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Supplementary Figures 
 

 
 
 
Supplementary Figure 1. Dynamic profiles of the critical position show the importance of a 
balance between scaling power and system attribute.  Shown are numerical solutions of the 
critical position ξC for different parameter values of the scaling power nA and the system attribute 
Γ with nD = nw = 0 and ω = 0.05 min-1.  As the patterning system approaches steady state (with 
respect to morphogen gradient formation) when t  > 120 min (gray bar), only the ratio nA／Γ is 
relevant to ξC. 
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Supplementary Figure 2. Evaluating the relationship between L variation and scaling in 
discrete experimental populations.  Shown are scatter plots of the system attribute Γ against 
the fractional variation in embryo length ηL measured from four standard lab lines with nominal 
L variations (red circles) or pairs of inbred lines with enhanced L variations and available side-
by-side experimental data (green square and blue diamond).  The solid and dashed lines 
represent the theoretical predictions for nA = 3 and 2.7, respectively.  Original sources of Bcd 
staining data used in this analysis are: standard lab lines w1118 (ref 1), bcdE1/+ (ref 1), stau (ref 1) 
and Cyo-bcd/+ (ref 2); inbred lines #2.46.4 and #9.17.1 (ref 3); inbred lines #2.49.3 and #9.31.2 
(ref 4).   
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Supplementary Figure 3. No meaningful critical position within the source region is found 
unless the scaling power of source size is excessively large.  The heat map shows the 
numerical solutions of the critical position ξC (in color) as a function of the relative size of the 
source region γ and the scaling power of source size nγ.  When nγ < 4, there is no solution found 
except at ξ = 0. 
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Supplementary Figure 4. Relationship between critical position and morphogen-derived 
positional error.  Shown is a heat map depicting the difference in morphogen-derived positional 
errors Δσ between two otherwise-identical systems except a difference in their critical positions, 
ΔξC = ξC2 - ξC1.  In this analysis, Δσ is calculated according to Supplementary Eq. 38, thus 
considering only morphogen-derived positional errors due to imperfect scaling.  The fractional 
variation in embryo length ηL is set at 5% for both systems and ξC1 is set at 0.5 for the first 
system.  See text for further details.   
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Supplementary Figure 5. Establishing Confocal imaging setting based on documented 
linearity in signal detection.  Scatter plots of pixel intensities of 3 images of the entire DAPI 
channel (A), pixel intensities of 3 images of the entire bcd DNA FISH channel (B) and 
aggregated intensities of the detected bcd DNA FISH dots (C) under different settings of 
Confocal photomultiplier gain.  A linear relationship documents that there is no signal saturation 
during imaging under the settings tested within the entire signal intensity range analyzed.  In (A), 
blue: R2 = 0.99 for 75V against 60V; red: R2 = 0.99 for 65V against 60V.  In (B), blue: R2 = 0.94 
for 140V against 120V; red: R2 = 0.91 for 130V against 120V.  In (C), blue: R2 = 0.84 for 140V 
against 120V for data points with an intensity < 300 a.u.; red: R2 = 0.89 for 130V against 120V.  
Note, for example, the non-linearity in the high intensity range under the setting of 140V gain 
(panel C, blue), documents the unsuitability of this setting and rules out its use in our 
experiments.  (D-F) Shown are DAPI intensity, bcd DNA FISH intensity or aggregated 
intensities of detected bcd DNA FISH dots as a function of gain.  Insets represent plots on log2 
scale.  Acquirements of all experimental data in this study were based on the same chosen 
microscopic settings with documented linearity: 65V for DAPI and 130V for DNA FISH. 
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Supplementary Figure 6. A spatial characterization of gene loci in follicle cell nuclei.  A-B) 
2-D polar plots showing that the bcd locus (green dots) is localized more peripherally near the 
nuclear envelope (NE) than the nos (red plus) and Cp (blue crosses) loci in the follicle cells.  C-
D) Plots showing the distances between the bcd locus and NE (green), between the nos locus and 
NE (red plus), between the Cp locus and NE (blue crosses), between the bcd and nos loci within 
the same nucleus (black squares), or between the bcd and Cp loci within the same nucleus (gray 
diamonds), as a function of the nuclear diameter of follicle cells.  Solid lines represent the 
average profiles.  (E) Shown is an empirical cumulative density function of the 5 distance 
measurements in panels C and D.  The means of these 5 distances are 0.31, 0.74, 0.70, 2.79 and 
3.40 µm, respectively.  (F) Shown is a 3-D polar plot of the radial distributions of the bcd (green 
dots) and nos loci (red plus).  Each gray line represents the Euclidean distance between the bcd 
and nos loci within a follicle cell nucleus. 
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Supplementary Figure 7.  Gene expression boundary measurements in embryos.  Scatter 
plot of absolute (A) or relative positions (B) of hb (black) or eve (colored) expression boundaries 
in embryos from the large- and small-egg inbred lines.  C) The regression slopes of (B) are 
plotted as a function of relative boundary position.  Error bars represent 95% CI of each fitted 
slope.  
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Supplementary Figure 8. Conservation of both 3-D shape and tissue expansion anisotropy 
among tested Drosophila lines.  Shown in panels A and B are plots of, respectively, 3-D shape 
(φ) and expansion anisotropy (ψ) as a function of developmental time.  The three Drosophila 
lines examined are as indicated.  The developmental times shown represent oogenesis stages 3 to 
10A and embryonic stage 5.  φ = 1 denotes a perfectly round shape along the two axes examined; 
ψ = 1 denotes isotropic expansion along the two axes examined (see Supplementary Note 3). 
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Supplementary Tables 
 
