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Interbeat Interval Modulation in the Sinoatrial Node as a Result of
Membrane Current Stochasticity—A Theoretical and Numerical Study
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ABSTRACT A single isolated sinoatrial pacemaker cell presents intrinsic interbeat interval (IBI) variability that is believed to
result from the stochastic characteristics of the opening and closing processes of membrane ion channels. To our knowledge,
a novel mathematical framework was developed in this work to address the effect of current fluctuations on the IBIs of sinoatrial
pacemaker cells. Using statistical modeling and employing the Fokker-Planck formalism, our mathematical analysis suggests
that increased stochastic current fluctuation variance linearly increases the slope of phase-4 depolarization, hence the rate of
activations. Single-cell and two-dimensional computerized numerical modeling of the sinoatrial node was conducted to validate
the theoretical predictions using established ionic kinetics of the rabbit pacemaker and atrial cells. Our models also provide, to
our knowledge, a novel complementary or alternative explanation to recent experimental observations showing a strong reduc-
tion in the mean IBI of Cx30 deficient mice in comparison to wild-types, not fully explicable by the effects of intercellular
decoupling.
INTRODUCTION
The heart rate of a healthy subject shows normal fluctuation
behavior called heart rate variability (HRV). HRV sustains
complex temporal pattern and not all of its components
are well understood. While it is well established that the
HRV is modulated by the autonomic nervous system that in-
nervates the sinoatrial node (SAN) via both sympathetic and
parasympathetic tracts, a single isolated sinoatrial pace-
maker cell also presents intrinsic interbeat interval (IBI)
variability (1). Those IBI fluctuations are believed to result
from the stochastic characteristics of the opening and clos-
ing processes of membrane ion channels, which is at the
center of this work.

The ion channels behave stochastically, but because a
typical cardiac myocyte contains greater than O(103) ion
channels of each type (2), continuous deterministic equa-
tions (e.g., of the Hodgkin-Huxley type) are considered suf-
ficient to describe their kinetics in most models. Recently,
however, there is an increasing interest to incorporate ion-
channel stochasticity into cardiac electrophysiology models,
due to accumulating evidence regarding its importance in
both simulation and experimental studies. For example,
the stochastic behavior of ion channels in ventricular myo-
cytes of guinea pigs was shown to cause action potential
duration (APD) variability even when the heart rate was
kept constant (3). Tanskanen et al. (4) have demonstrated
in simulations using canine ventricular myocyte kinetics
that fluctuations in the L-type Ca2þ current during the
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plateau phase of the AP result in APD variability and in
an increased likelihood of early-after-depolarizations. Le-
may et al. (5), Pueyo et al. (6), and Heijman et al. (7) showed
that stochastic gating of Kþ and Naþ channels in ventricular
myocytes affect beat-to-beat variability of repolarization in
canine, guinea pig, and human hearts; Lemay et al. (5)
showed additionally that ion-channel stochasticity may
cause variability in conduction time. These studies clearly
point out the relevance of ion-channel stochasticity, at least
when considering ventricular myocyte models.

In the SAN pacemaker cells, Wilders and Jongsma (1)
were among the first to observe that stochastic channel
gating may cause intrinsic stochastic IBI. They showed
that a single isolated cell of a rabbit SAN does not beat
in a constant rate but actually beats irregularly and that
this IBI irregularity could be reconstructed by the SAN ki-
netic model when adding stochasticity to the ion channels.
Consistent findings were later published by Guevara and
Lewis (8) using a Monte Carlo model, further supporting
the hypothesis that the irregular beating of a single SAN
cell is due to the random behavior of the channels. Ponard
et al. (9) have extended these studies to pacemaker cell tis-
sues, and evaluated the effect of IBI irregularity in single
cells on the rate variability of the global tissue. By
modeling three putative origins for IBI, i.e., stochastic
gating, stochastic calcium release, and turnover of ion
channels, the authors found that the ion channel long-
term turnover induces variability pattern that may explain
the power-law behavior of HRV.

Although a single pacemaker cell (10) or a ventricular
myocyte cell (3) presents IBI and APD variability
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(respectively), this variability is normally suppressed in the
tissue cells congregation due to the gap-junction electro-
tonic coupling (3,10). The electrotonic coupling is a
term referring to the continuous conductive network
formed by the expression of conductance channels, or
gap-junctions, linking the intracellular space of one myo-
cyte to its neighboring myocytes. Thus, direct spread of
current in the myocardium is possible without the genera-
tion of new current by APs. The gap-junctions are formed
by connexin proteins (Cx), and there are several types of
connexins in the mammalian heart. In the mice SAN cells,
e.g., gap-junctions are predominantly formed by Cx45,
Cx30, and Cx30.2 (11,12). While Cx45, and Cx30.2 are
not unique to the SAN, Cx30 is uniquely expressed in
the SAN (13).

A previous study has found that when N individual
pacemaker cells are coupled with gap-junctions, the IBI
variability decreases proportionally to

ffiffiffiffiffiffiffiffiffi
1=N

p
(10). In

other words, the rate variability is impeded by an
increased electrical coupling among cells. The electrical
coupling among SAN cells was also found experimen-
tally to affect the mean IBI. Gros et al. (13) character-
ized the role of Cx30 in adult mouse hearts, by
comparing several cardiac physiology parameters in con-
trol and in Cx30-deficient mice. They found that Cx30-
deficient mice exhibited a ~10% faster heart rate in
comparison to control mice. This moderate tachycardia
was present even after the injection of atropine and pro-
pranolol that inhibits the autonomic nervous system
(ANS), suggesting that the rate difference between the
two mouse groups was strictly related to the intrinsic
electrical properties of the SAN pacemaker cells. The
moderating effect of the intercellular electrical coupling
via gap-junctions on both IBI variability and mean value
is intuitively attributed to the low-pass effect of the
electrotonic network established by this coupling. Never-
theless, the exact interrelations among cellular stochastic-
ity, IBI variability, mean IBI, and intercellular coupling
are not fully known.

In this work we conduct a theoretical analysis using the
Fokker-Planck equation (also known as the Kolmogorov
forward equation) and we establish a mathematical rela-
tionship between the membrane voltage variance and the
mean IBI. Using this novel formulation, we show that
with the increasing voltage membrane stochasticity, in
addition to the increased beat interval stochasticity, the
mean IBI decreases as well. We then demonstrate this prin-
ciple in numerical simulations of the SAN by employing an
updated rabbit SAN model (14). The simulations include
single-cell and SAN pacemaker tissue. Our mathematical
analysis and numerical simulations show how gap-junction
coupling, which reduces the membrane voltage variance,
also affects the mean heart rate, in a consistent way with
the in vivo experiments of Gros et al. (13) on Cx30-defi-
cient mice.
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MATERIALS AND METHODS

Theoretical modeling

In this section, we develop a mathematical framework that links between

stochasticity in the ion-channel gating and the mean IBI in a sinoatrial pace-

maker cell. Using the conventional parallel conductor formulation and

Kirchhoff’s current law, the cellular membrane voltage, vm (mV), is

described by the following differential equation:

vvm
vt

¼ �
X

Iion: (1)

Here,
P

Iion (pA/pF) represents the summation over all membrane ionic

currents (ion channels, pumps, and exchangers). Next, we incorporate an
additional stochastic global current Ifluct, which represents the fluctuations

of the transmembrane current that are caused due to the stochastic opening

and closing of the ion channels (10). Ifluct is defined similarly to the work by

Ponard et al. (9) by employing the following Ornstein-Uhlenbeck process:

Ifluctðt þ dtÞ ¼ IfluctðtÞ � bIfluctðtÞ � Dt þ x

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � b � Dt

p
� nðtÞ; (2)

where n(t) is a normalized zero-mean Gaussian white noise value with a

standard deviation of 1 and b ¼ 0.7 ms�1 is a rate constant. This results

in Ifluct having a Gaussian distribution with zero mean and a standard devi-

ation of x (pA/pF). In this way, the need of explicitly developing and using

Markovian models for each channel separately was avoided, dramatically

reducing the computational complexity of the simulations. Consequently,

a noise term is added to Eq. 1, so that

vvm
vt

¼ �
X

Iion þ x � nðtÞ: (3)

Without loss of generality, the first term in the right-hand side of Eq. 3 can

be rewritten by separating all elements that are multiplied by vm or by a

nonlinear function of vm, yielding

vvm
vt

¼ �gmðvm; tÞ½vm � mðvm; tÞ� þ x � nðtÞ; (4)

where gm(vm,t) is a general normalized conductivity term (mS/mF) and is a

nonpolynomial function of vm and of time, and m(vm,t) is a general voltage

term that is also a nonpolynomial function of vm and of time. For an

example of how Eq. 4 is derived for a basic Hodgkin-Huxley model, refer

to Section SA in the Supporting Material. Using Eq. 4, we can assume that

vm is normally distributed with a time-varying mean M(t) and a constant

variance s, so that its probability density function, P(vm,t), is

Pðvm; tÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
� exp

(
� ðvm �MðtÞÞ2

2s2

)
bG: (5)

The temporal evolution of P(vm,t) can be established by solving the

following Fokker-Planck equation (15) applied to Eq. 4:

vPðvm; tÞ
vt

¼ v

vvm
fPðvm; tÞ � gmðvm; tÞ

� ðvm � mðvm; tÞÞg þ v2

vv2m
fPðvm; tÞ � xg:

(6)

Using Eq. 5, the left-hand side of Eq. 6 becomes
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vPðvm; tÞ
vt

¼ G � ðvm �MðtÞÞ
s2

� vMðtÞ
vt

; (7)

the first term in the right-hand side of Eq. 6 becomes

v

vvm
fPðvm; tÞ� gmðvm; tÞ�ðvm�mðvm; tÞÞg¼G�gmðvm; tÞ

� G � gmðvm; tÞ � v

vvm
mðvm; tÞ

� G � gmðvm; tÞ � ðvm � mðvm; tÞÞ � ðvm �MðtÞÞ
s2

þ G � ðvm � mðvm; tÞÞ vgmðvm; tÞ
vvm

¼ G � gmðvm; tÞ

� G � gmðvm; tÞ � v

vvm
mðvm; tÞ � G � gmðvm; tÞ

�
�ðvm�MðtÞÞ2þMðtÞðvm�MðtÞÞ�mðvm; tÞðvm�MðtÞÞ�

s2

þ G � ððvm �MðtÞÞ þ ðMðtÞ � mðvm; tÞÞÞ vgmðvm; tÞ
vvm

;

(8)

and the second term of the right-hand side of Eq. 6 becomes
v2

vv2m
fPðvm; tÞ � xg ¼ � x � 1

s2
� Gþ x� 1

s4
� G

� ðvm �MðtÞÞ2:
(9)

InsertingEqs. 7–9 intoEq. 6, and equating the sumof coefficients of vm –M(t)

in both sides of the obtained equation to ensure the solution to any vm, yield
A B

C D
vMðtÞ
vt

� G

s2
¼ �gmðvm; tÞ � MðtÞ � G

s2

þ gmðvm; tÞ � m � G

s2

þ vgmðvm; tÞ
vvm

� G:

(10)

By dividing Eq. 10 by G/s2, we finally get
vMðtÞ
vt

¼ �gmðvm; tÞ � MðtÞ þ gmðvm; tÞ � mðvm; tÞ

þ vgmðvm; tÞ
vvm

� s2: (11)

Note that Eq. 11 is essentially the same as Eq. 4 when x ¼ 0 and for vm ¼
M(t). As we show later in Fig. 6, the IBI is mostly determined by the sto-
chasticity in the phase-4 depolarization of the AP, rather than by the sto-

chasticity in the APD or the minimal vm value (end-diastolic value, vmin).

This can be understood from the much larger impact of the membrane

voltage fluctuations on the phase-4 depolarization slope in comparison

to the impact on the two other parameters (as will be demonstrated

later in Fig. 5). Because we are interested in the relationship between

the ion-channel stochastic fluctuations and the sinoatrial cell IBI, we

henceforward focus on the depolarization phase, phase 4, of the pace-

maker AP. This phase can be typically approximated as linear during

the time interval between the minimal vm value and the threshold value

of vm ¼ �40 mV (Fig. 1 A). Consequently, we can approximate M(t) dur-

ing this phase by

MðtÞzMmin þ vMðtÞ
vt

� t; (12)
FIGURE 1 (A) Linear approximation of phase-4

depolarization in a deterministic model of a pace-

maker cell. The linear phase can be roughly attrib-

uted to the depolarization phase from end-diastolic

voltage to vm¼�40 mV. (B–D) Procedure steps for

extracting M(t), vM(t)/vt, and s2 from stochastic

simulation data. In the first step, Mi(t) during

each phase-4 depolarization interval i is approxi-

mated by linear curve fitting (B, bold traces).

Next, the fitted Mi(t) values are subtracted from

the membrane voltage signal vm(t) during the

phase-4 intervals. All other intervals are assigned

with an artificial value of 0 (C). Finally, a phase-4

signal is generated by concatenating the subtracted

signal segments that temporally correspond to

phase-4 depolarization (D).

Biophysical Journal 108(5) 1281–1292
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and Eq. 11 becomes

vMðtÞ
vt

¼ � gmðvm; tÞ �
�
Mmin þ vMðtÞ

vt
� t

�

þ gmðvm; tÞ � mðvm; tÞ þ vgmðvm; tÞ
vvm

� s2:

(13)

To find an approximation for Mmin, we return to Eq. 11 and apply it for

M(t) ¼ Mmin þ d (d << 1, s 0) because
vgmðvm; tÞ
vvm

/�N

at vmin (see Section SB in the Supporting Material). As in the vicinity of the

minimum point vM(t)/vt z 0, we get
0z� gmðvmin; tÞ � Mmin þ gmðvmin; tÞ � mðvmin; tÞ

þ vgmðvm; tÞ
vvm

����
vminþd

� s2;
(14)

and solving for Mmin, we get

Mminzmðvmin; tÞ þ 1

gmðvmin; tÞ � vgmðvm; tÞ
vvm

����
vminþd

� s2:

(15)

Because in the deterministic case Mmin (s
2 ¼ 0) ¼ vmin,det, we can write

Mminzvmin;det þ 1

gmðvmin; tÞ � vgmðvm; tÞ
vvm

����
vminþd

� s2: (16)

