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Pattern Selection by Dynamical Biochemical Signals
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ABSTRACT The development of multicellular organisms involves cells to decide their fate upon the action of biochemical sig-
nals. This decision is often spatiotemporally coordinated such that a spatial pattern arises. The dynamics that drive pattern for-
mation usually involve genetic nonlinear interactions and positive feedback loops. These complex dynamics may enable multiple
stable patterns for the same conditions. Under these circumstances, pattern formation in a developing tissue involves a selection
process: why is a certain pattern formed and not another stable one? Herein we computationally address this issue in the context
of the Notch signaling pathway. We characterize a dynamical mechanism for developmental selection of a specific pattern
through spatiotemporal changes of the control parameters of the dynamics, in contrast to commonly studied situations in which
initial conditions and noise determine which pattern is selected among multiple stable ones. This mechanism can be understood
as a path along the parameter space driven by a sequence of biochemical signals. We characterize the selection process for
three different scenarios of this dynamical mechanism that can take place during development: the signal either 1) acts in all
the cells at the same time, 2) acts only within a cluster of cells, or 3) propagates along the tissue. We found that key elements
for pattern selection are the destabilization of the initial pattern, the subsequent exploration of other patterns determined by the
spatiotemporal symmetry of the parameter changes, and the speeds of the path compared to the timescales of the pattern for-
mation process itself. Each scenario enables the selection of different types of patterns and creates these elements in distinct
ways, resulting in different features. Our approach extends the concept of selection involved in cellular decision-making, usually
applied to cell-autonomous decisions, to systems that collectively make decisions through cell-to-cell interactions.
INTRODUCTION
Pattern formation processes occur in many contexts such
as in Biology, Chemistry, and Physics (1–5). Spatially
extended systems such as developing epithelia, chemical re-
actions, solids, and liquid crystals show stable states that
are spatially organized, hereafter named ‘‘patterns’’. The
simplest spatial organization is the homogeneous or uniform
state. More complex patterns are periodic spatiotemporal
structures. In the case of developing embryos, patterns of
gene expression arise in tissues (6). Examples include the
patterns of stripes formed in the zebrafish skin (7) and dur-
ing vertebrate segmentation (8), and periodic fine-grained
patterns (also known as salt-and-pepper patterns) appearing
during neurogenesis (9) and sensory cell differentiation
(10), among others. The spatial organization of periodic pat-
terns arises from spatial coupling. In embryonic tissues, the
spatial coupling is mediated by diffusing molecules and/or
can be direct from cell to cell through molecules anchored
at the cell membrane. Because spatiotemporal pattern for-
mation involves many interacting components, it is a com-
plex process and, in addition, it is often counterintuitive.
Therefore, mathematical modeling has been crucial for
advancement in our understanding of pattern formation dy-
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namics and for proposing new mechanisms of pattern for-
mation. This is the case of the work by Turing (4) in the
context of Developmental Biology (11).

Transitions between different patterns occur frequently
during embryonic development. Specifically, the same set
of genes can be initially expressed in a pattern and subse-
quently change their expression to form another pattern.
These transitions are induced by biochemical signals. An
example of this phenomenon occurs during inner ear devel-
opment. In this developmental process, a fine-grained
pattern that makes hair cell differentiation arises from an
initial homogeneous pattern that raised through propagation
over another homogeneous state (the prosensory patch)
(10,12,13). Both the initial homogeneous and the subse-
quent fine-grained patterns involve the expression of ligand
Jagged1 and of Notch receptor Notch1, and the transition
from one to the other is driven by the activation of the
expression of the proneural gene Atoh1 (13,14).

Transitions from one type of pattern to another one have
usually been described as a dynamical process in which the
initial pattern becomes unstable when control parameters
change and the system evolves to the unique stable pattern
that corresponds to the new parameter values (1,4,5,15–
17). The initial and final patterns are each determined by
the system conditions (i.e., the parameter values and bound-
ary conditions). Nevertheless, quite often the situation can
be different and much more interesting. Specifically, for
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the new set of control parameter values, several different
patterns can be stable—what we will refer hereinafter as
‘‘multistability’’. In this multistable scenario, one may ask
which of the stable patterns is going to arise and how this
pattern selection is induced.

There is experimental evidence pointing out at multi-
stability and selection of patterns in developing embryos,
specifically for patterning processes driven by Notch
signaling. Notch is a transmembrane receptor protein that
mediates cell-to-cell interactions upon binding to a Notch
ligand at the membrane of an adjacent cell (18). In the Dro-
sophila’s eye, photoreceptor neuron precursors adopt
distinct cell fates (R1/R6 or R7) in a cell-to-cell coordinated
manner upon the spatially sequential activation of the pro-
tein ligand. Changes in only the spatiotemporal sequence
of this signal (i.e., ligand activation) alters the pattern that
is formed (19), suggesting that under the same final
conditions, different patterns can exist (i.e., those of the
wild-type conditions and those driven by the manipulated
temporal sequence of the biochemical signal). Another
example also arises from ommatidial photoreceptor
patterning in the fly. It has been shown that different patterns
of R8 photoreceptors (salt-and-pepper and stripes patterns)
can arise in genetically identical tissues through Notch
signaling pathway (20). In addition to this experimental
evidence, computational studies of pattern formation by
Notch signaling have shown that different patterns can be
stable solutions for the same set of parameter values (20–
22). Examples of these patterns are the homogeneous one
(H), periodic salt-and-pepper patterns (P), and periodic
stripe patterns (S).

It is known that initial conditions can determine the selec-
tion of a pattern (20,23–25). However, little is known on
how selection of different patterns occurs from the same
initial pattern and conditions, upon the action of a signal.
Herein, we address this question and focus on pattern forma-
tion mechanisms based on the Notch signaling pathway to
exemplify it. To this end, we built upon the knowledge
gained from studies on the selection of states through
biochemical or environmental signals in multistable dy-
namics of noninteracting cells. For single, noninteracting
cells, mathematical modeling results have shown that bifur-
cations driven by the signal (which can be modeled as time-
dependent changes of the parameter values) enable the
selection of a specific state (26–29). The dynamical evolu-
tion of the signal has also been shown to be relevant for
selection (30–33). Hence, the use of nonautonomous dy-
namics (i.e., with time-dependent parameters) becomes
necessary for modeling selection-signal-induced processes
(33). In addition, in many different biological contexts, se-
lection of a cell state in individual cells has been shown to
be a probabilistic process with a stochastic outcome that
has a well-defined probability. This stochastic choice has
been termed ‘‘cellular decision-making’’ (34). Moreover,
the intrinsic stochasticity of the dynamics cannot be
Biophysical Journal 108(6) 1555–1565
frequently neglected because it can modify the stability
and therefore, the chance of each state choice when there
are multiple stable states (35,36). Cellular decision-making
has also started being applied to cell-to-cell interactions (37).

Herein, we perform a computational study to provide key
elements for pattern selection upon the action of a signal. To
this end, we make use of time-varying parameters (i.e.,
nonautonomous) in stochastic dynamical systems with
spatial interactions. This is in contrast with contemporary
studies on pattern formation and selection, studies that usu-
ally deal with parameters that are constant both in time and
space. We considered three alternative situations, which all
have been shown to take place in developing tissues: 1) the
inductive signal arises in all the tissue at the same time, 2) it
acts only on a small domain of the tissue, and 3) it spatio-
temporally propagates like a wavefront. The first situation
is the natural extension of selection of states in individual
noninteracting cells to the case of selection of spatial pat-
terns, which involve spatial interactions. The second and
third situations are specific only to spatially extended and
coupled systems.
MATERIALS AND METHODS

Model

The model establishes a minimal description of the dynamics of the activ-

ities of the Notch pathway (si) and of the ligand (li) in each cell i, as first

described in Collier et al. (38). It phenomenologically includes the process

of Notch signal activation, according to which a fragment of the Notch

receptor translocates into the nucleus of a cell and transcriptionally re-

presses several genes upon binding to a ligand at the membrane of an adja-

cent cell (18). Specifically, the gene encoding the protein ligand is

repressed. Thus, a ligand-expressing cell drives lateral inhibition to its

neighbors, i.e., it inhibits the expression of the ligand in its adjacent cells.

When all cells interact with each other through lateral inhibition, sponta-

neous symmetry breaking (driving the periodic patterning, arising from

small variability between cells) can occur (25,38–40). We also took into ac-

count that the protein ligand can impede Notch signaling by binding to the

Notch receptor within the same cell, an action known as ‘‘cis-inhibition’’

(19,41–47).