Supplementary Table 1. Primer sequences.   
   
nos (spanning 21.8kb) 
Forward Primers Reverse Primers 
TGC TAA TTG GCC GAC AAA CG TTG CTA AAG GTC ACG CCG AT 
GCT TTC ACT GTC GGC TGA GT CTT TTA GCC CAA GCC AAG CC 
TCG CAT AAA CCG CTC ACG AA GCA GAA TAA GCC GAA CGA GC 
GGG CTG CGG AGT AAA GTC AT TTG CTC TGT GCT TTC GTT GC 
GTG CAA CCC CAA TCA CGA CT GCT CTC TTC TCT CTC CGC AC 
TTG TTT CTC TTT CCC GCG CT TCG CTG AAT AAC AAT GCG TCG 
CGA GGT TGT TGA CAC GTT CC TGC AAA TTC AAG CCG ATG CC 
 
bcd (spanning 16.9kb) 
Forward Primers Reverse Primers 
AGC TGT CAC AGA GTC GTG C GGC GCA TTG TGG TAA AGG TT 
CAC CTG CAC ACC CTG TTA CT CGC AGC ATA TGC AAG TGA CC 
TGA AAA GGA TCC TGG CGA CC GTG TTA GTC CCT CAA CGC CA 
ATG GGT AGC CTT TTG GTG GG TTT CCA CCA GCC CAT CCA TC 
GAC TAG CCA AGT CCG ACG AC CGA ACA CCC GCG GAT CAT AA 
GAA CAG TAC GGC AAA GCT GC CCA GTT CCG CAC AGT GGT AT 
GCG ACC CTG AAT GCT GAA TG TTA TGG CAT GGC GCA CTA CT 
 
Cp (spanning 19.8kb) 
Forward Primers Reverse Primers 
AGA AAG TCC TTG CGA CCA GC ACG TCC AAC TCA TGT GGT CC 
TGA TCC CAT GCA ACT GTG CT ATC GTT GCG CCC CTT AAA GA 
AAG GCG GGT CAC ACC TAT TG TGC GTA CCT TGA GCC CAG TA 
TAC TGG GCT CAA GGT ACG CA AAC TGT TGT GGG TTC TGG GG 
GCC AAC TCG GTT GAT CTC TC ATC GAC GGA GGG TCA TTG TG 
TAC CAC ACA ATG ACC CTC CG TGA CCA CGG CTA ATT GCA GA 
ATC GAC CTG GAC CTA GTG CT GCA CAC ATT GAC TGC CAA CA 
CAG TCA ATG TGT GCG GCT ATG TTG AGC TGA AGA GCC GTC TG 
 
 
 Shown are primer pairs used in generating the probe sets for DNA FISH.  All sequences 
are listed as 5’ to 3’.  



