The American Journal of Human Genetics

Supplemental Data

Mutations in *SEC24D*, Encoding a Component of the COPII Machinery, Cause a Syndromic Form of Osteogenesis Imperfecta

Lutz Garbes, Kyungho Kim, Angelika Rieß, Heike Hoyer-Kuhn, Filippo Beleggia, Andrea Bevot, Mi Jeong Kim, Yang Hoon Huh, Hee-Seok Kweon, Ravi Savarirayan, David Amor, Purvi M. Kakadia, Tobias Lindig, Karl Oliver Kagan, Jutta Becker, Simeon A. Boyadjiev, Bernd Wollnik, Oliver Semler, Stefan K. Bohlander, Jinoh Kim, and Christian Netzer Figure S1. Comparison of the Facial Phenotype of Individuals with Cole-Carpenter Syndrome.

(A) Individual 1 of the original publication by Cole and Carpenter, 1986. (B) Individual 2 of the original publication by Cole and Carpenter.¹ (C) Individual published by Amor et al.²
(D) Affected individual of family 1 at the age of 9 months.

Photographs reprinted with kind permission of *The Journal of Pediatrics* (A and B) and *The American Journal of Medical Genetics* (C).

А

В

		0 0 0	
н.	sapiens SEC24D	LVEDKGLYGGSSYVDFLCCVHKEIC	1028
н.	sapiens SEC24C	LVEDKSLSGGASYVDFLCHMHKEIR	1090
D.	melanogaster SEC24CD	LVEDRGTDGSASYVDFLCHMHKEIK	1189
C.	elegans SEC24.1	LVEDKAGPANMSYVDYLVDIHRKIR	1122
Α.	thaliana CEF	MVEDRGS-GGASYVDFLVSVHRQIQ	1092
Α.	thaliana At4g32640	MVEDRTA-SGPSYVEFLVQVHRQIQ	1076
Α.	thaliana At3g07100	LIEDQMG-GSSGYVDWILQLHRQVQ	1036
н.	sapiens SEC24A	MIEDRTE - SALSYYEFLLHIQQQVN	1092
н.	sapiens SEC24B	LIEDRTE - AAFSYYEFLLHVQQQIC	1267
D.	melanogaster SEC24AB	RLTDDRSESSLSYYEFLQHIRAQVK	1184
С.	elegans SEC24.2	LVDDRSE-STHSYVEFLQHLKREIS	982
s.	cerevisiae SEC24	LVEDKIL-NNESYREFLQIMKARIS	925
s.	cerevisiae SFB2(ISS1)	LVEDKVL-NCASYREYLQSMKTSIN	875
s.	cerevisiae SFB3(LST1)	LCEDKTVNRIESYDNYLVIMHKKIQ	902
		_	
п.	sapiens SEC24D	NPYSQULRMIMGIIQUKRP 982	
٢.	troglodytes SEC24D	NPYSQQLRMIMGIIQQKRP 982	
Μ.	musculus SEC24D	SPHSQQLRMIMNNIQQKKP 982	
G.	gallas SEC24D	NPYSKKIKSIVEHIQNQKP 937	

- X. tropicalis SEC24C*
- D. rerio SEC24D
- H. sapiens SEC24C
- P. troglodytes SEC24C
- M. musculus SEC24C
- G. gallas SEC24C
- X. tropicalis SEC24D*
- D. rerio SEC24C
- C. elegans SEC24.1
- NPYSKKIKSIVEHIQNQKF SAHSKKLRSIMDAIQKTCP 975 NPHSRKLHSIISRISQQRA 979 NPLSKKVRGLIDSLRAQRP 1044 NPLSKKVRGLIDSLRAQRS 1044 NPLSKKVRGLIDSLRAQRM 1046 NPFSKKVRSIIDMLHLQRS 1069