We extended the dimensionless model proposed in Formosa-Jordan

and Ibañes (22) for cis-inhibition to phenomenologically include stochastic

dynamics arising from intrinsic noise, such that the stochastic differential

equation for each species in the Itô interpretation (48,49) is as follows:8>><
>>:

dsi
dt

¼ Psðhlii; li; tÞ � si þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Psðhlii; li; tÞ þ si

p
xiðtÞ;

dli
dt

¼ v
�
PlðsiÞ � li þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PlðsiÞ þ li

p
ciðtÞ

�
:

(1)

The deterministic part is formed by the production terms, Ps(hlii,li,t) and
P (s ), minus the degradation terms. The value v accounts for the ratio be-
l i

tween the timescale of the dynamics of the ligand and the signal activities

and is set to v ¼ 1. The stochastic multiplicative terms are proportional to

the square-root of the corresponding production plus the degradation terms.

Here, �
li
�
h

X
j˛nnðiÞ

lj
�
z
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is the average ligand activity of the z nearest-neighbor (nn(i)) cells of cell i.

The values xi and ci are independent Gaussian random numbers of zero

mean and are uncorrelated in space and time,

�
xiðtÞxjðt0Þ

� ¼ 1

V
dij dðt � t0Þ

and
�
ciðtÞcjðt0Þ

� ¼ 1

V
dij dðt � t0Þ;

with V being a characteristic volume. We used a white noise according to

the standard procedures from Master to Langevin equations (48,49).
The productions of Notch and ligand activities are

Psðhlii; li; tÞ ¼ ritðtÞhlii
1þ ritðtÞhlii þ ricðtÞ li

;

PlðsiÞ ¼ 1

1þ b sni
;

(2)

where n is an exponent representing the degree of nonlinearity of ligand in-

hibition by the signal and b indicates the strength of such ligand inhibition.
Here, ritðtÞhritransðtÞ and ricðtÞhricisðtÞ are the strengths of trans- and cis-in-
teractions of cell i, respectively. Trans-interactions correspond to those be-

tween ligands and receptors in adjacent cells while cis-interactions arise

from the binding of the ligands and receptors in the same cell. In addition,

the strengths rit(t) and ric(t) are proportional to the rate of maximal ligand

production, which is not explicitly seen in the equations due to the nondi-

mensionalization of variables being used. Herein we considered that rit(t)

and ric(t) can change over time and be different between cells, as described

in Path Definition and Characterization, below.

Note that the dynamical model is an example of a regulatory circuit

with mutual inhibition and self-activation (i.e., a toggle switch between

adjacent cells, see Fig. S1 in the Supporting Material). The value rit favors

mutual inhibition while ric promotes self-activation. In the absence of cis-

inhibition and fluctuations, Eqs. 1 and 2 recover the model proposed by

Collier et al. (38).

The dynamics of Eqs. 1 and 2 were numerically integrated on a two-

dimensional array of 12� 12 regular hexagonal cells with toroidal periodic

boundary conditions, unless otherwise stated. The algorithm presented in

Carrillo et al. (50) extended to time-dependent parameter values was

used for integration with time step dt ¼ 0.1 (robustness of the results was

checked for dt¼ 0.01, Fig. S2). Equations 1 and 2 can drive negative values

because of the stochastic fluctuations. To avoid them, a noncrossing bound-

ary to negative values was used, such that negative values are converted to

zero (Fig. S2). To confirm the correctness of our results, we checked that the

states reached by cells correspond to distributions of values centered on the

exact deterministic solutions of the Eqs. 1 and 2 (Fig. S2), which can be

theoretically computed as described in Formosa-Jordan and Ibañes (22).

Snapshots of the tissue state, as depicted in all figures, correspond to a linear

grayscale of ligand activity values with white for l ¼ 0 and black for l ¼ 1.
Multistability and relative stability of patterns

Herein we defined different patterns by their spatial symmetries and not by

the exact values of the variables s and l. The model above in the absence of

fluctuations (deterministic dynamics) and for homogeneous and constant

parameter values (rit(t) ¼ rt and ric(t) ¼ rc for ci,t) in perfect hexagonal

lattices with toroidal periodic boundary conditions has been analyzed in

Formosa-Jordan and Ibañes (22). It has been shown to exhibit different sta-

tionary stable patterns for the same set of parameter values. Some of these

patterns are homogeneous (H), periodic salt-and-pepper (P), and stripe (S)

patterns (Fig. S3). Stability of the H-, P-, and S-patterns for the stochastic
dynamics of the model and its comparison with the deterministic dynamics

was verified at specific sets of parameter values. The domains where the H-,

P-, or S-patterns are deterministically stable were depicted in the rt–rc space

using the data in Formosa-Jordan and Ibañes (22). Other pattern solutions

can be stable too in these domains (22). Linear stability analysis indicates

that the fastest growing mode that destabilizes the H solution corresponds to

the periodicity of the P-pattern (22). Therefore, the P-pattern is expected to

arise spontaneously from the H-pattern through small random variability

between the values of the signal and/or ligand for this model dynamics.

Accordingly, formation and thereby selection of the S- or other patterns

is expected to require mechanisms that impose properly the specific spatial

symmetries of these patterns, in contrast with selection of the P- or H-pat-

terns. We only focused on the selection of the S-pattern, besides selection of

the P- and H-patterns. In addition, we evaluated whether a stable pattern can

spontaneously invade and propagate over another stable one. To this end,

we set as initial condition for one-half of the tissue a pattern solution that

is stable, and for the other-half, another stable pattern solution. We numer-

ically integrated the stochastic dynamics until a stationary situation was

reached (until a final time, t ¼ 500). For the parameter values being evalu-

ated, the P-pattern was able to invade the H solution and not vice versa.

Accordingly, we termed the P-pattern to be spatially more stable than the

H-pattern.
Path definition and characterization

Changes of rit and ric over time from value ra0 to value raf and from cell to

cell were phenomenologically modeled by time-dependent continuous hy-

perbolic tangent functions as

riaðtÞhrðj;kÞa ðtÞ ¼ 1

2

�	
raf � ra0



tanh

�
t � ta � tprop k

a

�

þ ra0 þ raf

�
dj;k˛D;

(3)

where a stands for t (trans) or c (cis) and two indexes, j, k, were used to label

the cell i (denoting the row, j, and the column, k). Parameter a sets the time-
scale of the parameter change, ta is the time at which the parameter has

reached the value (ra0 þ raf)/2, and tprop sets the spatiotemporal scale of

propagation of the parameter change across the tissue. For tprop ¼ 0 (Sce-

narios 1 and 2), all cells within the spatial domainD change simultaneously

the value of the parameter, and D stands either for all the tissue (Scenario 1)

or for a small fraction of it (Scenario 2). For tprop > 0 (Scenario 3), the

change of parameter value occurs as a propagating planar front across the

tissue (i.e., simultaneously in all cells of row j and propagating along

rows). To ensure that initially the parameter is at value ra(t ¼ 0) z ra0,

we set ta ¼ �a tanh(�0.995). For sequential changes of parameters rit
and ric or vice versa, we defined td h jtc � ttj as the delay between these

changes. To ensure that changes of rit followed changes of r
i
c (or vice versa)

and did not overlap, we set td >> a.

We also considered transient changes of rit and r
i
c from ra0 to raf and back

to ra0. These were modeled through Eq. 3 for each change, from ra0 to raf
and backward, with ta ¼ ta1 for the first change from ra0 to raf and ta ¼
ta1 þ tup þ f for the change from raf to ra0, where f measured the time

period during which the parameter is at value raf. The same value of a

was used for both changes.

We defined the following timescales to characterize the path across the

rt�rc parameter space: tup ¼ ta þ a arctanh(2P�1) for P ¼ 0.9933 mea-

sured the time spent from the departure from a vertex point to the arrival

at the subsequent vertex point of the path in the parameter space; and t

measured the time spent on an intermediate (not the initial nor the final) ver-

tex. When the path is constituted by a single intermediate vertex point, t is

computed as t ¼ td – tup. When there are several intermediate vertex points,

we used a subindex with the name of the vertex to denote the time spent at

each vertex point. Herein we exemplify the case of three vertex points and
Biophysical Journal 108(6) 1555–1565
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denote each of them by a number reflecting the order in which they are

visited: t1 ¼ td – tup, t2 ¼ f1 ¼ td, and t3 ¼ td – tup þ f2 – f1. For paths

involving tprop > 0 (Scenario 3), we defined Nrows ¼ t/tprop as the number

of cell rows with the parameter values of an intermediate vertex point.
Criterion for pattern selection

We evaluated whether a path drives the selection of the H-, P-, or S-patterns.