 10

Supplementary Table 2.  Model-based and experimentally estimated parameter values 
under the TEM3S framework.   
 

 
TEM3S-
idealized 

Measured in #2.46.4 & #9.17.1 Measured in w1118 

mean standard deviation mean standard deviation 

γ 0 0.60 0.04 0.62 0.07 

Γ 6 6.19 1.04 5.65 0.46 

exponent 95% CI R2 exponent 95% CI R2 

nJ 3 2.70 2.36~3.04 0.86 2.89 1.86~3.92 0.28

nD 0 NA NA NA NA NA NA 

n 1 0.65 -0.12~1.42 0.74 0.92 -0.27~2.11 0.91

nγ 0 -0.09 -0.49~0.31 0.02 -0.004 -0.07~0.07 0.0004

 
 
 Parameters are defined as in Supplementary Information.  nJ was estimated using the 
scaling power of bcd mRNA (n2) measured in freshly-laid eggs.  Exponent denotes the fitted 
slope from log-log plots, with 95% confidence interval and R2 shown.  Analysis for two inbred 
lines was based on data pooled from embryos that had been treated side by side both 
experimentally and during imaging.  Sources of raw data used in this analysis: bcd mRNA FISH 
and Bcd staining for inbred lines 3, Bcd staining in w1118 ref 1, and bcd mRNA FISH in w1118  (this 
study).  #2.46.4 & #9.17.1 refer to the large- and small-egg inbred lines, respectively.  NA, not 
available. 
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Supplementary Table 3. Scaling power values estimated using different size measurements. 
 
 

Line 

n2 

   

w1118 2.89 ± 1.03 3.71 ± 1.11 3.45 ± 1.09 

2.46.4 2.81 ± 0.32 3.31 ± 0.45 3.14 ± 1.03 

9.17.1 2.64 ± 0.31 3.59 ± 0.52 3.30 ± 1.03 

 
 

Line 

n3 

   

w1118 3.05 ± 0.92 3.96 ± 0.99 3.67 ± 0.97 

2.46.4 3.19 ± 1.05 3.82 ± 0.90 3.68 ± 0.92 

9.17.1 2.97 ± 0.98 3.69 ± 0.84 3.39 ± 0.86 
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Supplementary Notes 
 
Supplementary Note 1. Basic features of the TEM3S model 
1.1. An exponential morphogen gradient of patterning system 

As detailed in the main text, the TEM3S model states that a morphogen gradient 
possesses properties to achieve a performance objective of attaining perfect scaling at one (or 
more) relative position in system P,   

.    (1) 

To obtain the analytical solutions of , we start with an idealized 1-D model based on 

synthesis, diffusion and decay (SDD) (Supplementary Eq. 2).  Here, morphogen protein 
molecules, , are synthesized at a constant rate J from a point source at one end 
(specified by the Heaviside function).  The morphogen molecules diffuse from this source (with 
a diffusion coefficient D) and undergo first-order decay (with a rate constant ω).   

 (2) 

 
 Given the initial condition of no morphogen protein in system P and the no-flux 

condition except at  where , the analytical solution is 

, (3) 

and for a sufficiently large , the solution can be simplified as 

,  (4) 

where       and .    (5) 

At t → ∞, a steady state is reached and the concentration of morphogen molecules, Ms, is an 
exponential function of ξ as, 

     (6) 

In Supplementary Eq. 6, A is the amplitude at ξ = 0, and Γ is the absolute slope of ln(Ms) 
denoting the patterning system’s length in relation to the length scale of the morphogen gradient.  
We refer to Γ as the system attribute to provide a perspective that underscores a balance between 
the properties of the patterning system and the morphogen gradient toward achieving a 
performance objective, a core feature of TEM3S (see Main text and below).  When considering a 
steady-state morphogen gradient, A and Γ are quantities irrespective to space or time, but they 
both (or either) could be a function of L. 