12

20

24

NPFSKRLKEIIESIRAQRS 1092 D. melanogaster SEC24CD TPLAKRIHGILEQIMKERS 1143 NGHSRALRRAIQLLPR-GI 1076

NPISNKIRGIITMFRAQRP 1082

(A) Sequence comparison near Ser1015 (red) was performed by ClustalW2. Highly conserved residues were colored green. Following sequences were used for comparison: Homo sapiens SEC24A (O95486), SEC24B (O95487), SEC24C (P53992) and SEC24D (O94855); Drosophila melanogaster SEC24AB (A1Z813) and SEC24CD (M9PC99); Caenorhabditis elegans SEC24.1 (Q19371) and SEC24.2 (Q23368); Arabidopsis thaliana CEF (Q9M291), At3g07100 (Q9SFU0), At4g32640 (Q9M081); Saccharomyces cerevisiae SEC24 (P40482), SFB3 (LST1, P38810) and SFB2 (ISS1, P53953). (B) SEC24C and SEC24D sequences were compared by ClustalW2. Highly conserved residues and Gln978 of SEC24D were colored green and red, respectively. The following sequences were used for comparison: *Homo sapiens* SEC24C (P53992) and SEC24D (O94855); *Pan troglodytes* SEC24C (H2Q241) and SEC24D (K7B5H4); *Mus musculus* SEC24C (G3X972) and SEC24D (Q6NXL1); *Gallus gallus* SEC24C (E1BUD8) and SEC24D (E1BSP8); *Xenopus tropicalis* SEC24C (F6ZIY6) and SEC24D (F6YFQ0); *Danio rerio* SEC24C (D5LHQ7) and SEC24D (F1R3A4); *Drosophila melanogaster* SEC24CD (M9PC99); *Caenorhabditis elegans* SEC241 (Q19371). Note that a phylogenic analysis of SEC24b and SEC24C and SEC24D of *X. tropicalis* (asterisks) are actually close to SEC24D and SEC24C of other species, respectively (data not shown).

Figure S3. Radiographic Findings of the Affected Individual from Family 1 at Different Ages.

(A) Postnatal skeletal survey of thorax and abdomen demonstrating thin ribs and callus formation on the right thoracic side, normal clavicles and flattened vertebrae. (B) A.p. radiograph of the right femur and hip at the age of 5.7 years presenting zebralines after multiple cycles of intravenous bisphosphonate treatment, broadened distal epiphysis of the femur with an increased metaphyseal index $(0.71)^{3;4}$ as a sign of decreased remodelling after bisphosphonate treatment. The iliac wing is high and narrow. (C) Lateral radiograph of the spine showing flattened vertebrae with anterior notches and posterior wedging as well as mild kyphosis in the thoracic part.

Figure S4. Radiographic Findings of One Affected Fetus After Termination of Pregnancy in the 23rd Week of Gestation.

B

(A) Post mortem anteriorposterior skeletal survey of the 23rd week's fetus demonstrating delayed skeletal development (reduced frontal calvarial ossification, no pubic bones are seen.⁵ The fetus presents with thin ribs but without severe thoracic hypoplasia and callus formation, with short, fractured, and mildly bowed long bones, normal clavicles, and normal ossified vertebrae. Ossification of the calvarium is clearly reduced in contrast to the skull base. Remarkable is the discrepancy between skull ossification and ossification of the rest of the skeleton, a pattern which was also observed in the affected individual of family 1. (B) Post mortem lateral skeletal survey of the fetus confirming the discrepancy between skull base and calvarial ossification. The long bones of the upper extremity and vertebrae are well ossified and normal developed.

 Clinical Findings	Affected Individual
Disease severity	moderate
Age at first presentation	7 years 4 months
Confirmed prenatal fractures	yes (both humeri and 2 rips)
Birth length / birth weight / head circumference at birth	47 cm /2800g/ 32cm all < - 2 SD
APGAR	7/7/9
Fractures before bisphosphonate treatment	Yes
Age at start of bisphosphonate treatment	2 months (i.v. pamidronate) (Glorieux et al. 1998)
Number of lower extremity fractures since birth	6
Number of upper extremity fractures since birth	3
Weight at visit kg/BMI (SD)	15.0/14.6
Length at visit cm/SD	101.5/- 4.5
Head circumference at visit (cm)	55.5
Sitting height at visit (cm)	78.5
Arm span at visit (cm)	99.0
Color of sclera	normal
Dentinogenesis imperfecta	no
Primary dentition	normal
Secondary dentition	mild misalignment of teeth
Hypermobility of joints	no
Spine	flat vertebrae (posterior wedging, anterior notches)
Pelvis	small hypoplastic acetabular roof; high and narrow iliac wings
Scoliosis	no
Chest deformities	pectus excavatum
Severe bowing of extremities	no
Hearing impairment	no
	lower normal
Mobility of vicit (PAME (Cintos of al. 2002))	
<u>Cross motor function measurement test (CMFM)</u>	9
(Russell et al. 1989)	96.6%
1 Minute walking test	120 m (without aids)
6 Minute walking test	520 m (without aids)
Deoxy-Pyridinolin-Diphosphat	decreased
(marker for osteoclastic activity)	
Bone density, DXA whole body without head (g/cm ²)/(z-score)	0.464 /- 2.0
Bone density, DXA ap spine (g/cm ²)/(z-score)	0.520 /- 2.0

Table S1. Clinical Features of the Affected Individual from Family 1.