Due to the stochasticity of the dynamics, we measured the normalized fre-

quencies RH, Rp, and RS of cases that selected the H-, P-, and S-patterns for

a given path. To measure RH,P,S, we discriminated systematically which

pattern was selected for each stochastic temporal evolution (i.e., numerical

integration of the dynamics) of the path. To this end, we defined the three-

component order parameters (for x ¼ s,l), which take distinct values for

each pattern as

hq
x ¼ 1

N

XN
i¼ 1

��xi � hxiiq
��; (4)

where N is the total number of cells in the tissue and brackets stand for

averages over the two nearest-neighboring cells along each spatial direc-
tion with q ¼ 0, �, and þ, which denote the directions that form an

angle 0�, �60�, and þ60�, respectively, with the horizontal. The character-
istic values of these order parameters for each pattern for deterministic

dynamics and perfect periodicity are hqx ¼ 0 cq for the H-pattern;

hqx ¼ hx>0 cq with

hx ¼ h0
x þ h�

x þ hþ
x

3

for the P-pattern; and for the perfectly aligned S-pattern, the order param-

eter has only one null component, which corresponds to the component in
the direction parallel to the stripes.

For each stochastic temporal evolution of the dynamics, we computed

numerically the order parameters hqx at the final time tmax ¼ 10,000. We

decided whether the system exhibited at tmax the H-, P-, or S-pattern accord-

ing to the following criteria: 1) The system exhibited the H-pattern if

hx<0:2 for x ¼ s,l. The values of the order parameters extracted for the

steady H-pattern of the stochastic dynamics were not null, but they were

very small, because of the stochasticity. The threshold value 0.2 was chosen

by taking into account this stochasticity and the specific values of the order

parameters for the P- and S-patterns at the relevant parameter values. 2) The

system exhibited the P-pattern if
��hx � hthx

��<0:2 and hx>0:2 for x¼ s,l, with

hthx being the theoretical expected value of hx for the perfect P-pattern of

deterministic dynamics (Tables S1 and S2 in the Supporting Material),

which can be evaluated theoretically without numerical integration of the

dynamics (22,51). The 20% difference between hx and hthx was chosen to

take into account that the final pattern may not be perfectly periodic. 3)

The system exhibited the S-pattern if hx>0:2 and sx > 0.8 being

sx ¼ 1� hmin
x =hmax

x , where hmin
x and hmax

x are the minimum and the

maximum components of ðh0x ; h�x ; hþx Þ, respectively. Parameter sx
described the degree of stripes formation.
RESULTS AND DISCUSSION

The scenarios and their dynamical paths

Our interest is to evaluate how one certain pattern and not
another one is selected when there are multiple patterns
that are stable. We focused on three different patterns,
defined only by their symmetries: the homogeneous pattern
(H), the fine-grained lateral inhibition pattern (P), and the
stripe pattern (S) (Fig. S3). We considered selections of
Biophysical Journal 108(6) 1555–1565
these patterns induced by biochemical signals and emerging
from the same initial pattern and conditions (Fig. S3).

We modeled the action of biochemical signals as spatio-
temporal changes of the trans rit and cis ric interaction
strengths (Materials and Methods). We chose these interac-
tions to be modulated over time and space (among cells)
because there are context-dependent proteins that can
modulate them, like the glycosyltransferase Fringe
(43,52,53) or the ubiquitin ligase Neuralized (54). More-
over, changes in the activation of the ligand, which are
known to drive transitions from one pattern to another one
(e.g., in vertebrate inner ear development and in the differ-
entiation of photoreceptors in the Drosophila’s eye),
impinge also on these parameters. The spatiotemporal
sequence of the changes in the values of rit and ric defines
what herein we named ‘‘dynamical paths’’. The temporal
changes of the parameters of a cell can be depicted as a tra-
jectory across the rt–rc parameter space. For simplicity, we
devised trajectories that, for each cell, involved changing
either rit or r

i
c, or one after the other. Accordingly, these tra-

jectories were constituted by vertical and/or horizontal lines
along the rt–rc parameter space (e.g., as in Fig. 1, A and B).

We considered three scenarios: 1) the signals act on all the
tissue at the same time, 2) they act on a group of cells, and 3)
they act sequentially over all cells of the tissue. In the three
scenarios, all cells had equivalent dynamics (i.e., all cells
had the same parameter values) before the signals act (initial
time) and at the final time. To study selection processes,
parameter values at the final time were such that multiple
patterns were stable (Materials and Methods). In Scenario
1 we analyzed whether and how the selection of a pattern
depends on the path, and it extends cell-autonomous deci-
sion-making to spatially interacting systems. Therefore,
we focused only on the selection of those patterns that do
not require any spatial cue to be formed. These correspond
to patterns that either do not involve a periodicity (H) or are
periodic but have the spatial symmetries that grow the fast-
est from linear instabilities (P) (Materials and Methods). In
Scenario 2, we propose an intrinsically spatially based
mechanism for the selection of patterns that can spontane-
ously invade another pattern (Materials and Methods).
Finally, in Scenario 3 we propose another spatially based
mechanism that enables the selection of a pattern with a
more singular symmetry like the stripe pattern (S) (Mate-
rials and Methods). We analyzed several paths driven by sig-
nals and numbered them according to the scenario (1, 2,
or 3) to which they belong.
Scenario 1: patterns are selected by specific
global paths

In this first scenario, we evaluated how selection between
the H- and P-patterns can occur when a biochemical signal
acts in all tissue at the same time. To test the relevance of the
path for the selection process, we constructed two different



FIGURE 1 Pattern selection achieved through a specific global path.

(A and B) Paths (arrows) across the parameter space of trans rt and cis rc
interaction strengths. (Solid circles) Initial and final points of the paths;

(open circles) intermediate vertex points. The temporal evolution of the

paths is shown in Fig. S4. It is indicated within parentheses at relevant

points of the path (denoted by letters A, B, A1, and C) whether the homoge-

neous (H) and/or the salt-and-pepper (P) patterns are stable. The paths cross

different domains (colors) each defined by which of these patterns are sta-

ble: H (blue), P (yellow), or H and P (gray). These domains have been

plotted using data for deterministic dynamics with periodic boundary con-

ditions in Formosa-Jordan and Ibañes (22). Stability of these patterns for

stochastic dynamics is found in Fig. S5. (A) Paths 1a (continuous line)

and 1b (dashed line) start at point A and end at point C. (B) Paths 1a0

and 1b0 start and finish at the same point C. Path 1a0 (continuous line) is
clockwise whereas path 1b0 (dashed line) is counterclockwise. (C and D)

Snapshots of the tissue state over time (t) when the same signal acts in

all cells of the tissue at the same time (Scenario 1) and changes the values

of the parameters (C) permanently according to paths 1a or 1b, or (D) tran-

siently according to paths 1a0 and 1b0. The system initially (t ¼ 0) exhibits

the H-pattern. The parameter space points, and whether the H- or P-patterns

are stable for these parameter values, are indicated at each depicted time.

Additional parameter values are t ¼ 10, tup ¼ 11, tprop ¼ 0, b ¼ 1000,

n¼ 2, V¼ 1000, and those detailed in Table S1 and Materials andMethods.

To see this figure in color, go online.
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paths that connect in different manners the initial and the
final conditions. In the initial condition, only the H-pattern
is stable (point A in the rt–rc parameter space of Fig. 1 A).
In the final condition, both the H- and the P-patterns are sta-
ble (point C in Fig. 1 A). Thus, the two paths could be visu-
alized as two different trajectories across the rt–rc parameter
space that connects the initial and final points. For
simplicity, these two paths were constructed as sequential
changes in rit ¼ rt and r

i
c ¼ rc parameters, and the two paths

differ in the order of these changes (Fig. 1 A). According to
which parameter changes first (rt or rc), the path transiently
explores a domain where the P-pattern is stable and the
H-pattern is not (path 1a) or it only traverses domains where
the H-pattern is stable (path 1b) (Fig. 1 A).

Fig. 1 C shows some frames of the tissue state along time
for each path. At the end of the paths, selection of a different
pattern becomes evident: through path 1a the P-pattern is
selected, while path 1b selects the H-pattern. The results
show that selection of a new pattern that is distinct from
the initial one (P from H) occurs through a path that drives
the transient destabilization of the initial pattern. We
confirmed this result with other paths and for other initial
patterns as well (Fig. S6). This is consistent with cell
decision-making through bifurcations in cell-autonomous
systems.