 
Analytical solutions of the critical position could exist for the above system.  For 

mathematical expression with regard to scaling, we introduce a parameter, scaling power, which 

0
),,(





L

tLM 

C

),,( tLM 

)Θ()Θ(
),,(

2

2

2













JM

M

L

D

t

tLM

0 J
M

L

D








2

)
2

erfc()
2

erfc(
)1(),,(

2

)1(2

t
t

Γ
et

t

Γ

eAetLM

Γ

ΓΓ















 

2

)
2

erfc()
2

erfc(
),,(

2 t
t

Γ
et

t

Γ

AetLM

Γ

Γ















 

D

J
A 

/D

L
Γ 

 ΓAeLM ),(s



 13

is defined as the normalized derivative of any biological quantity Q with respect to that of the 
length L of a biological entity,  

.    (S7) 

If a scaling power n could be approximated to a finite constant value with respect to L, a power-
law relationship in the form of  would be found.  n = 0 denotes that the biological 
quantity is independent of L, while n = 1 denotes that the quantity is linear to L.  For an 
exponential morphogen gradient, we denote the relative derivatives of the quantities J, D and ω 

in response to changes in L as their respective scaling power: ,  and 

.  We also define, in similar ways, the scaling power for compound parameters: 

and .  Given these definitions and the steady-state exponential function 

of the morphogen gradient (Supplementary Eq. 6), we find  

.   (8) 

 
Under the condition of = 0 and = 0, which denote that both A and Γ are independent 

of L, = 0 at all positions ξ.  Under the condition of ≠ 0 and = 0, there is no position at 

which = 0.  When ≠ 0, only one critical position solution exists, 

.     (9) 

Supplementary Eq. 9 can be alternatively expressed using the scaling powers of rate constants in 
the SDD model, 

.    (10) 

In the case of the Bcd morphogen gradient, we assume that, with experimental support 3,5, 
diffusivity and decay of morphogen molecules are properties intrinsic to a species and thus 
independent of tissue length ( ), where the scaling power of the gradient’s amplitude 

 can be approximated by the scaling power of the production rate  ( ) and    

.     (11) 

Supplementary Eq. 11 shows that, for an exponential gradient of a maternal morphogen, of 
which neither diffusion nor degradation scales with system length, the performance objective of 
attaining a critical position can be achieved only if the system attribute Γ and the scaling power 

 of the morphogen gradient are properly balanced with each other.  
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For a time-dependent gradient as in Supplementary Eq. 4, we find  

 (12) 

 
Supplementary Eq. 12 specifies a single solution of at each time point t > 0.  Supplementary 

Eq. 12 becomes Supplementary Eq. 9 when .  Supplementary Fig. 1 plots the numerical 
solutions by assuming  and ω = 0.05 min-1 ref 6.  This figure shows that, at t > 120 

min,  approaches a steady-state position that is determined solely by the balance between  

and Γ.  In Drosophila embryos, most AP patterning decisions, including hb expression, are made 
around this time 7,8.  
 
1.2. Is there anything special about the mid-point of system P? 

As discussed above, the critical position  is constrained by the ratio of .  Let’s 

consider an idealized system P in which = 3, = 0 and  = 0.  In such a system, a 

theoretical value Γ = 6 would correspond to  = 0.5.  When Γ of this system is changed to 

either 10 or 3,  would be shifted to 0.3 or 1.0, respectively.  If the critical position actually 

coincides with the expression boundary of a patterning gene(s) that has essential developmental 
functions (see Main text), such large shifts caused by the changes in Γ would be biologically 
unacceptable and would severely disrupt the patterning outcome, i.e., barring a rewiring of the 
regulatory network, either the essential gene’s expression boundary would have to be shifted to 
these new, drastically different critical positions or its boundary would become no longer scaled 
when responding to the morphogen input.  As documented in Main text based on the postulate 
presented in Supplementary Note 2,  is a quantity that is reflective of, and constrained 