Inserting Eq. 16 into Eq. 13, we obtain for phase 4,

vMðtÞ
vt

z� gmðvm; tÞ �
�
vmin;det þ 1

gmðvmin; tÞ
� vgmðvm; tÞ

vvm

����
vminþd

� s2 þ vMðtÞ
vt

� t

�

þ gmðvm; tÞ � mðvm; tÞ þ vgmðvm; tÞ
vvm

� s2;

(17)

and thus,

vMðtÞ
vt

� ð1þ gmðvm; tÞ � tÞz� gmðvm; tÞ

�
�
vmin;det þ 1

gmðvmin; tÞ � vgmðvm; tÞ
vvm

����
vminþd

� s2

�

þ gmðvm; tÞ � mðvm; tÞ þ vgmðvm; tÞ
vvm

����
phase 4

� s2:

(18)

In the deterministic case (s2 ¼ 0, M(t) ¼ vm(t)), the kinetic model yields a

phase-4 slope of ~112 mV/s and vmin,det ¼ �58 mV. Therefore, by setting

s2 ¼ 0 in Eq. 18, we get

112 � ð1þ gmðvm; tÞ � tÞzgmðvm; tÞ � 58

þ gmðvm; tÞ � mðvm; tÞ;
(19)
Biophysical Journal 108(5) 1281–1292
so when applied back to Eq. 18, we have

vMðtÞ
vt

z112� 112

ðmðvm; tÞ þ 58Þ
�

�
1

gmðvmin; tÞ � vgmðvm; tÞ
vvm

����
vminþd

� s2

�

þ 112

gmðvm; tÞ � ðmðvm; tÞ þ 58Þ
� vgmðvm; tÞ

vvm

����
phase 4

� s2:

(20)

We now apply the mean operator, E{,}, on both sides of Eq. 20 to obtain

E

�
vMðtÞ
vt

	
z112� A � s2; (21)

where A is defined by

A ¼ E

�
112

ðmðvm; tÞ þ 58Þ �
�

1

gmðvmin; tÞ

� vgmðvm; tÞ
vvm

����
vminþd

�
� 112

gmðvm; tÞ � ðmðvm; tÞ þ 58Þ

� vgmðvm; tÞ
vvm

����
phase 4

	
:

(22)

It is reasonable to assume that the mean values in Eq. 22 equal the determin-

istic values. As shown in Section SB in the Supporting Material, during the

deterministic phase-4,

mðvm; tÞz� 37 mV;

gmðvm; tÞz10mS=mF;
and

vgmðvm; tÞ
vvm

z0:34 s�1


mV;

while at vmin þ d,

gmðvmin þ d; tÞz6:6mS=mF;

and

vgmðvm; tÞ
vvm

����
vminþd

z� 10 s�1


mV:

Substituting these values in Eqs. 22 and 21, we eventually obtain

E

�
vMðtÞ
vt

	
z112þ 8:3 � s2: (23)

Equation 23 provides a direct relationship between the mean stochastic de-

polarization slope (vM(t)/vt) and the voltage variance s2 (which is a product

of the stochastic Ifluct from Eq. 2). The slope directly affects the IBI and

hence the activation rate. When the slope increases, the IBI accordingly de-

creases, and vice versa. Therefore, Eq. 23 suggests that when the membrane
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voltage variance s2 increases, vM(t)/vt increases in direct proportion, and so

the IBI is decreased.
Biophysical modeling

We employed a recent mathematical model of the ion kinetics of a rabbit

pacemaker SAN cell as described by Severi et al. (14). It includes 33 state

variables, with (ACh) ¼ 0. Simulations were conducted for either a single

SAN cell or a two-dimensional tissue. Single-cell simulations were per-

formed by numerically solving Eq. 1 using Euler temporal integration

with a resolution of Dt ¼ 10�7 s, and setting the membrane capacitance

in the kinetic model in Severi et al. (14) to Cm ¼ 3.2 � 10�5 mF. Two-

dimensional simulations were performed by solving the following reac-

tion-diffusion partial differential equation, which is an expansion of Eq. 1

using the cable theory under the mono-domain approximation:

vvm
vt

¼ �
X

Iion þ VðDVvmÞ: (24)

Here D (mm2/s) is the diffusion coefficient. Our two-dimensional models
consisted of a SAN region of size 4 � 6 mm (similar to the physiological

dimension of the rabbit SAN tissue (16)), surrounded by a rabbit atrial

region, giving a total tissue size of 6 � 10 mm (see Fig. 2). For the atrial

region in the model geometry, the rabbit atrial myocyte ionic kinetics

of Lindblad et al. (17) were adopted with a membrane capacitance of

Cm ¼ 5 � 10�5 mF. The reference diffusion coefficients were set to

D ¼ 4.5 and D ¼ 100 mm2/s for the SAN and atrial regions, respectively.

This yielded planar physiological conduction velocities of 0.065 and

0.45 m/s in the SAN and the atrial regions, correspondingly (18,19). Equa-

tion 24 was discretized and linearized using the finite-difference method
FIGURE 2 Two-dimensional model geometrical configuration. A 4 �
6 mm SAN region is surrounded by atrial tissue, resulting in a 6 �
10 mm overall tissue size. The capacitance and conductivity within the

SAN region were a function of the distance d (mm) between a local point,

p(x,y), and the center of the tissue.

GpðdÞ ¼ ð10:5 � 10�5 � CmðdÞÞ þ 5

10:5 � 10�5 �
and Euler temporal integration with spatial and temporal resolutions of

Dx ¼ 0.1 mm and Dt ¼ 10�7 s, respectively. The 100-s- and 200-s-long

electrical activity was simulated for single-cell and two-dimensional simu-

lations, respectively, to ensure reaching steady state.

The SAN tissue is highly heterogenic; this heterogeneity can be observed

when comparing cellular biophysics of cells from the center of the SAN tis-

sue or its periphery, close to the atrial tissue (20). The central SAN cells pre-

sent lower activation rate; e.g., the IBI ratio between a central and peripheral

cell is ~3:2. A second heterogeneity relates to the AP magnitude, which is

higher in peripheral cells than in central cells. These differences in cellular

biophysics can be attributed to spatial gradients in membrane capacitance

and ion-channel conductance. To account for these spatial heterogeneities

inside the SAN, we followed the work of Zhang et al. (18) that originally

modeled the capacitance and conductance gradients along a one-dimen-

sional model, and expanded it to two-dimensional SAN tissue. Conse-

quently, the pacemaker membrane capacitance (in mF) was modeled as

CmðdÞ ¼ 3:2 � 10�5 þ 1:07 � ðd � 0:1Þ

3 �
"
1þ 0:7745 � e

�
�
d�2:05
0:295

�#

� �
6:08 � 10�5 � 3:2 � 0�5

�
;

(25)

where d is the distance in millimeters of the cell from the SAN tissue center

(Fig. 2). Using Eq. 25, the minimal Cm is obtained at the center of the SAN
tissue (d ¼ 0, Cm ¼ 3.2 � 10�5 mF, equal to the original model value from

Severi et al. (14)), while the maximal Cm is obtained at a peripheral cell

(d ¼ 7.2, Cm ¼ 10.5 � 10�5 mF). The spatial modulation in the maximal

conductivity of an ion channel was implemented by setting
� ðCmðdÞ � 3:2 � 10�5Þ
3:2 � 10�5

� Gpð0Þ; (26)
whereGp(0) (mS) is the conductivity of an ion channel of specific type (e.g.,

p ¼ If or p ¼ L – type Ca2þ) at the SAN center, as defined in the model of

Severi et al. (14). From Eq. 26, the peripheral currents can be up to five

times stronger than the central currents, in accordance with previous publi-

cations (21).
Simulation methods and data analysis

All simulations were performed using Cþþ code, running on a high-perfor-

mance computing cluster computer (Altix X86-PTO; Silicon Graphics In-

ternational, Milpitas, CA) with a master node (eight cores, Xeon 2.5 GHz

processor; Intel, Santa Clara, CA) and two computational nodes (48 cores,

Xeon 2.8 GHz; Intel). Data analysis and visualization were performed with

MATLABR2014b (TheMathWorks, Natick, MA). Typical 1-s-long electri-

cal activity simulation in a two-dimensional model with Dt ¼ 10�7 s took

~20 min. Where relevant, results are represented as mean values and stan-

dard deviation.