We then envisaged two paths that drive the destabilization
of all the initially stable patterns. These paths start and
end at the same point of the parameter space, where both
the H- and P-patterns are stable (Fig. 1 B). In addition, the
two paths trace exactly the same cyclic trajectory over the
parameter space, but evolve in opposite sequential order
(clockwise and counterclockwise): path 1a0 and path 1b0

(Fig. 1 B). Our results show that selection of a pattern that
is distinct from the initial one becomes possible for the
two paths (Figs. 1 C and S7), because both paths transiently
destabilize the initial pattern. In addition, the results show
that each path selects a different pattern independently of
the initial one (Figs. 1 C and S7). The pattern that is selected
corresponds to the one that is stable at the last intermediate
point of the path: the P-pattern is selected through path 1a0,
while the H-pattern is selected through path 1b0 (Figs. 1 C
and S7). These results show that identical trajectories across
the phase diagram but evolved in opposite sequential order
can drive distinct pattern selections, which are independent
of the initial pattern.

We next evaluated whether these selection processes are
robust and reasoned that the timescales of the path could
be relevant. To this end, we looked at the selection process
as a function of the time tX spent at the intermediate X
parameter space point (X being the point A1, B, or A, de-
pending on the path, as shown in Fig. 1, A and B) (Materials
and Methods). When the initial state is never destabilized,
this time is irrelevant, as expected (Figs. 2, A and B, and
S6). In contrast, a minimal time at the parameter space re-
gion driving the selection is required for robust selection
of a new pattern to happen (Figs. 2, A and B, S6 and S7).
To ensure that the final distinct domain visited during the
path is the one that sets the selection, we analyzed path
1a0 (Fig. 1 B) for different time intervals tB spent at the final
Biophysical Journal 108(6) 1555–1565



A B

FIGURE 2 Pattern selection through a specific global path is robust and

requires a minimal yet short time. Frequency of selection of the P-pattern

(Rp in percentage) versus a characteristic time of the signal. The same signal

acts in all cells of the tissue at the same time (Scenario 1) and changes the

values of their parameters (A) permanently or (B) transiently, according to

the paths in Fig. 1, A and B, respectively. (A) Results for path 1a for stochas-

tic dynamics (circles), and in the absence of fluctuations (stars) (Det); and

results for path 1b (squares). (Blue stars) Low-dimensional system of three

cells interacting in pairs (3C). (B) (Circles) Path 1a0 (solid for tA1¼ tA¼tB;

and open, tA1 ¼ tA ¼ 0). (Squares) Path 1b0. f¼ 191 for these three curves.

Other parameter values as in Fig. 1, with tup ¼ 11 and 12 � 12 cells unless

otherwise specified. The deterministic curves (Det in the legend) use a 10%

uniform random variability in the initial condition. In all cases, each point

corresponds to 1000 repetitions of the selection process. To see this figure in

color, go online.
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intermediate point B with unchanged time intervals spent at
the previous vertex points (tA ¼ tA1 ¼ 0, Fig. 2 B). The sim-
ilarity of this selection curve with the one with all t variables
(tB ¼ tA1 ¼ tA) indicates that the last intermediate distinct
domain is the relevant one to decide which pattern is
selected.

The frequency of selection follows a sharp thresholdlike
response curve as a function of the time during which desta-
bilization occurs (Figs. 2, A and B, S6, and S7). For instance,
in the case of path 1a (Fig. 1 A), the characteristic time spent
at the region where the H-pattern is not stable is approxi-
mately tup þ t, as shown by analyzing different t and tup
values (Fig. 2 A). The value tup is the time spent since the
departure from the A or B parameter space point until the
arrival to the subsequent one along the path, whereas t is
the time spent at the intermediate vertex point B (Materials
and Methods). For small tup þ t values, selection of the
P-pattern is not robust but probabilistic. Our results show
that stochasticity in the dynamics enables robust selections
at times shorter than in the absence of fluctuations
(Fig. 2 A). In contrast, the high-dimensionality of many in-
teracting cells increases the threshold characteristic time for
robust pattern selection (Fig. 2 A). To have a sense of
whether the time required for robust selection in all these
cases is long or short, we compared it with the correspond-
ing characteristic timescale T of the formation of the full
P-pattern from an unstable homogeneous pattern (Fig. S8;
Table S2). This time T is shortened by fluctuations and in
low-dimensional systems (Table S2). In all cases being
shown, T is longer than the time tup þ t required for robust
selection (Fig. 2 A; Table S2).
Biophysical Journal 108(6) 1555–1565
Taken together, the results show that the dynamical path
defined by the biochemical signal or signals, and not only
the initial and final conditions, is a critical element for
pattern selection. Selection of a new pattern involves the
transient destabilization of the initial state and the subse-
quent exploration of a new pattern that will finally end in
the desired selection. This is accomplished through a proper
path that has to evolve dynamically slow enough to first
enable destabilization and afterwards emergence of a new
state. The pattern selected corresponds to the latest different
pattern explored during the path. If the path evolves too
quickly, selection might not be robust and become probabi-
listic. However, our results show that robust selection can
involve short timescales compared to those required for
full pattern formation. Accordingly, this robust selection
can become visible at late times (i.e., at the end of the
path) and not when the selection is actually taking place
or when the signal is acting (Fig. 1 D).
Scenario 2: pattern selection by local paths

We wondered whether selection of the P-pattern in all the
tissue could occur from biochemical signals that act locally
only in a small subset of cells. We reasoned that such selec-
tion can occur if the P-pattern is spatially more stable than
the H-pattern and thus can spontaneously propagate over
the H solution (Materials and Methods). This spontaneous
propagation occurs for the parameter values of point C of
the parameter space of Fig. 1 Awhere both the H- and P-pat-
terns are stable (Fig. S4). We then envisaged a path that acts
only and transiently in a cluster of cells (path 2a in Fig. 3 A).
Hence, all cells have the same equivalent dynamics (i.e.,
those characterized by the parameter values of point C) at
initial and final times. The path drives the cells within the
cluster to evolve from the parameter space point C to a point
where the H-pattern is unstable (B) and backward (Fig. 3 A).
When this path acts, the P-pattern is selected (Fig. 3 C). The
P-pattern forms within the cluster and propagates all
through the tissue. Therefore, selection of a more spatially
stable pattern can be driven by transient signals acting
locally within the tissue. The transient local signal drives
the selection of the new pattern within the cluster. Then,
because the new pattern is spatially more stable, it spontane-
ously (without the action of any signal) invades the remain-
ing tissue. Note that path 2a is such that if the signal acted in
all cells and not only within a cluster, the P-pattern would be
selected as well, as expected from Scenario 1 (Fig. S6).

In Scenario 1, we found that selection of a new pattern
involved the transient destabilization of the initial pattern.
Specifically if the path described the trajectory from point
C to A1, where only the H-pattern is stable, and backward
(Fig. 3 B), the P-pattern was not selected from the H one
(Fig. S6). We devised this same change to occur only within
a subset of clustered cells (path 2b in Fig. 3 B). Our results
show that in this case the P-pattern can be selected in the



FIGURE 3 Pattern selection achieved through a spatially localized

signal. (A and B) Paths (arrows) 2a (A) and 2b (B) in the parameter space

of Fig. 1, A and B. These paths involve transient temporal changes of a sin-

gle parameter value (Fig. S9) acting in a cluster of cells. (Solid circles)

Initial and final points of the paths; (open circles) intermediate vertex

points. (C andD) Snapshots of the tissue state over time (t) when the system

initially (t ¼ 0) exhibits the H-pattern and the signal acts only in three cells

(green cell borders), which change their control parameter values tran-

siently according to paths 2a (C) and 2b (D). The remaining cells of the tis-

sue have constant parameter values corresponding to those of parameter

space point C. Parameter values are t ¼ 50 and tup ¼ 11 and those in

Fig. 1. To see this figure in color, go online.