fundamentally by, the dynamic properties of system E.  Assuming  is a fundamental value 
that cannot be altered in a significant way (i.e., without causing deleterious effects on its own), 
allowing ±10% fluctuations in = 0.5 would lead to a predicted Γ range of 6.0 ± 1.3.  Such a 

theoretical range of Γ is consistent with our experimental measurements of the Bcd gradient 
profiles from w1118 embryos or pooled from two inbred lines that have embryo size extremes 
(Supplementary Table 2).  Importantly, this value is also consistent with measurements of the 
Bcd gradient profiles in different dipteran species that have eggs of dramatically different sizes 5, 
Lucilia sericata, Drosophila melanogaster and Drosophila busckii ( = 7.2, 6.5 and 6.3, 

respectively).  Thus, under the fundamental constraint of , species that have evolved to 

have dramatically larger or smaller eggs were also under the selection pressure to preserve 
 (here a predicted value corresponding to  ≈ 0.5) to avoid disruptions of the patterning 

outcome, absent of a rewiring of the regulatory network in system P.  Thus the TEM3S model 
also provides a unified framework to explain Bcd gradient scaling mechanisms observed both 
within a species and across different dipteran species. 

 
Does a patterning system benefit from the choice of = 0.5?  Here we analyze an 

idealized system P by evaluating the contributions of imperfect scaling derived from the 
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morphogen gradient at locations that are away from the critical position.  According to Eq. 3 in 
Main text, the root-mean-square error of morphogen-provided positional information as a 
function of ξ can be expressed as 
      ,    (13) 

where .  Integration of the squared error along the length yields the total variation in 
position information from imperfect scaling of the morphogen gradient as 

      .    (14) 

Supplementary Eqs. 13 and 14 show that, while the positional error (with respect to scaling) at a 
given position is a function of its distance from the critical position, the aggregate error of the 
entire system is determined only by the fractional variation in system length and the critical 
position. Supplementary Eq. 14 has a minimum value of 0.083  at = 0.5.  This suggests that, 

if the morphogen gradient had an instructive role in patterning at all positions (as in an idealized 
system), the patterning system would benefit from having a critical position at midpoint with the 
highest overall scaling information derived from the morphogen gradient.   
 
Supplementary Note 2. Dynamic and fundamental origins of the scaling power: A postulate 

To establish a dynamic framework, we consider a system of molecules in biological 
entities in systems E and P.  These molecules represent the fundamental constituents in a chain 
of linear-forward transitions (gene → mRNA → protein) that is responsible for the production of 
morphogen protein molecules in system P.  While specifically formulated for Bcd, the 
framework discussed here is applicable to other Drosophila maternal gradients if their 
production (both synthesis and gradient formation) does not involve non-linear steps.  The 
quantities of the molecular species in the chain are: copies of the morphogen gene as maternal 
DNA (C), maternally expressed mRNA molecules (R) and morphogen protein concentration (M).  
The biological entities under consideration are: the nurse cell nucleus with 1-D size L1, the egg 
chamber with size L2 and the freshly laid egg with size L (see Supplementary Note 3 for a 
discussion about 3-D size).  Under the TEM3S framework, nurse cell nuclei and egg chambers 
belong to system E, while the blastoderm embryo that begins as a freshly laid egg is system P.  
Here molecular species C is unique to system E, while M is unique to system P.  Only molecular 
species R in the chain can exist in both systems E and P.   

 
In our model, the start of oogenesis, i.e., stage 1, marks t = 0.  In our discussions, we use 

the term developmental time under the definition that it is the time at which system E (or system 
P) passes a developmental landmark.  Developmental landmarks can be, but do not have to be, 
experimentally observable morphological structures such as those used to define the stages of the 
oogenesis (see Methods).  The nature of oogenesis requires the definition of two developmental 
transitions in our model.  At t1, nurse cells inside an egg chamber are depleted with their entire 
contents “dumped” into the oocyte 9,10, a transition that corresponds to stage 10.  At t2, system E 
ceases to exist and becomes system P, a transition that corresponds to the egg being laid.  