Using the notion of Ifluct defined in Eq. 2, it is understood that in single-

cell models Ifluct exhibits the sole contribution to membrane voltage fluctu-

ations (as manifested by s2). However, in two-dimensional models, both

Ifluct as well as the diffusion coefficient, D, determine s2. Therefore, in sin-

gle-cell simulations we demonstrated the effect of s2 on the mean IBI and in

two-dimensional models we showed the effect of x2, the fluctuation current

variance, on the mean IBI during intercellular decoupling. To measure the

IBI, activation times were first determined as the times that the membrane

voltage crosses the threshold of vm ¼ �30 mV during depolarization (9).
Biophysical Journal 108(5) 1281–1292
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The beat interval between adjacent beats was determined as the time be-

tween two successive activations.

In several simulations, we numerically estimated E{vM(t)/vt} and s2

from Eq. 23. For that purpose, we first extractedM(t) and its slope vM(t)/vt

during phase-4 of the APs by performing linear regression best-fit analyses.

The best linear fit was subtracted from the phase-4 voltage data to isolate

the stochastic component of the signal (see an example in Fig. 1, B–D).

This procedure was repeated for all APs along the 100-s-long simulation.

E{vM(t)/vt} was calculated as the mean of vM(t)/vt for all beats. The vari-

ance for the combined phase-4 segments was defined as s2, and it was

updated for each case of stochastic simulation.
C

FIGURE 4 The effect of current (and thus voltage) stochasticity on the

IBI. (A and B) IBI as a function of the beat number for deterministic

(bold line) and stochastic (thin line) models. (Dashed bold line) Mean sto-

chastic IBI. Two levels of stochasticity are presented: s2 ¼ 5.5 mV2 (A) and

s2 ¼ 11.5 mV2 (B). (C) Mean IBI as a function of s2.
RESULTS

Single-cell simulations—stochasticity effect on
mean IBI

Ion-channel stochasticity was applied in single-cell simula-
tions by the addition of Ifluct as in Eq. 2 with standard de-
viation values, x, between 0 and 2 (pA/pF), and the
resulting AP phase-4 variance, s2, was estimated as
detailed in the Materials and Methods. The upper limit
for x of 2 pA/pF was set following Ponard et al. (9),
showing that higher standard deviation values result in un-
realistic oscillations. The relationship between s2 and x2 is
shown in Fig. 3, demonstrating a strong linear correlation
between the two variances (s2 z 20x2, R2 ¼ 0.98,
p-value < 0.05). As s2 is a more direct parameter when
examining the effect of stochasticity on the single SAN
pacemaker cell AP and IBI than x2 (see, e.g., Eq. 23),
and because s2 and x2 are linearly correlated (Fig. 3), we
will henceforward present and analyze the role of s2 in
the single SAN pacemaker cell activity. An example for
the effect of stochasticity in membrane voltage on the
IBI is given in Fig. 4. The figure presents the IBI signal
(thin line) as a function of the beat number for single-
cell simulations with two levels of stochasticity: low
stochasticity (s2 ¼ 5.5 mV2, Fig. 4 A) and high stochastic-
ity (s2 ¼ 11.5 mV2, Fig. 4 B). The bold solid line in
each panel represents the deterministic intrinsic IBI value
FIGURE 3 The relationship between the membrane voltage variance, s2,

and the stochastic fluctuation current variance, x2. A linear fit was found

(p-value < 0.05).
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(355.0 ms), while the dashed line represents the mean
IBI value, E{IBI}.

As can be seen from these two examples, increased sto-
chasticity resulted in a reduction of the mean IBI, from a
value of 355.0 ms in the deterministic case to 339.0 ms
and to 315.5 ms (for s2 ¼ 5.5 mV2 and s2 ¼ 11.5 mV2,
respectively), or alternatively to increased mean activation
rate from 2.8 Hz in the deterministic case to 3.0 Hz and to
3.2 Hz. Fig. 4 C summarizes the relationship between the
mean IBI and s2. The data are comprised of all the beats
during the 100-s-long simulation for each value of s2. The
results show a monotonic and significant decrease in the
mean IBI as s2 increases, which can be approximated by
the following exponential expression (R2 ¼ 0.99, Spearman
correlation coefficient r ¼ �0.61, p-value < 0.05):

EfIBIg ¼ 254:439þ 103:8245

� exp
��0:0462 � s2

�
:

(27)

To establish the relative importance of the slope of phase-4
depolarization in determining E{IBI}, the following
approximation was employed:

EfIBIgzEfAPD0O3g þ �40� Efvming
Efslopeg : (28)

Here E{vmin} (mV) is the mean minimal vm value (end-dia-
stolic value), E{APD0þ3} (ms) denotes the mean duration of
the AP excluding the linear segment of phase 4 (i.e.,
from the point of positive crossing of the threshold of
vm ¼ �40 mV to the next vmin), and
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Efslopeg ¼ E

�
vMðtÞ
vt

	

is the mean linear slope of phase 4. Fig. 5 demonstrates the
effect of s2 on E{APD }, E{v }, and E{slope}. Panel A
0þ3 min

shows two examples of the SAN membrane voltage corre-
sponding to deterministic (s2 ¼ 0, in dashed thin line) and
stochastic (s2 ¼ 11.5 mV2, in solid thin line) simulations.
The fitted linear curves during phase-4 depolarization are
marked in bold lines. Other than the obvious noisier signal
for the stochastic case, stochastic current fluctuations re-
sulted in reduced vmin (�70.8 vs.�58.0 mV, for the stochas-
tic and deterministic cases, respectively) and in increased
phase-4 depolarization slope (374.8 vs. 112.3 mV/s,
for the stochastic and deterministic cases, respectively). In
contrast, APD0þ3 did not change significantly (194.0 vs.
192.0 ms, for the stochastic and deterministic cases,
respectively).