A B

FIGURE 4 The robustness of the selection process depends on the

amount of cells that sense the signal. (A) Frequency of selection of the

P-pattern (Rp in percentage) for 100 repetitions versus (B) the time t spent

at the intermediate parameter space vertex point of the path. The signal

drives the change of the control parameters only in the number of cells

detailed in the legend, located at the center of the tissue, according to (A)

path 2a and (B) path 2b of Fig. 3, A and B, respectively. All parameter

values as in Fig. 3. To see this figure in color, go online.
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whole tissue (Fig. 3 D). Snapshots of the dynamical evolu-
tion of the state of cells reveals that the P-pattern starts to
emerge at the boundary outside the clustered cells, i.e.,
where the signal is not acting (Fig. 3 D). This initial nucle-
ation of the pattern then spreads to all the tissue. Thus, this
signal drives selection of the P-pattern only if it acts on a
subset of cells and not in all the tissue. In this case, the desta-
bilization of the H-pattern arises from the spatial inhomoge-
neities the signal drives on the tissue through the large
differences between the average values of the ligand and
signal activities of the H-pattern at points A1 and C (Table
S1). Thus, the P-pattern can only arise at the boundary
where the signal acts.

We explored the robustness of these selection processes
as a function of the time t spent at the intermediate point
(B for path 2a and A1 for path 2b) and of the number of cells
on which the signal acts. In all cases, the selection process
shows a thresholdlike response requiring a minimal time
to be robust (Fig. 4, A and B). For path 2a (Fig. 3 A), this
minimal time is larger than when the signal acts in all the
tissue (Fig. 4 A). The minimal time decreases as the number
of cells responding to the signal is larger (Fig. 4 A). For path
2b (Fig. 3 B), the selection process required much longer
timescales (Fig. 4 B). This is to be expected because the
pattern does not form from a linear, small, instability, but
from a nonlinear one. In addition, the minimal time in-
creases with the size of the cluster of cells (Fig. 4 B). It is
also worthwhile to stress that the selection becomes less
robust, becoming less sharp. The distinct behavior that
paths 2a and 2b show for the time required for robust selec-
tion as a function of the size of the cluster of cells indicate
that we may expect nonmonotonic functionalities on the size
of the cluster for more complex paths. This is indeed the
case, as shown in Fig. S10.

Together, these results show that selection of a pattern
that is more stable than another stable one and can spatially
invade it, can be triggered by a signal acting locally in a
cluster of cells and propagate across the tissue spontane-
ously, without requiring the signal anymore. The signal
can destabilize the initial pattern either dynamically inside
the cluster of cells or in a spatial manner by setting borders.
Therefore, the instability can arise either within the region
where the signal acts or outside this domain, at its border.
Scenario 3: spatiotemporal paths can select the
stripe pattern

It is quite common to have patterns that, although they are
stable, cannot arise spontaneously from an H-pattern unless
specific spatial symmetries are broken. In our model, the
stripe S-pattern is such a case (Materials and Methods).
To ensure stochastic stability of this pattern, we focused
on the phase diagram for n ¼ 4 (Fig. 5 A). We evaluated
whether selection of the S-pattern can arise when the system
is initially at the H-pattern. According to the phase diagram
(Fig. 5 A), transient destabilization of the initial H-pattern
can occur, but it does not drive a univocal selection.
Although H now becomes unstable, both the S- and P-pat-
terns are stable and able to be selected (e.g., at point B).

To drive the selection from the H-pattern to the S-pattern,
we envisaged that signals could act in domains of the tissue,
Biophysical Journal 108(6) 1555–1565



FIGURE 5 Stripes selection achieved through a propagating signal.

(A) Path (arrows) across the parameter space of trans rt and cis rc interac-

tion strengths. (Solid circles) Initial and final points of the path; (open cir-

cles) intermediate vertex points. The temporal evolution of the path is

shown in Fig. S12. It is indicated within parentheses at relevant points of

the path (denoted by letters A, B, and C) whether the homogeneous (H),

the salt-and-pepper (P), and/or stripes (S) patterns are stable. The path

crosses different domains (colors), each defined by which of these patterns

are stable: H (blue), P (yellow), H and P (gray), S and P (orange), or H, P,

and S (red). These domains have been plotted using data for deterministic

dynamics with periodic boundary conditions in Formosa-Jordan and Ibañes

(22). Stability of these patterns for stochastic dynamics and fixed boundary

conditions at bottom and top rows is found in Fig. S11. (B) Representation

of path 3 across the tissue (denoted by the black border) at the initial (left),

an intermediate (middle), and the final (right) times. Small arrows within

the tissue denote the spatial direction of change of the parameter values

from top to bottom rows. Colors and letters, as in (A), denote the parameter

values of cells. (C) Snapshots of the tissue state over time (t) when the sys-

tem starts (t ¼ 0) with the homogeneous H-pattern and parameters change

over time according to path 3 (i.e., propagating from top to bottom cell

rows). The column of colored cells at the right of each panel shows the point

of the parameter space at which each cell row is located (blue for point A,

white for B, and red for C). Parameter values are tprop ¼ 7, Nrows ¼ 2, b ¼
1000, n ¼ 4, and V ¼ 10,000; and rc and rt values can be found in Table S3.

A lattice of N¼ 18� 31 cells with fixed boundary conditions at bottom and

top rows (s¼ 0 and l¼ 0 for neighbors on top of the first row and below the

last row) and periodic conditions between left and right sides were used. To

see this figure in color, go online.

FIGURE 6 Robust selection of stripes occurs for an optimal signal prop-

agation time along the tissue. Frequency of selection of the S-pattern (Rs in

percentage) for path 3 (Fig. 5, A and B) versus tprop (propagating time) for

100 repetitions. Results for different number of cell rows being simulta-

neously at point B of the path (Nrows, see legend) are shown. All other

parameter values as in Fig. 5. To see this figure in color, go online.
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which could break the spatial symmetry appropriately. Eval-
uation of the relative stability of the S-pattern for stochastic
dynamics indicated that the S-pattern cannot propagate over
the H-pattern (Fig. S11), discarding a mechanism like Sce-
nario 2. Therefore, if the S-pattern was to arise in a small
spatial domain of the tissue, it would not propagate sponta-
neously over the whole tissue. This prompted us to consider
spatiotemporal signals and paths that sweep rows of cells
along time (Fig. 5 B, Materials and Methods). These kinds
of spatiotemporal paths could be driven, for instance, by
diffusing morphogens.

We designed that changes of parameter values within a
cell over time trace the trajectory shown in Fig. 5 A, which
traverses a region where the H-pattern becomes unstable.
These changes evolved progressively from row to row
Biophysical Journal 108(6) 1555–1565
(path 3) (Fig. 5 B). Fig. 5 C shows that the S-pattern can
be selected through this path.

We evaluated how the selection of the S-pattern depends
on the time tprop the path takes to evolve from row to row and
on how many rows (Nrows) are at point B of the path where
the H-pattern is unstable (Fig. 5, A and B). For short tprop
(i.e., fast propagation of the signal over the tissue), the
S-pattern is not selected but the P-pattern is (Figs. 6 and
S13). Specifically, tprop ¼ 0 corresponds to the signal acting
in all cells at the same time, and not propagating (Sce-
nario 1). Therefore, nonpropagating signals cannot select
the S-pattern as expected (Fig. S14). For higher values of
tprop (i.e., slower propagation of the signal), the S-pattern
is robustly selected, with the stripes arising sequentially as
the signal propagates, and finally all the tissue exhibits the
S-pattern (Figs. 6 and S13). If the signal propagates too
slowly (large tprop), the stripes become destabilized and
the P-pattern is selected again (Figs. 6 and S13). These
two limits give an optimal selection of the S-pattern within
a range of tprop. Increasing the value of Nrows enlarged the
maximal tprop for optimal selection of the S-pattern, albeit
up to a maximal range (Figs. 6 and S13). The range of tprop
values for which the selection of the S-pattern occurs is of
the same order as the time for the formation of stripes in a
few rows surrounded by the H-pattern (data not shown).
We also found that short tprop values, below the optimal
range, drove stripes to be formed consistently only partially
within the tissue (Fig. S13). In contrast, for tprop values
above the optimal range, in some stochastic circumstances
all the tissue could form the S-pattern, while only partially
in other cases (Fig. S13). We checked that the selection of
stripes can also occur through spatiotemporal paths that start
and end up at the same multistable point of the phase dia-
gram, exhibiting features similar to those described above
(Fig. S15).
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These results show that selection of the S-pattern, which
cannot arise through random variability from the H-pattern,
requires a spatiotemporal path that favors its spatial symme-
try. Yet, and in contrast with the other selection processes
being analyzed, there is an optimal timescale for the signals
to select the S-pattern.
CONCLUSIONS

Previous works have addressed the question of how different
cellular patterns can be established in a tissue, e.g., how a
system can select between spots and stripes (15–17,20,23).
These works focused on the univocal correspondence be-
tween the parameter values and initial conditions with the
selected pattern. Our work sheds light on new mechanisms
for the selection among multiple stable patterns based
on time-dependent parameter variation, which we called
‘‘dynamical paths’’. Our results show that the selection of
a specific pattern does not simply depend on the initial
and final values of the control parameters. The main
factor in our approach is the specific path followed by
parameter changes and the spatiotemporal characteristics
of these changes such that the path drives the selection.
Herein, changes of the parameter values are understood as
the result of biochemical signals. We expect these mecha-
nisms to help us to understand some of the pattern formation
processes occurring in the context of development.