^a Tested with "Hannover-Wechsler Intelligence test for preschool kids" and "Kaufmann Assessment Battery for children"

Table S2. Genes Tested by Sanger Sequencing in Individuals with the Clinical Diagnosis of Cole-Carpenter Syndrome.

Family 1 (Index patient tested)	MIM	Family 2 (one of two fetuses tested)	MIM
COL1A1	120150	COL1A1	120150
COL1A2	120160	COL1A2	120160
ALPL	171760	ALPL	171760
CRTAP	605497	BMP1	112264
FKBP10	607063	CRTAP	605497
LEPRE1	610339	FKBP10	607063
PPIB	123841	LEPRE1	610339
SERPINF1	172860	PPIB	123841
SERPINHI	600943	SERPINF1	172860
SP7	606633	SERPINH1	600943
		SP7	606633

Table S3. Candidate Genes and Variants Identified by Whole-Exome Sequencing inFamily 1.

Position	Ref	Alt	Gene	OMIM	Transcript	<i>cDNA</i>	protein
chr4:119644725	G	A	SEC24D	607186	NM_014822	c.C3044T	p.S1015F
chr4:119736666	G	A	SEC24D	607186	NM_014822	c.C613T	p.Q205X
chr6:137325901	TAA	TA	IL20RA	605620	NM_014432	IVS	altered splicing
chr7:139611038	G	A	TBXAS1	274180	NM_030984	c.G254A	p.R85H
chr7:139715531	G	A	TBXAS1	274180	NM_030984	c.G1238A	p.R413Q
chr11:1275486	G	A	MUC5B	600770	NM_002458	c.G15382A	p.A5128T
chr11:1270475	С	Т	MUC5B	600770	NM_002458	c.C12365T	p.T4122M
chr13:76427413	С	A	LMO7	604362	NM_015842	c.C3851A	p.P1284H
chr13:76429387	T	С	LMO7	604362	NM_005358	c.3816-9T>C	altered splicing

Filtering for deleterious variants was performed under an autosomal recessive disease model as described in the main text. The variant in *IL20RA* was homozygous. Candidate genes which were also identified in family 2 are marked in bold.

Position	Ref	Alt	Gene	OMIM	Transcript cDNA		protein
chr1:144873964	G	A	PDE4DIP	608117	NM_001198832	c.C4861T	p.Q1621X
chr1:144857691	С	Т	PDE4DIP	608117	NM_001198832	c.G6045A	p.M2015I
chr1:156268808	A	G	VHLL		NM_001004319	c.T173C	p.158T
chr1:156268845	G	A	VHLL		NM_001004319	c.C136T	p.R46C
chr2:61719303	С	A	XPO1	602559	NM_003400	c.G1754T	p.C585F
chr2:61719303	С	A	XPO1	602559	NM_003400	c.G1754T	p.C585F
chr2:196741296	A	Т	DNAH7	610061	NM_018897	c.T6089A	p.V2030D
chr2:196756535	GAA	GA	DNAH7	610061			
chr3:9786696	A	С	BRPF1	602410	NM_004634	c.A2907C	p.L969F
chr3:9785283	Т	G	BRPF1	602410	NM_004634	c.T2315G	p.V772G
chr4:119649741	Т	G	SEC24D	607186	NM_014822	c.A2933C	p.Q978P
chr4:119644725	G	A	SEC24D	607186	NM_014822	c.C3044T	p.S1015F
chr5:90101200	G	A	GPR98	602851	NM_032119	c.G14761A	p.A4921T
chr5:89933700	С	G	GPR98	602851	NM_032119	c.C2175G	p.1725M
chr6:90494849	С	Т	MDN1		NM_014611	c.1335-4G>A	splicing
chr6:90405631	С	Т	MDN1		NM_014611	c.G9464A	p.R3155Q
chr11:65402768	Т	G	PCNXL3		NM_032223	c.T5033G	p.V1678G
chr11:65403969	С	Т	PCNXL3		NM_032223	c.C5701T	p.R1901W
chr12:644443	A	С	B4GALNT3	612220	NM_173593	c.273+8A>C	
chr12:644374	G	A	B4GALNT3	612220	NM_173593	c.G212A	p.R71K
chr13:76430676	С	Т	LMO7	604362	NM_015842	c.C3997T	p.P1333S
chr13:76397701	A	G	LMO7	604362	NM_015842	c.A1942G	p.M648V
chr14:75134206	G	С	KIAA0317	615380	NM_001039479	c.C2006G	p.A669G
chr14:75134206	G	С	KIAA0317	615380	NM_001039479	c.C2006G	p.A669G
chr17:21318731	С	Т	KCNJ12, KCNJ18	602323	NM_021012	c.C77T	p.S26L
chr17:21318896	G	A	KCNJ12, KCNJ18	602323	NM_021012	c.G242A	p.R81Q
chr17:39635147	С	Т	KRT35	602764	NM_002280	c.G812A	p.C271Y
chr17:39636977	G	С	KRT35	602764	NM_002280	c.C373G	p.L125V
chr17:73569700	С	G	LLGL2		NM_004524	c.C2864G	p.P955R
chr17:73569700	С	G	LLGL2		NM_004524	c.C2864G	p.P955R
chr17:26694784	С	A	VTN	193190	NM_000638	c.G1276T	p.V426L
chr17:26694784	С	A	VTN	193190	NM_000638	c.G1276T	p.V426L
chr19:9066140	Т	G	MUC16	606154	NM_024690	c.A21306C	p.L7102F
chr19:9064309	AGGGG	A	MUC16	606154	NM 024690	c.23133 23137T	