The results for all beats and for all values of s2 are sum-
marized in Fig. 5, B–D. While no monotonic effect of s2 on
E{APD0þ3} was found (Fig. 5 B, r ¼ �0.08, p-value <
0.05), a monotonic exponential decrease in E{vmin} and a
monotonic linear increase in E{slope} were found as s2

increased (Fig. 5,C andD). The exponential relationship be-
tween E{vmin} and s2 followed the expression (R2 ¼ 0.99,
r ¼ �0.63, p-value < 0.05)

Efvming ¼ �76:6þ 18:57 � exp
��0:04 � s2

�
; (29)

while the linear relationship between E{slope} and s2 fol-
2
lowed the expression (R ¼ 0.99, r ¼ 0.55, p-value < 0.05)
A B

C D

FIGURE 5 The effect of membrane voltage variance (s2) on main deter-

minants of the IBI. (A) Examples for typical APs of deterministic (thin

dashed line) and stochastic (thin line) models. (Bold lines) Best-fit phase-4

depolarization linear slopes. (B) APD as a function of s2. (C) End-diastolic

voltage, vmin, as a function of s2. (D) Phase-4 depolarization slope as a

function of s2.
Efslopeg ¼ 112:3þ 9:5 � s2: (30)

These results also demonstrate a much larger relative impact

of membrane voltage fluctuations on the phase-4 depolariza-
tion slope in comparison to the impact on the two other pa-
rameters. The increase of s2 from 0 to 80 mV2 resulted in
an ~700% increase in E{slope} from ~100 to ~800 mV/s,
whereas E{vmin} decreased by a much lower relative value
of ~30% and E{APD0þ3} exhibited a maximum increase
of ~15%. Equation 30 provides a numerical validation to
the theory leading to Eq. 23, by which a linear relationship
between E{slope} and s2 was indeed predicted. Moreover,
the numerical slope of this linear correlation obtained
from Eq. 30 (9.5 mV�1/s) is relatively close to the predicted
value of 8.3 mV�1/s, given by Eq. 23. The ~13% deviation
between the numerical and theoretical slopes may be attrib-
uted to inaccuracies due to the assumptions and simplifica-
tions taken for the analytical analysis leading to Eq. 23, as
well as to numerical estimation errors for either the s2 or
phase-4 slope.

Following the dependencies of E{APD0þ3}, E{vmin}, and
E{slope} on s2, as established in Fig. 5, Eq. 28 was em-
ployed to assess which of these three parameters exhibits
the largest relative impact on E{IBI}. Fig. 6 shows E{IBI}
as a function of s2 in five curves. The black curve is a refer-
ence curve in which E{IBI} was directly retrieved from the
simulation results (essentially the same curve as Fig. 4 C).
For the cyan curve, E{IBI} was calculated using Eq. 28, em-
ploying E{APD0þ3}, E{vmin}, and E{slope} values for the
various s2 from Fig. 5, B–D. The similarity between the
FIGURE 6 Analysis of the relative contribution of varying APD, vmin,

and slope (with respect to their deterministic values) to the mean IBI.

(Black) Reference simulation curve. (Cyan graph) Mean IBI was calculated

from the three major determinants using Eq. 28. (Red, green, and blue

graphs) Only one determinant was free to vary due to stochasticity (slope,

vmin, and APD for the red, green, and blue graphs, respectively), while the

other two were fixed to their deterministic value. To see this figure in color,

go online.
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reference black curve and the cyan curve suggests the valid-
ity of the approximation in Eq. 28. For each one of the last
three curves, two of the parameters (E{APD0þ3}, E{vmin},
or E{slope}) were fixed to their corresponding deterministic
values at s2 ¼ 0, while the third parameter (the free param-
eter) was varied as a function of s2 in accordance with the
ones in Fig. 5, B–D.

The free parameters for the blue, green, and red curves
were E{APD0þ3}, E{vmin}, and E{slope}, respectively. As
shown in Fig. 6, the original trend of reducing E{IBI}
with increasing s2 (black and cyan curves) was preserved
only in the red curve, in which E{slope} was the free param-
eters and E{APD0þ3} and E{vmin} were fixed to their deter-
ministic values. This curve also presented the closest
distance to either the black or the cyan curves. When E
{slope} was fixed to its deterministic value, increasing s2

had either a minor effect on E{IBI} (blue curve, for which
E{APD0þ3} was the free parameter), or even an opposite
effect of increasing rather than decreasing E{IBI} (green
curve, for which E{vmin} was the free parameter). In conclu-
sion, the analysis in Fig. 6 supports our notion that the mod-
ulations in E{slope} due to varying s2 values sustain the
major impact on the resulting consequential modulations
in E{IBI}. While the variations in E{vmin} due to varying
A B

C D

E F
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s2 values are substantial, as can be seen from Fig. 5 C,
they exhibit only a secondary minor effect on E{IBI}.
Two-dimensional tissue simulations—the
gap-junction effect on channel stochasticity

Two-dimensional simulations were performed using the het-
erogenic SAN model as described in Materials and
Methods. Using Eqs. 25 and 26, intrinsic physiological
spatial variations in the pacemaker activation rates were ob-
tained when the cells were isolated from the tissue matrix.
For example, Fig. 7 A shows the membrane voltage of two
isolated, single pacemaker cells: a peripheral cell in red
and a central cell in blue. These graphs were obtained
without the addition of a fluctuation current, Ifluct, and
demonstrate IBI values of 356 and 265 ms for the central
and peripheral cells, respectively. This implies a 2:3 ratio
between the two cells activation rates, in accordance with
published data for rabbit sinoatrial cells (20). Although, in
agreement with Fig. 4, the addition of fluctuation current re-
sulted in the overall decreased mean IBIs (and thus in faster
activation rates) of –285 and 215 ms for the central and
peripheral cells, respectively, the 2:3 ratio between the
central and peripheral activation rates was conserved
FIGURE 7 (A and B) Intrinsic physiological

spatial variations in the pacemaker activation rates

were reproduced in simulated single peripheral

(red) and central (blue) cells, demonstrating a 3:2

activation rate between the two cell types in both

deterministic (A) and stochastic (B) models.

(C and D) Two-dimensional activation maps of

one beat for deterministic (C) and stochastic (D)

models using normal coupling level (D ¼
4.5 mm2/s). The maps demonstrate centrally origi-

nated activity. (E and F) When cellular decoupling

was modeled (D ¼ 1.5 mm2/s), activity was origi-

nated at two peripheral foci. To see this figure in

color, go online.
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(see, e.g., Fig. 7 B obtained with x2 ¼ 1.2 (pA/pF)2). More-
over, the voltage oscillations resulting from the added Ifluct
were qualitatively consistent with typical experimental sig-
nals (see, e.g., Fig. 4B in Bucchi et al. (22)).

As in physiological scenarios, when the cells were
embedded in the two-dimensional tissue matrix, the global
pacing rhythm was uniform across the tissue and, more
importantly, not necessarily determined by the inherently
faster peripheral cells. The dominant rate and the origin
of conduction were the outcome of two additional fac-
tors—the surrounding nonpacemaker atrial cells that
obstruct the potential dominance of the peripheral cells,
and the degree of electrotonic coupling in the cellular
matrix. This phenomenon is demonstrated in Fig. 7, C–F.
Using the reference SAN electrotonic coupling with a
diffusion coefficient of D ¼ 4.5 mm2/s resulted in pacing
conduction originated and dominated by the inherently
slower central cells, as can be seen in Fig. 7, C and D,
with mean IBI values of 365 and 363 ms for x2 ¼ 0 and
x2 ¼ 1.2 (pA/pF)2, respectively. These panels show typical
activation maps for one of the activation waves, from
which it is clear that the activation was focal, originated
in the central SAN region. In contrast, when coupling
was hampered by reducing the diffusion coefficient to
D ¼ 1.5 mm2/s, the origin of conduction was shifted to
the inherently faster peripheral cells. This is shown in the
activation maps in panels E and F, from which it is evident
that activity simultaneously originated from two focal sour-
ces along the x axis. In this case, the mean IBI values were
A B

C D
345 and 331 ms for x2 ¼ 0 and x2 ¼ 1.2 (pA/pF)2,
respectively.