We have presented different dynamical paths that select
patterns that are all stable for the same value of the param-
eters. To this end, we have made use of a model of tissue dif-
ferentiation based on cell-to-cell communication through
the Notch signaling pathway. We have shown that patterns
that can spontaneously break the spatial symmetry can be
robustly selected through paths that only involve temporal,
and not spatial, dynamics. The timescales of the path (i.e.,
of the parameter changes) can be shorter than the time
required for the full pattern to emerge. Therefore, the selec-
tion can become evident after the path has finished, i.e., at
the final set of parameter values. In this sense, the tissue
has a memory of the conditions (the path) to which it has
been subjected. Even for fast paths, the selection can be
robust. Indeed, the selection exhibits a thresholdlike
behavior as a function of the characteristic timescale of
the path.

We have shown that when several patterns are stable and
one is able to spatially invade another one, the invading
pattern can be selected through signals acting in a small sub-
set or cluster of cells. Such selection spontaneously propa-
gates through all the tissue, without requiring the further
action of the signal. Moreover, our results have shown that
selection can arise among cells that are not within the cluster
of cells where the biochemical signal acts. In this case, the
initial pattern becomes destabilized by the spatial inhomo-
geneities the signal drives at the boundary of its acting
domain. In all these cases, selection also exhibits a sharp
threshold response with time. The robustness of the selec-
tion process depends on the size of the cluster of cells as
well, and this dependence can be antagonistic for different
paths.

Finally, our results show patterns that cannot arise spon-
taneously because of their symmetries; they require spatio-
temporal signals that set appropriate symmetries. This is the
case of the S-pattern. A propagating front can drive its selec-
tion, yet robust selection only occurs for a range of optimal
propagation times.

Summarizing, the most relevant aspects involved in the
selection of a pattern among multiple stable ones through
dynamical paths are: 1) The destabilization of the initial
pattern either by dynamical (Scenario 1) or spatial (Scenario
2) mechanisms. 2) The different stable patterns that the path
visits during its evolution, the last explored pattern being the
most relevant one for the final selection when all are
explored for long enough times; therefore, the order that
signals acting sequentially have, is relevant. 3) The interplay
between two relevant timescales, which is the characteristic
time of the parameter changes that sets the time spent in the
exploration of a pattern and the characteristic time to form
the pattern. 4) Selection that can be triggered at localized
clustered regions and spontaneously extends to all the
tissue, when the selected pattern can propagate over the
initial one. 5) Time-specific symmetries of the spatiotem-
poral parameter that exhibit changes for more singular
pattern selections.

It has been shown that dynamic filopodia in Drosophila
enables the creation of sparser salt-and-pepper patterns
mediated by Notch signaling (55,56). This is an example
of a stochastic spatial and time-dependent trans-interactions
strength (rt) extended to longer-range interactions. A more
recent study suggests that growing cell projections in
certain cells in zebrafish embryos would drive stripes for-
mation through Notch signaling (7), what could probably
be understood as a pattern selection phenomenon through
a dynamical path. Hence, an extension of our framework
to more complicated dynamical paths in the parameter
space might be helpful for studying these and other phe-
nomena that exhibit more complicated spatiotemporal
patterning.

Notch signaling is just an example of a pathway that is
orchestrated and modulated by different agents along time
and space. Therefore, the patterning selection mechanism
characterized here could also be applied to other signaling
pathways acting during development. In addition, in this
work we explored what happens if trans- and cis-interaction
strengths in Notch pathway are modulated in time, but other
parameters could also be explored, like the signaling inten-
sity elicited by a ligand when interacting with the receptor.
Indeed, recently it has been shown that there is spatiome-
chanical regulation for signal activation, what could prob-
ably drive time-dependent signaling efficiency for the
Notch receptor (57).
Biophysical Journal 108(6) 1555–1565
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SUPPORTING MATERIAL

Fifteen figures and three tables are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(15)00162-9.
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30. Nené, N. R., and A. Zaikin. 2012. Interplay between path and speed in
decision making by high-dimensional stochastic gene regulatory net-
works. PLoS ONE. 7:e40085.
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FIGURE S1: Scheme of the model interactions between two adjacent cells. Ligand
activity in cell i (li) induces (arrow) Notch activity in the adjacent cell j (sj) and inhibits (blunt
arrow) Notch activity in cell i (si). In turn, si inhibits (blunt arrow) li. The reciprocal interactions
in cell j are also depicted.



3

A

l

B

l

FIGURE S2: The stochastic implemented algorithm is consistent with the theoretical
deterministic predicted values. Histograms of the ligand activity values (li) in a lattice of
N = 48×48 cells with periodic boundary conditions at the steady state (t = 10000). Initially (t = 0)
the lattice starts with the perfect pattern solution theoretically predicted for the deterministic
dynamics (values denoted by dashed vertical lines) for rt = 1.0 and rc = 0.1, b = 1000 and n = 2.
(A) Histograms for different values of V and time integration step dt. In the model, the intensity of
fluctuations depends on 1/V . The mean values are in agreement with the theoretical predictions.
(B) Due to the multiplicative noise, the variables might reach negative values. The algorithm
implemented in the simulations presented in all figures corrects it by fixing the variable to zero
when it is going to become negative (algorithm 1, in open red boxes). We compared the results
obtained by this algorithm with those arising from two different algorithms: with a reflective barrier
in zero (i.e., the negative values are converted into their positive counterpart; algorithm 2, in cyan
boxes) or without any correction (i.e. negative values exist; algorithm 3, in magenta boxes). The
three distributions are very similar. The solid vertical line is depicted to denote the zero ligand
activity value. Simulations of the three algorithms have been generated with V = 1000.
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FIGURE S3: Cartoon exemplifying the problem of pattern selection. Initially, the system
is in a stable homogenous (H ) pattern determined by the initial value of the control parameters (rt0,
rc0). These parameters evolve over time (t) to final values (rtf , rcf ) due to the action of biochemical
signals. At these new values of the parameters, there are multiple patterns which are all stable,
for instance, the homogeneous (H ), a periodic salt-and-pepper (P) and a stripped (S ) pattern.
The problem tackled here is how to select one of these patterns. We considered three different
scenarios, which can select different types of patterns, according to how the parameters change
over time and across the tissue. The figure exemplifies the selection from an initial monostable H
pattern. Other initial conditions involving multistability are explored too.
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FIGURE S4: Parameter changes for the different paths in scenario 1. Changes of rt
(orange) and rc (blue) along time for the different paths in scenario 1: (A) path 1a, (B) path
1b, (C) path 1a’ and (D) path 1b’. The parameter space points that characterize each path are
depicted (see Fig. 1, A-B). The time period spent by the system in each of these points is shadowed
in grey (e.g., τB for B). Parameters defining the time scale dynamics (tup, τ , td and φ) of the
parameter changes are also depicted. (A and B) Paths 1a and 1b share the same initial and final
parameter space points, but they differ in the parameter space points visited along time. In path
1a, rt changes first and then rc. The opposite order happens in path 1b. (C and D) Paths 1a’ and
1b’ are cyclic (the end coincides with the start) and share the same parameter space points visited.
Paths 1a’ and 1b’ only differ in the temporal sequence. In path 1a’, rt changes first and then rc
changes. The reverse order happens in path 1b’. Notice that the examples shown correspond to
changes which involve the same values of φ and tup for rc and rt.
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FIGURE S5: Numerical stability analysis of the H and P patterns at point C in the
parameter space of Fig. 1A, 1B, 3A and 3B (n = 2). (A and B) Percentage of simulations
that reach a steady pattern at t = 200 that is distinct from the initial pattern in the absence of
any biochemical signal for (A) deterministic dynamics and (B) stochastic dynamics. (A) Both the
H (orange circles) and P (blue squares) patterns are deterministically stable for a large range of
amplitudes δ of random initial perturbations. Initial conditions are si(t = 0) = s0i (1+δ (2 r − 1))
and li(t = 0) = l0i (1 + δ (2 r − 1)), where r is a uniformly distributed random number within
[0, 1], and s0i and l0i are the theoretical predicted values of si and li, respectively of the pattern
being analyzed. (B) Both the H (orange circles) and P (blue squares) patterns are stochastically
stable. Initial conditions as in panel A with δ = 0. The initial pattern remains at the end of the
simulation for a wide range of V values (except for the H pattern for very large fluctuations with
V = 500). The percentages in panels A and B (Rchange) have been obtained with 1000 simulations
for each δ and V value. (C) Relative spatial stability of the H and P patterns. (Left) Initial
condition with the top half of the tissue in the P pattern (with the theoretical predicted values)
and the other bottom half in the H pattern (with the theoretical predicted values). (Right) Steady
state reached after numerical integration of the stochastic dynamics for V = 1000 with the initial
condition shown in left panel. The P solution invades all the tissue. In all panels, parameter values
of point C of Fig. 1A, 1B, 3A and 3B (rt = 1.0, rc = 0.1, b = 1000, n = 2), and periodic boundary
conditions were used.