 
We use a system of differential equations to describe the chemical reactions and tissue 

growth in system E (which evolves to become system P at t2).  Using first-order rate constants 
for molecule synthesis and decay and tissue expansion, we have  
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  (15) 

  (16) 

;  (17) 

;  (18) 

     ; (19) 

.   (20) 
Here the left-hand side of each equation denotes a time derivative, with a corresponding rate 
constant(s) shown on the right-hand side.  Note that Supplementary Eq. 19, which is for system 
P, is identical to Supplementary Eq. 2, where .  Also note that j1 here denotes the first-

order rate constant for morghogene gene copy number expansion inside nurse cell nuclei, but 
since the morphogen gene itself is only a negligible part of the entire genome that is undergoing 
endoreplication, morphogen gene copy number expansion itself per se is not responsible for 
“driving” the expansion of nurse cell nuclei.  For system E (i.e., ), the initial conditions are 

, ,  and .  Analytical solutions for such a system can be found (not 

shown).   
 
 We define dynamic scaling power m1 and m2 as time derivatives, 

;   (21) 

;   (22) 

 

For a sufficiently large t prior to t1,  approaches 1, which leads m2 to converge 

with m1 at   In an idealized system, 6 rounds of endoreplication will result in m2 to differ from 

m1 by less than 5% ( ≈ 1.03).  In other words,  is the fundamental definition for 

the dynamic scaling power of both C and R in system E prior to t1.  Between t1 and t2, nurse cells 
do not exist in our model and, thus, there is no transcription that is relevant to morphogen 
production in the future system P.  During this period, there is continued growth of the egg 
chamber, which we refer to as the “empty growth” period because it has a negative or close to 
zero (if ω2 ≈ 0) scaling power m2 in absolute terms whereas m1 no longer exists.   
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 We now consider discrete experimental measurements by adapting the continuous 
definitions through the use of integration  

,    (23) 

where  denotes the variation in nurse cell nuclear size under experimental evaluations and 

 denotes the part of variation in maternal DNA copy number due to .  According to 
Supplementary Eq. 23, n1 can be estimated by the fitted slope of a log-log plot (Main Fig. 3).  
Thus n1 obtained from our experimental data effectively measures the average dynamic scaling 
power of gene copies during the relevant period of developmental time (see Main text).    
 
 We can also use a similar integration approach toward estimating the scaling power of R 
based on experimental measurements made in freshly laid eggs, where the transition from system 
E and system P has just taken place, 

,    (24) 

 
Here  represents the part of variation in maternally expressed mRNA molecule number due 
to embryo-to-embryo size fluctuations .  Since n2 is measured from system P, L = L2(t2) and 
R ≈ R(t2).  Let developmental time be the only source of variation.  Then the variations in L and 
R can be analytically estimated to first order of the variation in time.  Considering the 
developmental transition at t1 for system E, we have 

,   (25) 

 
where  and  denote developmental time variations for each of the two phases of 

oogenesis, from 0 to t1 and from t1 to t2, respectively.  Let , which means a steady 

progression in development, and we have 

.     (26) 
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Based on experimental observations (see Main Fig. 1b), we know  and .  In 

addition, it is well documented that maternal mRNA molecules in oocytes and early embryos are 
very stable 11.  Under these conditions the impact of the “empty growth” period on the scaling 
power n2 becomes negligible when considering the entire duration of system E (although as 
noted above it can directly impact the dynamic scaling power m2 of system E during this period).  
Thus, n2, which is calculated from experimental measurements made in freshly laid eggs, can 

also be approximated by , the fundamental definition of the dynamic scaling power for both 

the bcd gene template number and bcd mRNA molecule number.  In other words, n2 in system P 
is set fundamentally by the dynamic properties of system E. 
 

