCGCCGAAGCTCAATGACAATGTTTCAAGAGAACATTGTCATTGAGCTTCGGC      |
| mSin1-shRNA1-bottom            | AAAAGCCGAAGCTCAATGACAATGTTCTCTTGAAACATTGTCATTGAGCTTCGGC      |
| mMtor-shRNA2-top               | CACCGCATGACAAGTACTGCAAAGATTCAAGAGATCTTTGCAGTACTTGTCATGC      |
| mMtor-shRNA2-bottom            | AAAAGCATGACAAGTACTGCAAAGATCTCTTGAATCTTTGCAGTACTTGTCATGC      |
| mRictor-shRNA2-top             | CACCCAGGCCAGACCTCATGGACAATTCAAGAGATTGTCCATGAGGTCTGGCCTG      |
| mRictor-shRNA2-bottom          | AAAACAGGCCAGACCTCATGGACAATCTCTTGAATTGTCCATGAGGTCTGGCCTG      |
| pET24-mProtor1-F1              | GCTGGAATTCGCCGCCA                                            |
| pET24-mProtor1-R1              | TCTCAAGCTTTTTATCATCATCATCTTTATAATCCTCTCCG                    |
| pET24-RICTOR-C900-F1           | TATAGGATCCATGGATTATAAAGATGATGATGATAAACTCTCCATTCCAAAAGGATTTTC |
| pET24-RICTOR-C900-R1           | TATACTCGAGGGATTCAGCAGATGTATCAACTATA                          |
| pET24-mSin1-F1                 | GCTGGAATTCGCCGCCA                                            |
| pET24-mSin1-R1                 | ATTACTCGAGCTGCCGGATTTCTTCTCC                                 |
| pET24-mSesn3-F1                | ATCAGCTAGCAACCGCGGTGGCAGCAG                                  |
| pET24-mSesn3-R1                | ATCACTCGAGGGTCAGATGCCGAGTTATGGC                              |

| pEGFP-mSin1-F1        | TATACTCGAGGCCTTCTTGGACAATCCAACTAT         |
|-----------------------|-------------------------------------------|
| pEGFP-mSin1-F1        | TATCGGTACCTAACTGCACATCCGTCGTG             |
| pEGFP-mProtor1-F1     | GCTGGAATTCGCCGCCA                         |
| pEGFP-mProtor1-R1     | TCTCAAGCTTTTTATCATCATCATCTTTATAATCCTCTCCG |
| pLP-mCherry-mSesn3-F1 | ATGGCGCGCCAACCGCGGTGGCAGCA                |
| pLP-mCherry-mSesn3-R1 | GCTTAATTAATCAGGTCAGATGCCGAGTTATGG         |
| mSesn3-qPCR-F2        | GGATGTTGACACGACCACAC                      |
| mSesn3-qPCR-B2        | TAAACCTTCAGGCTCCGTTC                      |
| mSesn3-Loxp-PCR-F1    | CAGAAACCTGCAGTTGTG                        |
| mSesn3-Loxp-PCR-R1    | CCATAATGCAACACTAAGTCA                     |
| mSesn3-Tg-PCR-F1      | AAGGGAGCTGCAGTGGAGTA                      |
| mSesn3-Tg-PCR-R1      | CTTTAAGCCTGCCCAGAAGA                      |
| mSesn3-Tg-PCR-R2      | GGAAAGTCCCTATTGGCGTTA                     |
| AMPKa1-loxp-PCR-F1    | СССАССАТСАСТССАТСТСТ                      |
| AMPKa1-loxp-PCR-F1    | AGCCTGCTTGGCACACTTAT                      |
| AMPKa2-loxp-PCR-F1    | GCAGGCGAATTTCTGAGTTC                      |
| AMPKa2-loxp-PCR-F1    | TCCCCTTGAACAAGCATACC                      |
| Cre-PCR-Primer 42     | CTAGGCCACAGAATTGAAAGATCT                  |
| Cre-PCR-Primer 43     | GTAGGTGGAAATTCTAGCATCATCC                 |
| Cre-PCR-Primer 567    | ACCAGCCAGCTATCAACTCG                      |
| Cre-PCR-Primer 568    | TTACATTGGTCCAGCCACC                       |