In the two-dimensional models, the way by which the IBI
was affected by x2 was also determined by the degree of
electrotonic coupling. As shown in Fig. 8, A and B, at
normal coupling level (D ¼ 4.5 mm2/s), increasing x2 re-
sulted in a concave downward trend, with decreasing
mean IBIs, while at reduced coupling state (D ¼
1.5 mm2/s), increasing x2 resulted in a concave upward
trend, with decreasing mean IBIs, similar to what was
observed in single cells (Fig. 4 C). Moreover, the extent
by which x2 variations affected the mean IBI was thrice
higher for D ¼ 1.5 mm2/s than for D ¼ 4.5 mm2/s
(�7.6% compared to �2.5% when x2 was increased from
0 to 3.5, respectively). The effect of the diffusion coefficient
values on the IBI is summarized in Fig. 8 C. The determin-
istic IBI (in gray) and the stochastic mean IBI (for x2 ¼ 1.2
(pA/pF)2, in black) are plotted as a function of D, with D
ranging between 1.5 and 4.5 mm2/s. The lower limit of
D ¼ 1.5 mm2/s was chosen as it was the minimal value to
still allow successful propagation between the SAN and
the surrounding atrial tissue regions.

The graph shows that a gradual decoupling of the SAN
cells as established by decreasing values of D resulted in a
monotonous decrease of the IBI. In other words, the more
the electrotonic coupling between the cells was hampered,
the greater the dominance of the peripheral SAN cells that
was achieved, thus the higher the activation rate. This
trend was similar for both the deterministic and stochastic
FIGURE 8 The effect of stochastic current fluc-

tuations and of cellular electrotonic coupling on

the IBI. (A) IBI as a function of x2 in a two-dimen-

sional model using normal intercellular coupling

(D ¼ 4.5 mm2/s). (B) IBI as a function of x2 in a

two-dimensional model using low intercellular

coupling (D ¼ 1.5 mm2/s), simulating cellular de-

coupling conditions. (C) IBI as a function of the

diffusion coefficient (marking the level of intercel-

lular coupling) for deterministic (shaded) and

stochastic (x2 ¼ 1.2 (pA/pF)2, solid) models.

(D) The percentage of change in the mean IBI be-

tween normal and maximal cellular decoupling

condition as a function of x2. (Horizontal shaded

line) Experimental result of �8.13% change

measured in wild-types versus Cx30 deficient

mice by Gros et al. (13).
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models; still, the effect of cell decoupling was significantly
stronger for the stochastic model. For example, while the
deterministic model yielded a ~5.5% lower IBI at D ¼
1.5 mm2/s than at D ¼ 4.5 mm2/s, the stochastic model
yielded a ~9% lower IBI between the same levels of D.
Finally, the percentage of change in the mean IBI values
between D ¼ 1.5 mm2/s and D ¼ 4.5 mm2/s is plotted
as a function of the fluctuation current variance, x2, in
Fig. 8 D. The graph demonstrates an exponential increase
in the absolute difference percentage as x2 increases.
DISCUSSION

In this article we addressed the effect of current fluctuations
due to the stochastic nature of ion-channel gating on the
interbeat intervals (IBIs) of sinoatrial pacemaker cells. For
this purpose, we developed a mathematical framework
that relates the variance in the membrane voltage due to
current fluctuations to the mean IBI as mediated by the
slow phase-4 depolarization. In addition, we conducted
computer simulations in single cells and in two-dimensional
SAN models for demonstrating the applicability of the
developed mathematical theory. Our main findings are as
follows.

1. As the membrane voltage stochastic variance (s2) in-
creases, the mean IBI decreases monotonically, hence
the activation rhythm increases.

2. The major determinant of the mean IBI is the phase-4 de-
polarization slope, which in turn strongly depends on the
minimal transmembrane voltage, vmin.

3. The value vmin monotonically decreases with s2, explain-
ing the (indirect) effect of s2 on phase-4 depolarization
slope and thus on the mean IBI.

4. Intercellular gap-junctional coupling works to extenuate
the variance of the intrinsic cellular transmembrane
voltage.

This is in addition to the known moderating effect of elec-
trotonic coupling on the spatial variability of intrinsic
IBIs. Thus, pathological decoupling acts to further reduce
the IBI (therefore to increase activation rhythm) via its ef-
fect on the membrane voltage variance of each SAN cell.

Our mathematical analysis leading to the theoretical rela-
tionship between membrane voltage fluctuations and the
mean phase-4 slope (Eq. 23) required using the Fokker-
Planck formalism, also known as the Kolmogorov diffusion
equation, which originally describes the time evolution of
the probability density function of the velocity of a particle
under both drift and random diffusion forces. The approach
of using Fokker-Planck formalism on a membrane voltage
differential equation was previously proven successful for
modeling firing neurons and for modeling neurons with cur-
rent synapses (23). The application of this formalism for
cardiac myocytes (to our knowledge developed here for
the first time), although being conceptually similar, required
Biophysical Journal 108(5) 1281–1292
several adaptations to fit to the biophysics of the stochastic
current fluctuations of the SAN pacemaker cell. In our case,
the particle velocity was replaced by the membrane voltage,
vm, and its probability density function was assumed
Gaussian (Eq. 5). Consequently, from the differential equa-
tion that established the temporal evolution of vm (Eq. 4), we
could define the drift force as –gm(vm,t)[vm – m(vm,t)] and the
random diffusion force as the coefficient x. These definitions
sustained the analogy between the physics underlying the
Fokker-Planck equation and the biophysics of the sinoatrial
cell membrane.

Gros et al. (13) have conducted in-vivo experiments
regarding the modulation of the heart rate by the degree of
Cx30 in the mouse sinoatrial node. In the population of
ANS-inhibited mice, they found an 8.13% reduction in the
mean IBI of Cx30 deficient mice in comparison to the refer-
ence mice (111 vs. 121 ms). They speculated that the
maximal diastolic potential of the subepicardial nodal cells
adjoining the atrial cells are less negative in the Cx30 defi-
cient mice than that of the reference cells, resulting in an in-
crease in heart rate. Our work may suggest two other
possible synergic mechanisms for these results:

1. Cx30 deficient mice exhibit lower electrotonic connec-
tivity (lower diffusion coefficient), thus leading to inter-
cellular decoupling between peripheral SAN cells and
adjacent atrial cells. This increases the source/sink for
these peripheral cells, making them dominant in deter-
mining the pacing rate due to their intrinsic higher rate
of activation (see Fig. 7, C and D, in comparison to
Fig. 7, E and F).

2. The lower electrotonic connectivity in Cx30 deficient
mice also results in a noisier environment, i.e., in
increased single-cell membrane voltage fluctuations,
due to the lack of the mediating, low-pass filtering effect
of diffusion. This in turn also works to increase activation
rhythm, as shown in Figs. 4 C and 8 B.