Similarly, we define the scaling power of morphogen gradient’s amplitude in system P 
for discrete measurements as 

,    (27) 

where  is the part of variation in morphogen gradient amplitude due to embryo-to-embryo 
size fluctuations .  Experimentally, n3 is the estimated slope of the linear regression, 

 vs. .  As shown in Supplementary Note 1, subsection 1.1, .  

Assuming that all three rate constants, j3, D and ω, are independent of either time or L, we obtain 

analytically,  and .  Importantly, when the relationship between  and 

 is close to linear, n3 represents a direct experimental approximation of nA.   

 
 In summary, our analyses described in this section document a chain rule of scaling, 

,   (28) 

where the scaling power of the morphogen gradient’s amplitude nA in system P is determined 
fundamentally by the dynamic properties of system E and can be estimated by independent 
means under the framework of our experimental approaches.  In Main text, we refer to 
Supplementary Eq. 28 as the postulate about the fundamental connection between systems E and 
P.  This postulate thus not only unifies two distinct stages of a life cycle but also imposes 
specific limitations on how a developmental program under temporal logic c can be constructed 
at a fundamental level (see Main text and Supplementary Note 1).  Our estimates of n1, n2 and n3 
can all be approximated by ~3, suggesting that the first-order rate constants j1 and k1 are related 
to each other by a ratio of ~3.  This supports a model where bcd gene template expansion (i.e., 
DNA replication for nurse cell-expressing genes) is an event coupled to the expansion of the 
nurse cell nuclear volume, consistent with the existence of regulatory mechanisms controlling 
endoreplication 12-14; see Main text and Supplementary Note 3 (below) for additional discussions.  
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Supplementary Note 3. Experimental considerations of 3-D shape and expansion 
anisotropy     

This section concerns 3-D shape of biological entities and experimental evaluations of 
linear dimensions.  For a group of nurse cell nuclei at a given stage, we define shape (φ) and 
expansion anisotropy (ψ) as  

,   (29) 

where lx and ly are experimentally measured diameters.  In our study, we used two independent 
methods to measure lx and ly and our conclusions are robust to measurement methods.  In one 
method, we measured lx and ly along a randomly chosen axis x and its perpendicular axis y.  In a 
second method, we measured lx along the AP axis of the egg and ly along the perpendicular axis.  
Expansion anisotropy ψ was estimated from experimental data as the fitted slope of a log-log 
plot.  At each stage of oogenesis between stage 3 to stage 10A, we found that both φ and ψ were 
close to 1 in w1118, large-egg line #2.46.4, and small-egg line #9.17.1.  In particular, for nurse cell 
nuclei at stage 10A in w1118, we obtained φ = 1.05 ± 0.02 and ψ = 1.03 ± 0.06 using randomly 
chosen axes, and φ = 1.02 ± 0.12 and ψ = 0.93 ± 0.26 using AP as x axis (standard deviations of 
ψ were calculated by bootstrapping).  These results support a volumetric expansion of nurse cell 
nuclei.  In our analysis of experimental data, we obtained values of scaling power n0 and n1 based 
on two size measurements, and we found them to be robust to measurement methods (data not 
shown). 

 
Similarly, for a group of egg chambers at a given stage of oogenesis (system E) or a 

group of embryos (system P), we define tissue shape (φ) and expansion anisotropy (ψ) as 

,   (30) 

 
where L denotes the 1-D size along the A-P axis and H denotes the 1-D size perpendicular to the 
A-P axis.  At early stages of oogenesis, the observed 3-D shape of egg chambers is 
approximately spheroid and the expansion is nearly isotropic (φ ≈ 1).  After stage 6 of oogenesis, 
the observed 3-D shape becomes progressively elongated with the expansion along the A-P axis 
exceeding that along the perpendicular axis (Supplementary Fig. 8), i.e., φ < 1. An anisotropic 
expansion of ψ < 1 is predicted to lead to higher scaling power n2 and n3 when the 1-D embryo 

size is measured as H or calculated from a spheroid volume ( ) than when the 1-D size 
is measured directly as L assuming isotropy.  To evaluate the potential impact of anisotropic 
expansion on our estimates of scaling power, we deployed different ways of obtaining the 1-D 
size, which permitted cross comparisons between our experimental estimates.  Supplementary 
Table 3 lists the estimated values of n2 and n3 using different methods of obtaining the 1-D size 
of the biological entities.  Our results show that a consideration of expansion anisotropy did not 
have a dramatic impact on scaling power measurements in our experimental system to the extent 
that it would alter our conclusion that nA has a finite value, independent estimations of which 
congregate to a cubic power as an overall consensus (Main Fig. 5a). 
 