Table S4. Candidate Genes and Variants Identified by Whole-Exome Sequencing inFamily 2.

Filtering for deleterious variants was performed as described in the main text. We assumed autosomal recessive inheritance of the phenotype. Note that the non-affected parents and not the affected fetuses were analyzed, which increased the number of candidates. We searched for genes harboring potential mutations in a heterozygous state in both the mother's and the father's dataset. Candidate genes which were also identified in family 1 are marked in bold. The genotype of the affected fetuses was only determined for the variants in *SEC24D* and *LMO7*.

Table S5. Detailed Comparison of Clinical and Radiological Findings in the Affected Individual from Family 1 and in the Six Published Individuals with Cole-Carpenter Syndrome.

	This report, index patient	Cole and Carpenter ¹	Cole and Carpenter ¹	Marwaha et	Stopfer et	McDermot	Amor et
	from family 1	pat. 1	pat.2	al. 8	al.	et al. 7	al. ²
Birth parameters	Decreased	Normal	Normal	Decreased	N. d.	Decreased	Decreased
Long bone	Yes	Yes	Yes	Yes	yes	N. d.	Yes
Fractures first	Vec	Ves	Vec	Nd	VAS	Vec	Vec
two years	103	105	105	1 v . u.	yes	105	103
Metaphyseal abnormalities	Yes	Yes	Yes	N. d.	yes	Normal	Yes
Spondylodysplastic changes	Yes	Yes	Yes	Yes	N. d.	normal	Yes
Disturbed ossification of the skull ^a	Yes	Yes	Yes	Yes	Yes	N. d.	Yes
Increased head circumference	Yes	Yes	N. d.	Yes	N. d.	No	Yes
Skull erosions	Yes	Yes	N. d.	N. d.	N. d.	N. d.	No
Craniosynostosis	Yes	Yes	Yes	Yes	Yes	No	Yes
Hydrocephalus	Yes	Yes	Yes	Yes	N. d.	Yes	No
VP-Shunt	No	Yes	No	Yes	N. d.	No	No
Increased fontanella	Yes	N. d.	Yes	Yes	N. d.	N. d.	No
Wide sutures	Yes	N. d.	Yes, at age 2 months	Yes	N. d.	N. d.	Yes
Wormian bones	Yes	Yes	No	no	N. d.	-	Yes
Frontal bossing	Yes	Yes	Yes	N. d.	Yes	Yes	Yes
Occular proptosis	Yes	Yes	Yes	Yes	Yes	No	Yes
Short stature	Yes	Yes	Yes	Yes	N. d.	Yes	Yes
Mid-facial hypoplasia	Yes	Yes	Yes	N. d.	N. d.	N. d.	N. d.
Micrognathia	Yes	Yes	Yes	Yes	N. d.	N. d.	Yes
Fine motor skills	Normal	Normal	Normal	N.d.	N. d.	Delayed	Delayed
Normal speech	Yes	Yes	Yes	Yes	N. d.	Delayed	Yes
High voice	Yes	Yes	Yes	Yes	N. d.	N. d.	Yes
Blue sclera	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Walking impaired	Yes	Yes	N. d.	N. d.	N. d.	Yes	Yes
Muscle hypotonia	No	N. d.	Yes	Yes		Yes	Yes
<i>Teeth abnormalities</i> (Colour / eruption)	No, only misalignment	Yes	N. d.	N. d.	N. d.	Yes	Yes
Reason for referral	Fractures	Fractures	Hypotonia, failure to thrive	Increased head circum- ference at age 2 weeks	N. d.	Fractures	Growth failure
Ear abnormalities	Yes	N. d.	N. d.	N. d.	Yes	N. d.	N. d.
Osteopenia	Yes	Yes	Yes	Yes	Yes	Yes	Yes

N. d. = not described

^aThis term is used as a general term for craniosynostosis and / or skull ossification defects.