Assuming that, in our modeling, wild-types and Cx30 defi-
cient phenotypes can be represented by diffusion coeffi-
cients of D ¼ 4.5 mm2/s and D ¼ 1.5 mm2/s, respectively,
the experimental decrease in the IBI can be now compared
to the simulation results. It should be noted that because our
model does not include any ANS input, and because the
ANS input is known to directly affect the heart rate as
well as the standard deviation of normal RR intervals, our
comparison to work of Gros et al. (13) is only possible for
the ANS-inhibited mice population in that work. As shown
in Fig. 8 D, our simulations demonstrate that a similar
reduction in the IBI under intercellular decoupling condi-
tions could only be achieved using stochastic modeling,
with x2 z 1 (pA/pF)2 (as extracted from the intersection be-
tween the experimental value, marked by the horizontal
shaded line, and the simulation graph). In contrast, the deter-
ministic model exhibited a lower 5.5% reduction in the
mean IBI.
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An additional experimental support for the stochastic
modeling regards the mean IBI value and its standard devi-
ation. Under control coupling level (D¼ 4.5 mm2/s), our re-
sults show a typical mean IBI value of 363 ms with standard
deviation value of ~6 ms for x2 z 1 (pA/pF)2 (Fig. 8 A).
This result is consistent with an experimental study by
Janousek et al. (24), showing, in isolated rabbit hearts,
mean IBI values of 366 ms with standard deviation of
5 ms. Therefore, only by accounting for the stochastic cur-
rent fluctuations, specifically with x2 ¼ 1 (pA/pF)2, similar
experimental and numerical observations could be achieved
under both control and intercellular decoupling conditions.

While our work focused on basic modeling and under-
standing regarding the effects of current/voltage stochastic
fluctuations on the mean IBI in the SAN, it may lead to
some possible practical applications. One such application
may involve using the heart rate signal measurements to
monitor the degree of electrotonic coupling in patients
suffering from intercellular decoupling, e.g., due to
increased SAN fibrosis. Such patients may be treated with
drugs that increase gap-junctional coupling, e.g., anti-
arrhythmic peptide drugs (25). According to Fig. 8 C, it is
expected that an improvement in cellular coupling after
therapy will be reflected by a decreasing mean heart rate
(increasing mean IBI).
Study limitations

Several limitations of this model should be noted.

1. Our kinetic model accounted for a global fluctuation cur-
rent that integrates the effect of stochastic ion-channel
gating. Intracellular stochastic processes were not
modeled, e.g., the stochastic gating of ryanodine recep-
tors (9), which are beyond the scope of this article.

2. Peripheral currents five-times larger than central currents
were modeled for all currents (Eq. 26). While this
approximation may seem rough or oversimplified, it is
based on previous measurements (21) as well as on our
observation that it keeps a 2:3 ratio in the activation
rate between central and peripheral cells, as in the
SAN model of Severi et al. (14). For our purposes, this
approximation is therefore adequate.

3. A uniform Ifluct standard deviation x (pA/pF) was
assumed across the entire SAN tissue, due to a lack
of any experimental data showing physiological distribu-
tions.

4. Our mathematical modeling suggests that the main effect
of membrane current stochasticity on the phase-4 depo-
larization slope (and thus on the IBI) is achieved indi-
rectly through its effect on vmin. This can be seen from
Eqs. 21 and 22, in which the negative value of

vgmðvm; tÞ
vvm

����
vminþd
is significantly larger (absolutely) than

vgmðvm; tÞ
vvm

����
phase 4

;

and from Eq. 16 stating that stochastic Mmin is linked to
s2 via

vgmðvm; tÞ
vvm

����
vminþd

:

Thus, when s2 increases, vmin decreases, resulting in
increased slope. It is plausible that the decrease in vmin

due to the increased stochasticity increases the inactiva-
tion gate values (i.e., the channels are less inactivated),
leading to faster phase-4 depolarization. Nevertheless,
future work should investigate the exact ionic mechanism
that correlates among current stochasticity, phase-4
slope, and vmin. Such an investigation may also support
an intuitive explanation to our findings, potentially via
a nonsymmetrical reaction of the membrane voltage to
symmetric (or zero-mean) current perturbations during
phase-4 depolarization.

5. Finally, our theoretical and numerical analysis provide,
to our knowledge, a plausible novel explanation
regarding one of the mechanisms that may underlie
the faster sinus rate that was observed in Cx30 knock-out
mice by Gros et al. (13). Nevertheless, other possible
mechanisms that cannot be ruled out include, e.g.,
compensatory ionic remodeling in the Cx30 deficient
mice.
CONCLUSIONS

Although the relationship between membrane voltage sto-
chasticity that originates from membrane current fluctua-
tions and beat variability has been established in several
articles, its relationship to the mean beat rate has not been
studied thus far. In this article we have established this rela-
tionship using, to our knowledge, novel mathematical and
numerical modeling. We conclude that the phase-4 depolar-
ization slope (the major determinant of the IBI) linearly in-
creases with membrane voltage stochastic variance (s2).
This is indirectly related to the effect of s2 on the minimal
diastolic voltage, vmin. This work also contributes to better
understanding of the impact of cellular coupling (or decou-
pling) in the intact SAN tissue, via its effect on the level of
membrane voltage noise. Finally, this work has the potential
of laying the foundations for novel diagnostic methodolo-
gies, e.g., for monitoring the level of cellular decoupling
in the SAN.
SUPPORTING MATERIAL

Supporting Materials and Methods and one figure are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(15)00071-5.
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SUPPORTING CITATIONS

Reference (26) appears in the Supporting Material.
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A. Derivation of equation 4 for a basic Hodgkin-Huxley model 

We demonstrate the derivation of Eq. 4 for the following original Hodgkin-Huxley 

model for the squid's giant axon that incorporates capacitive, ion (sodium and 

potassium), leakage and stimulation currents [ 1]: 

 𝜕𝑣𝑚
𝜕𝜕

= −�𝑔𝑁𝑁(𝑣𝑚 − 𝐸𝑁𝑁) + 𝑔𝐾(𝑣𝑚 − 𝐸𝐾) + 𝑔𝐿(𝑣𝑚 − 𝐸𝐿) − 𝐼𝑝�, (A1) 

where 𝑔𝑁𝑁 and 𝑔𝐾 [µS/µF]  are the sodium and potassium channel conductivities 

(both nonlinear functions of 𝑣𝑚 and 𝑡 due to gating kinetics), 𝑔𝐿 [µS/µF] is the 

membrane leakage conductivity, 𝐸𝑥 [mV] is the reversal potential of the 𝑥 current, 

where 𝑥 ∈ {𝑁𝑁,𝐾, 𝐿}, and 𝐼𝑝 [nA/nF] is a prescribed external current. By defining, 

 𝑔(𝑣𝑚, 𝑡) ≜ 𝑔𝑁𝑁 + 𝑔𝐾 + 𝑔𝐿 

 𝜇(𝑣𝑚, 𝑡) ≜ 𝑔𝑁𝑁𝐸𝑁𝑁+𝑔𝐾𝐸𝐾+𝑔𝐿𝐸𝐿+𝐼𝑝
𝑔𝑁𝑁+𝑔𝐾+𝑔𝐿

      (A2) 

Eq. A1 can be written as, 

 𝜕𝑣𝑚
𝜕𝜕

= −𝑔𝑚(𝑣𝑚, 𝑡)[𝑣𝑚 − 𝜇(𝑣𝑚, 𝑡)],     (A3) 

which is similar to Eq. 4. 

