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A. Derivation of equation 4 for a basic Hodgkin-Huxley model
We demonstrate the derivation of Eq. 4 for the following original Hodgkin-Huxley
model for the squid's giant axon that incorporates capacitive, ion (sodium and

potassium), leakage and stimulation currents [1]:
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where gyq and gx [US/UF] are the sodium and potassium channel conductivities
(both nonlinear functions of v,, and t due to gating kinetics), g, [US/uF] is the
membrane leakage conductivity, E, [mV] is the reversal potential of the x current,

where x € {Na, K, L}, and I, [nA/nF] is a prescribed external current. By defining,
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Eq. Al can be written as,
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which is similar to Eq. 4.

B. Analytical expression for deterministic g,, (Vy,, t)
An analytical expression for g, (v, t) was derived from the kinetics model of

Severi et al. [2], as follows,

gm(Vm, ) =G1+G2+G3 + G4+ G5+ G6+ G7 + G8 + G9, (B1)
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For the definition of variables and coefficients in Eqs. B2-B10, refer to Severi et al.
model [2]. gm (V) Was calculated using Eq. B1 using the state variable values during
a deterministic action potential, and is shown in Fig. S1 in the vicinity of v,,;, and for
voltages corresponding to phase 4 depolarization (panels A and B, respectively).

In Eq. 22, the deterministic values of p and g, during phase 4 depolarization, and
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in the vicinity of v,,;, are needed. Given the
VUmint6

the values of g,, and

deterministic action potential v,,(t), u(v,,) during phase 4 depolarization was
calculated according to Eq. 4 (setting & = 0) using the g,, values from Fig. S1 panel
B. The results given in Fig. S1 panel C demonstrate a monotonic, non-linear
relationship between u and v,,, with u varying between -42 to -32 mV for voltages
between -55 to -45 mV, that correspond to the major segment of phase 4
depolarization. Therefore, we took u = —37mV as an approximated constant value
during that phase. As shown in panel B, during phase 4 depolarization g,, increases

with v,, in an approximately linear curve, albeit with a relatively small slope of

Zzﬁ~0.34 s™1/mV. We therefore approximated g,, as constant during that phase

with a value of g,, = 10uS/uF. At Vyin, 9m(vim) is non-differentiable, as seen in

panel D. We therefore considered in Eq. 13 and forward the values of g,,(v,,) and
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Figure S1. Mathematical analysis of the deterministic general conductivity, ¢,,(v,,) and the

general voltage term, ((vy,,). (A) gm (V) for "end-diastolic" voltage region. (B-C) g,,(v,,) (panel B)
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and u(vy,) (panel C) for phase 4 depolarization voltage region. (D) for "end-diastolic"

voltage region.
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