7

A B

C

t = 0

t = 30 t = 90 t = 300t = 180

A1 (P) C (H,P) C (H,P)C (H,P) A1 (P)

S1a

S1b

B (P) B (P) C (H,P) C (H,P)C (H,P)

D

 0

 20

 40

 60

 80

 100

 0.1  1  10  100  1000

R
P
 (

%
)

τ

path S1a
 

path S1b

t = 0

t = 30 t = 90 t = 300t = 180

B (P) B (P) C (H,P) C (H,P)C (H,P)

A1 (P) C (H,P) C (H,P)C (H,P) A1 (P)

S1a

S1b

E

 0

 20

 40

 60

 80

 100

 0.1  1  10  100  1000

R
P
 (

%
)

τ

path S1a
 

path S1b

FIGURE S6: Selection of a new pattern requires transient destabilization of the initial
pattern. (A and B) Paths (arrows) S1a (A) and S1b (B) in the same parameter space as in
Fig. 1,A-b, and fig 3,A-B. (Solic circles) Initial and final points of the patterns; (open circles)
intermediate vertex points. Notice that these two trajectories on the parameter space are produced
by biochemical signals that transiently change either the control parameters rt or rc in all cells at
the same time (see Fig. S9). (C) Snapshots of the state of the system over time for each path and
for initial condition being the (top) H or (bottom) P pattern, for τ = 90. The initial, intermediate
path vertex and final points of each path and the time t of each snapshot are indicated. The
results show that the selection of a pattern different from the initial one only occurs when the path
involves a transient destabilization of the initial pattern. (D and E) Percentage of selection of P
pattern (RP ) versus τ when the initial state is H (D) and when the initial state is P (E). Different
colors and symbols are used to distinguish selections from each path (path S1a in orange circles,
and path S1b in blue stars), as indicated. Notice that selection of a new pattern requires a minimal
time (τ). Other parameter values as in Fig. 1 and in Table S1.
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FIGURE S7: Selection through paths 1a’ and 1b’ when the initial state is the P pattern.
(A) Snapshots of the tissue state over time (t) when the system initially (t = 0) exhibits the P
pattern, for path 1a’: CA1ABC and path 1b’: CBAA1C, with τA1 = τA = τB = 10. These cyclic
paths are depicted in Fig. 1B. The results corresponding to these same paths but when the system
initially exhibits the H pattern are shown in Fig. 1D. (B) Frequency of selection of the P pattern
(RP in percentage) versus the time spent at each intermediate vertex point of the parameter space
(τA1 = τA = τB) when the initial pattern is P, for paths 1a’ and 1b’. The results corresponding
to these same paths but when the system initially exhibits the H pattern are shown in Fig. 2B.
Parameter values in panels A and B as in Figs. 1D and 2B, respectively.
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FIGURE S8: Stochastic time evolution of order parameters during pattern P formation.
(A and B) Eight different stochastic time evolutions of order parameters η̄s (A) and η̄l (B) as defined
in Materials and Methods, for the parameter values of parameter space point B of Figs. 1, A-
B, and 3, A-B (rt = 1.0, rc = 0.1). The initial condition is the H pattern with the theoretical
predicted values of s and l of the homogeneous stable state of point A in the parameter space
(rt = 0.1,rc = 2.0). The dashed line stands for the predicted theoretical value of the order
parameter for a perfect periodic deterministic stationary pattern (see the value in Table S1). (C)
Pattern at time t = 100 for the red (left) and yellow (right) trajectories of panels A and B. These
patterns are stationary. According to panels A and B, the characteristic time to form the P pattern
in point B of parameter space is T ∼ 40− 50 (see Table S2 for the average values of T , with more
volumes and tissue sizes explored). Moreover, the final stationary states are different because the
final pattern is not perfectly periodic in all the tissue. Other parameters of the simulation are:
V = 1000, b = 1000, n = 2.
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FIGURE S9: Parameter changes for the different paths in scenario 2. Changes of rt
(orange) and rc (blue) along time for the different paths in scenario 2: (A) path 2a, (B) path 2b.
The parameter space points that characterize each path (see Fig. 3, A-B) are depicted. The time
period spent by the system in each of these points is shadowed in grey (e.g., τB for B). Parameters
defining the time scale dynamics (tup and φ = τ) of the parameter changes are also depicted. (A
and B) Paths 2a and 2b are cyclic and parameter changes only occur for a subset of cells. Paths
2a and 2b differ in the parameter that is changed along the path (rc in path 2a, and rt in path
2b) while the other one remains constant. Hence, these paths differ in the parameter space point
transiently visited (B in path 2a, and A1 in path 2b).
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FIGURE S10: Selection by a cyclic path that acts only on a cluster of cells (scenario 2).
The cyclic path used herein involves transient changes of the parameter values as those depicted
for path 1a’ in Fig. 1B and S4C. The path starts and ends at point C of the parameter space of
Fig. 1B. The changes of the parameter values only occur on a subset of cells, while the rest of the
cells of the tissue remain at all time with the parameter values of point C. This is in contrast with
path 1a’ which acts upon all cells of the tissue. (A) Frequency of selection of the P pattern (RP
in percentage) for 1000 repetitions versus the time spent at each intermediate parameter space
vertex point of the path τ (τ = τB = τA1 = τA). The signal drives the change of the control
parameters only in the number of cells detailed in the legend, located at the centre of the tissue.
(B) The same results as in panel A but depicted as a function the number of cells that change
their parameter values. Different curves correspond to different τ values (see the legend). Notice
the non monotonous dependency of the pattern selection with the cluster size for this path. Other
parameter values as in Fig. 2B. The total size of the tissue is 12×12.
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FIGURE S11: Numerical stability analysis of the H, P and S patterns at points B
and C in the parameter space of Fig. 5A (n = 4). (A-D) Percentage of simulations that
reach a steady pattern at t = 200 that is distinct from the initial pattern in the absence of any
biochemical signal for (A and B) deterministic dynamics and (B and C) stochastic dynamics for
the parameter values of point B (A and C) and C (B and D) of the parameter space of Fig. 5A. (A
and B) Stability for deterministic dynamics for different amplitudes of initial random perturbations
of the theoretical predicted patterns. The initial conditions are si(t = 0) = s0i (1 + δ (2 r − 1))
and li(t = 0) = l0i (1 + δ (2 r − 1)), where r is a uniformly distributed random number within
[0, 1], and s0i and l0i are the theoretical predicted values of si and li, respectively of the pattern
being analyzed. (C and D) Stability for stochastic dynamics with different V values for initial
conditions being the theoretical predicted patterns (δ = 0). Notice that for the value of V used in
the simulations of scenario 3 (V = 10000) all the pattern solutions are stochastically stable. The
percentages shown in panels A-D (Rchange) have been obtained with 1000 simulations for each δ
and V value. (E) Relative spatial stability of the H, P and S patterns at point C in the parameter
space of Fig. 5A. (Left) Initial tissue with: (top) half of the cells in the P pattern and the other
half in the H pattern; (middle) half of the cells in the stripped S pattern and the other half in the
P pattern; (bottom) half of the cells in the P pattern and the other half in the S pattern (bottom).
Theoretical predicted values for the H, P and S solutions were used. (Right) Steady state reached
after numerical integration of the stochastic dynamics for V = 10000 with the initial condition
shown in left panel. If the initial condition is the P and S patterns in contact through a black
stripe, this stripe is invaded by the P pattern (data not shown). In all panels, parameter values
and boundary conditions as in Fig. 5.