Supplemental Note: Clinical Report of the Affected Individual from Family 1 with Suspected Diagnosis of Cole-Carpenter Syndrome.

The boy was the second child of unrelated and healthy parents. His sister was also healthy. During pregnancy, an oligohydramnion was diagnosed. The individual was born after 41 weeks of gestation by vaginal delivery. The birth weight was 2800 g (< 3rd centile), length was 47 cm (< 3rd centile) and head circumference 32,5 cm (< 3rd centile). The following dysmorphic features were noted postnatally: turricephalus, exophthalmus, down-slanting palpebral fissures, an angular root of the nose, retrognathia, and gaping fontanelles. Ophthalmological analysis was normal. Sonographical and X-ray analysis confirmed new as well as older fractures of the right clavicula, multiple ribs, and both radii, and documented extensive ossification defects of the cranium and craniosynostosis. The presence of multiple fractures lead to Osteogenesis imperfecta as a putative diagnosis, and a treatment with cyclical application of pamidronate, a biphosphonate, was initiated. The affected individual's weight with 8 month was 5.2 kg ($< 3^{rd}$ centile), and his head circumference was 43.5 cm ($> 3^{rd}$ centile). At the age of 9 months, his height was 62.2 cm (0.5 cm $< 3^{rd}$ centile). He tried to stand up, and there were no signs of neurodevelopmental delay. The boy's facial features at this age were described as follows: He had a wide fontanelle, a triangle shape of the face with a receding forehead, hypertelorism, proptosis of the eyes, "sunset" eyes, mid-face hypoplasia, a high palatine, microretrognathia and a slight dysplasia of the right concha. At the age of 15 months, the boy was seen again with a weight of 6140 g ($< 3^{rd}$ centile) and a length of 67 cm (< 3rd centile). The last visit prior to the recruitment for the genetic study was at the age of 4 4/12 years, when the affected individual presented with a weight of 11300 g (< 3^{rd} centile), a length of 87 cm (< 3rd centile) and a head circumference of 54 cm (>97 centile). His motor development was delayed, possibly due to recurrent fractures of the extremities, but he was now able to walk, to run, and to climb stairs. He presented with a good general condition and normal mental development. A cranial CT scan documented dilated ventricles and subarachnoid spaces, in addition to the skull ossification defects. Brain parenchyma was normal. Two month later, a nasolacrimal duct stenosis was operated.

Supplemental References

- 1. Cole D.E., Carpenter T.O. (1987). Bone fragility, craniosynostosis, ocular proptosis, hydrocephalus, and distinctive facial features: a newly recognized type of osteogenesis imperfecta. J. Pediatr. *110*, 76-80
- 2. Amor D.J., Savarirayan R, Schneider A.S., Bankier A (2000). New case of Cole-Carpenter syndrome. Am. J. Med. Genet. *92*, 273-277
- 3. Land, C., Rauch, F., and Glorieux, F. H.(2006). Cyclical intravenous pamidronate treatment affects metaphyseal modeling in growing patients with osteogenesis imperfecta. J. Bone Miner. Res., *21*, 374-9.
- 4. Ward, K., Cowell, C.T., and Little, D.G. (2005). Quantification of metaphyseal modeling in children treated with bisphosphonates. Bone, *36*, 999-1002.
- Schumacher, R., Seaver, L.H., Spranger J. (2010). Fetal Radiology: A diagnostic Atlas. Springer 2nd Edition, Heidelberg, Germany
- 7. MacDermot, K.D., Buckley, B., and Van Someren, V. (1995). Osteopenia, abnormal dentition, hydrops fetalis and communicating hydrocephalus. Clin Genet *48*, 217-220.
- 8. Marwaha, R.K., Sarkar, B., Katariya, S., and Jayshree, K. (1993). Cole-Carpenter's syndrome. Indian J Pediatr *60*, 305-308.
- 9. Stopfer H, H.A., Magilner A, Schneider A. (1992). A variant type of osteogenesis imperfecta: confirmation of a rare phenotype. Am J Hum Genet *51*, A108.