 

B. Analytical expression for deterministic 𝑔𝑚(𝑣𝑚, 𝑡)  

An analytical expression for 𝑔𝑚(𝑣𝑚, 𝑡) was derived from the kinetics model of 

Severi et al. [ 2], as follows, 

gm(vm, t) = G1 + G2 + G3 + G4 + G5 + G6 + G7 + G8 + G9,  (B1) 

where, 

𝐺1 = 𝑔𝑁𝑁 ∙ 𝑚3 ∙ ℎ         (B2) 

𝐺2 = �  𝑦2∙𝐾𝑜
𝐾𝑜 +𝐾𝐾𝑓

� ∙ 𝑔𝑔𝑁𝑁       (B3) 

𝐺3 = �  𝑦2∙𝐾𝑜
𝐾𝑜 +𝐾𝐾𝑓

� ∙ 𝑔𝑔𝐾         (B4) 

𝐺4 =  𝑔𝐾𝐾 ∙ ( 0.9 ∙ 𝑝𝑎𝑎 +  0.1 ∙ 𝑝𝑎𝑎) ∙ 𝑝𝑖     (B5) 

𝐺5 =  𝑔𝐾𝐾 ∙ 𝑛2        (B6) 

𝐺6 =  𝑔𝑡𝑡 ∙ 𝑞 ∙ 𝑟        (B7) 

𝐺7 =  

⎣
⎢
⎢
⎢
⎡

 2∙𝑃𝐶𝐶𝐶

 𝑅∙𝑇𝐹 ∙�1− 𝑒𝑒𝑒�   − 2∙𝑣𝑚
𝑅∙𝑇
𝐹

��

∙ �𝐶𝐶𝑠𝑠𝑠  −   𝐶𝐶𝑜 ∙ 𝑒𝑒𝑒 �
− 2∙𝑣𝑚
𝑅∙𝑇
𝐹

�� ∙ 𝑑𝐿 ∙ 𝑓𝐿 ∙ 𝑓𝐶𝐶

⎦
⎥
⎥
⎥
⎤

+
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⎣
⎢
⎢
⎢
⎡

 0.000365 ∙𝑃𝐶𝐶𝐶

 𝑅∙𝑇𝐹 ∙�1− 𝑒𝑒𝑒�   − 𝑣𝑚
𝑅∙𝑇
𝐹

��

∙ �𝐾𝑖  −   𝐾𝑜 ∙ 𝑒𝑒𝑒 �
− 𝑣𝑚
𝑅∙𝑇
𝐹

�� ∙ 𝑑𝐿 ∙ 𝑓𝐿 ∙ 𝑓𝐶𝐶

⎦
⎥
⎥
⎥
⎤

+  

⎣
⎢
⎢
⎢
⎡

 1.85∙10−5∙𝑃𝐶𝐶𝐶

 𝑅∙𝑇𝐹 ∙�1 − 𝑒𝑒𝑒�   −𝑣𝑚
𝑅∙𝑇
𝐹

��

∙

�𝑁𝑁𝑖 −   𝑁𝑁𝑜 ∙ 𝑒𝑒𝑒 �
− 𝑣𝑚
𝑅∙𝑇
𝐹

�� ∙ 𝑑𝐿 ∙ 𝑓𝐿 ∙ 𝑓𝐶𝐶

⎦
⎥
⎥
⎥
⎤
     (B8) 

𝐺8 =   2∙𝑃𝐶𝐶𝐶

 𝑅∙𝑇𝐹 ∙�1 − 𝑒𝑒𝑒�   − 2∙𝑣𝑚
𝑅∙𝑇
𝐹

��

∙ �𝐶𝐶𝑠𝑠𝑠  −   𝐶𝐶𝑜 ∙ 𝑒𝑒𝑒 �
  − 2∙𝑣𝑚

𝑅∙𝑇
𝐹

�� ∙ 𝑑𝑇 ∙ 𝑓𝑇  

          (B9) 

G9 = �𝑔𝐾𝐾𝐾ℎ ∙ �1 + 𝑒𝑒𝑒 �𝑣𝑚+20
20

�� ∙ 𝑎 𝐴𝐴ℎ > 0
0 𝑜.𝑤.

   (B10) 

 

For the definition of variables and coefficients in Eqs. B2-B10, refer to Severi et al. 

model [ 2]. 𝑔𝑚(𝑣𝑚) was calculated using Eq. B1 using the state variable values during 

a deterministic action potential, and is shown in Fig. S1 in the vicinity of 𝑣𝑚𝑚𝑚 and for 

voltages corresponding to phase 4 depolarization (panels A and B, respectively).  

In Eq. 22, the deterministic values of µ and gm during phase 4 depolarization, and 

the values of 𝑔𝑚 and 𝜕𝑔𝑚
𝜕𝑣𝑚

�
𝑣𝑚𝑚𝑚+𝛿

 in the vicinity of 𝑣𝑚𝑚𝑚 are needed. Given the 

deterministic action potential 𝑣𝑚(𝑡),  𝜇(𝑣𝑚) during phase 4 depolarization was 

calculated according to Eq. 4 (setting 𝜉 = 0) using the 𝑔𝑚 values from Fig. S1 panel 

B. The results given in Fig. S1 panel C demonstrate a monotonic, non-linear 

relationship between 𝜇 and 𝑣𝑚, with 𝜇 varying between -42 to -32 mV for voltages 

between -55 to -45 mV, that correspond to the major segment of phase 4 

depolarization. Therefore, we took 𝜇 = −37𝑚𝑚 as an approximated constant value 

during that phase. As shown in panel B, during phase 4 depolarization 𝑔𝑚 increases 

with 𝑣𝑚 in an approximately linear curve, albeit with a relatively small slope of 
𝜕𝑔𝑚
𝜕𝑣𝑚

~0.34 𝑠−1/𝑚𝑚. We therefore approximated 𝑔𝑚 as constant during that phase 

with a value of 𝑔𝑚 ≈ 10𝜇𝜇/𝜇𝜇. At 𝑣𝑚𝑚𝑚, 𝑔𝑚(𝑣𝑚) is non-differentiable, as seen in 

panel D. We therefore considered in Eq. 13 and forward the values of 𝑔𝑚(𝑣𝑚) and 
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𝜕𝑔𝑚
𝜕𝑣𝑚

 in the vicinity of 𝑣𝑚𝑚𝑚, i.e., 𝑣𝑚𝑚𝑚 + 𝛿. Panels A and D suggest that 𝑔𝑚(𝑣𝑚𝑚𝑚 +

𝛿, 𝑡) ≈ 6.6𝜇𝜇/𝜇𝜇 and 𝜕𝑔𝑚(𝑣𝑚)
𝜕𝑣𝑚

�
𝑣𝑚𝑚𝑚+𝛿

≈ −10𝑠−1/mV. 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure S1. Mathematical analysis of the deterministic general conductivity, 𝑔𝑚(𝑣𝑚) and the 
general voltage term, 𝜇(𝑣𝑚). (A) 𝑔𝑚(𝑣𝑚) for "end-diastolic" voltage region. (B-C) 𝑔𝑚(𝑣𝑚) (panel B) 
and 𝜇(𝑣𝑚) (panel C) for phase 4 depolarization voltage region. (D) 𝜕𝑔𝑚(𝑣𝑚)

𝜕𝑣𝑚
 for "end-diastolic" 

voltage region. 
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