13

A

r t r c

t

tup τ

tprop

rt at row 1
rc at row 1

rt at row 2
rc at row 2

rt at row 3
rc at row 3

B

r t r c

row

r
t
 at t=90

r
t
 at t=60

r
t
 at t=30

r
c
 at t=90

r
c
 at t=60

r
c
 at t=30

N
rows

FIGURE S12: Parameter changes for the different paths in scenario 3. (A) Temporal
evolution of the rt (orange) and rc (blue) parameters for different rows of the tissue, as indicated.
τ stands for the time period during which a row is at the intermediate vertex point, B, of the
path. tprop is the time required for the parameter to change from one row to the adjacent one. (B)
Spatial distribution of the rt (orange) and rc (blue) parameters at different times, as indicated.
Nrows is the number of rows that are at the same intermediate vertex point of the path 3. The
parameter values explored by the path are depicted in Fig. 5A and in Table S3.
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FIGURE S13: Selection of the S pattern requires a path with optimal spatiotemporal
dynamics. (A) Snapshots of the stationary state reached through path 3 in Fig. 5, A-B, for
different spatiotemporal dynamics of the path, i.e., different values of tprop and Nrows (Materials
and Methods, Fig. S12). The initial condition is the H pattern of point A in parameter space of
Fig. 5A. The S pattern is selected only for a range of optimal tprop values which slightly enlarges
with Nrows, as Fig. 6 shows (averaging different repetitions). For very short tprop values, the
parameter change propagates almost instantaneously across the tissue and hence the results for
homogeneous (spatially independent) changes of the parameter values is recovered (pattern P is
selected). For large values of tprop, the P pattern is selected too. (B) Values of σl (average of 100
repetitions) for path 3 versus tprop (propagating time). Results for different number of cell rows
being simultaneously at point B of the path (Nrows, see legend) are shown. The dashed line points
out the value of 0.8, which has been considered as a threshold for stripes selection (RS). See the
definition of σl in Material and Methods section. Other parameter values and boundary conditions
as in Figs. 5 and 6.



15

A

t = 0 t = 11 t = 22 t = 80 t = 200

A (H) C (H,P,S)B (P,S) C (H,P,S) C (H,P,S)

3

B

t = 0 t = 11 t = 25 t = 80 t = 200

A (H) C (H,P,S)B (P,S) C (H,P,S)B (P,S)

3

C

t = 0 t = 11 t = 200 t = 260 t = 300

A (H) C (H,P,S)B (P,S) C (H,P,S)B (P,S)

3

FIGURE S14: Pattern selection achieved through path 3 with tprop = 0. Snapshots of
the tissue state over time (t) when the system starts (t = 0) with the homogeneous H pattern and
parameters change over time according to path 3 in Fig. 5A but with tprop = 0. Therefore, all
cells change their parameter values at the same time. In these cases, path 3 (with tprop = 0) is of
the scenario 1-like type. The column of colored cells at the right of each panel shows the point of
the parameter space (Fig. 5A) at which each cell row is (blue for point A, white for B and red for
C). Three values of τ have been explored. (A) The tissue spends no time in B parameter space
point, so τ = 0. (B) Each cell of tissue spends as much time in B as a cell does in the path studied
in Fig. 5C. It uses τ = 14. (C) The whole tissue spends as much time in B (τ = 231) as the tissue
in Fig. 5 remains with at least one row of cells in B. Notice that for these three values of τ (A-C),
the S pattern is not selected. Other parameter values and boundary conditions as in Fig. 5.
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FIGURE S15: Selection of the S pattern through transient spatio–temporal changes of
the parameter values. (A) Snapshots of the tissue state over time (t) when the system starts
and ends up at the same parameter space point C and transiently visits parameter space point B
of Fig. 5A. We have named this path as path S3. Parameters change according to a path 3-like,
i.e. propagating from top to bottom cell rows (like in Fig. 5B for path 3). The column of colored
cells at the right of each panel shows the point of the parameter space at which each cell row is
(white for B and red for C). Parameter values are tprop = 6, Nrows = 4. The system initially
(t = 0) exhibits the H pattern. (B) Frequency of selection of the S pattern (RS in percentage) for
the path described in panel A versus tprop for 100 repetitions. Results for different number of cell
rows being simultaneously at point B of the path (Nrows, see legend) are shown. Parameter values
and boundary conditions as in Fig. 5C.
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Points rt rc Patt sst (∆sst) lst (∆lst) η̄th
s η̄th

l

A 0.1 2.0 H 0.027 (±0.007) 0.6 (±0.1) 0.00 0.00
A1 0.1 0.1 H 0.038 (±0.007) 0.41 (±0.07) 0.00 0.00
B 1.0 2.0 P 0.32 (±0.02), 0.003 (±0.002) 0.009 (±0.003), 0.99 (±0.03) 0.22 0.65
C 1.0 0.1 H 0.09 (±0.01) 0.10 (±0.02) 0.00 0.00

P 0.32 (±0.02), 0.009 (±0.003) 0.010 (±0.003), 0.93 (±0.05) 0.21 0.61

TABLE S1: Parameter and order parameter values for different points of the parameter
space shown in Figs. 1A, 1B, 3A and 3B with n = 2. The fourth column (Patt) shows
which of the studied pattern solutions are stable for the parameter values (Points, first column) of
rt, rc (second and third columns; see them depicted in the parameter space in Figs. 1, A-B, and
Fig. 3, A-B). sst and lst are the theoretical stationary deterministic values of each cell type for
each pattern. ∆sst and ∆lst are the fluctuation amplitude. These amplitudes have been obtained
by computing the standard deviation of the final states of the cells in a tissue of 48 × 48 cells,

when the stochastic dynamics of Eqs. 1-2 are considered with V = 1000. η̄ths =
η0s+η

−
s +η+s
3 and

η̄thl =
η0l +η

−
l +η+l
3 are the theoretical deterministic values of the order parameters as defined in

Materials and Methods for the different stable solutions. Other parameters: b = 1000 and n = 2;
and final time t = 100 for the numerical simulations.
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A
V Size T

100 12× 12 38± 6

1000 6× 6 58± 18
1000 12× 12 54± 5
1000 24× 24 54± 2

10000 12× 12 73± 7

B
Size T

12× 12 103± 16
3 cells 73± 14

TABLE S2: Characteristic time, T , for pattern formation in point B of Figs. 1A, 1B,
3A and 3B. Tables showing the average characteristic time T of P pattern formation and its
standard deviation for (A) stochastic dynamics and (B) deterministic dynamics for the parameter
values of point B of Table S1 (Fig. 1, A-B, and Fig. 3, A-B). The initial condition is the H pattern
solution at parameter space point A of Fig. 1, A-B, and Fig. 3, A-B. T is defined as the time at
which the order parameters η̄s and η̄l reach 90% of their stationary values each. The stationary
values of the order parameters (for x = s, l) were computed as the time-averaged values of η̄x(t)
over a period ∆t = 10 during which the standard deviation of η̄x(t) is less than 0.01 times the
time-average value. In B, the initial condition is the H pattern of parameter space point A of Fig.
1, A-B, with a random perturbation of amplitude δ = 10%.



19

Path points rt rc Patterns η̄th
s η̄th

l

(
η0
s , η

−
s , η

+
s

)th (
η0
l , η

−
l , η

+
l

)th

A 0.5 3.4 H 0.00 0.00 (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)
B 1.3 3.4 P 0.23 0.63 (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)

S 0.22 0.60 (0.00, 0.33, 0.33) (0.00, 0.90, 0.90)
H 0.00 0.00 (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)

C 1.3 8.6 P 0.32 0.65 (0.32, 0.32, 0.32) (0.65, 0.65, 0.65)
S 0.23 0.64 (0.00, 0.35, 0.35) (0.00, 0.96, 0.96)

TABLE S3: Parameter and order parameter values for different points of the parameter
space shown in Fig. 5A with n = 4. The “Patterns” column shows which of the studied
pattern solutions are stable for the parameter values rt, rc (see them in the parameter space

in Fig. 5A). η̄ths =
η0s+η

−
s +η+s
3 and η̄thl =

η0l +η
−
l +η+l
3 are the theoretical deterministic values of the

order parameters for the different stable solutions.
(
η0s , η

−
s , η

+
s

)
and

(
η0l , η

−
l , η

+
l

)
are the theoretical

three-component order parameters for the different solutions. Notice that we have shown a certain
direction (among three possible directions in the cell lattice) for the stripes.
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