Supplementary Note 4. Special considerations of the TEM3S model  
4.1. Scaling in discrete populations  
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The concept of a critical position in a patterning system has been postulated when 
evaluating scaling properties of two average morphogen gradient profiles of two populations 15.  
Here, the performance objective can be defined as M1 = M2 at the critical position , or  

.    (31) 
The critical position solution is found as 

,    (32) 

where  and . 

 
We adapt this analysis to an idealized system in a discrete population.  In this case, the 

performance objective can be defined as  at the critical position, and the scaling power 

for a morphogen gradient’s amplitude in a discrete population is defined by integration of 
Supplementary Eq. 7 such that,  

,    (33) 

where  and .  It should be noted that our discussions here are about an 

idealized system where the variations  and  are specific to scaling.  We are not using 
Supplementary Eq. 33 to directly analyze experimental data (see Main text), but rather we are 
using it to identify model-based properties that can be compared with those of real biological 
systems where additional sources of variations would exist.  Under the condition of = 1 in our 
idealized system in a discrete population, integration of Supplementary Eq. 9 yields the critical 
position solution, 

    (34) 

where .  Note that when  approaches 0,  has an upper bound of 1 and, thus, 

 has an upper bound of . 

    
 Supplementary Fig. 2 plots the relationship (solid lines) between the parameters  and 

 predicted by Supplementary Eq. 34 assuming = 0.5.  The relationship depicted here 

represents what is expected of an idealized system in a discrete population.  On this plot, we now 
display the experimentally observed values derived from real biological systems, including 
standard lab lines with nominal L variations (red) or enhanced L variations derived from the 
divergent egg sizes of inbred lines (green and blue).  We can see readily that all of these 
experimental datapoints fall within the model-predicted band generated by the chosen limits of 

= 3 and 2.7.  This analysis shows that, despite the inherent complexities of real biological 
systems, our TEM3S model provides a conceptual framework that can adequately capture their 
properties relevant to morphogen gradient scaling.  In this context, we note that measurement 
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errors inherent to experimental detection of an exponential gradient, combined with the existence 
of additional biological noise, can complicate or obscure a direct and accurate visualization of 

.  Thus the properties predicted by our model represent conceptual yardsticks against which 

experimental data can be evaluated.  In addition, analysis of target gene expression boundaries, 
which tends to be less prone to measurement errors (than analysis of an exponential gradient), 
can be used as independent methods for cross validations or experimental evaluations (see Main 
text and Main Fig. 5). 
 
4.2. A system with a finite size of production source 

If the production source in a 1-D SDD model has a finite size [0 s], as opposed to a point 
source, the gradient system can be expressed as, 

.  (35) 

Supplementary Eq. 35 yields a modified steady-state solution including the source region 16, 

,   (36) 

where A and Γ are defined in the same way as in Supplementary Eq. 5, and . 

 

Within the source region, , no explicit algebraic solution of the critical position 

could be found.  We solved it numerically by varying the 5 necessary parameters,  

and  over several orders of magnitude.  732,050 parameter sets were assayed in total, with 

16.5% of them found to have a single solution (not shown).  However, given the experimental 
estimates for the Bcd gradient such as   and  as discussed in Main text and 

Supplementary Note 1, a very strong scaling power of is required to attain a critical position 

within the source region (Supplementary Fig. 3).  Experimental measurements provide a realistic 
estimate of  (i.e,  see below).  When this and the other realistic estimates were 
used together in our analysis, we obtained no critical position solution for the modified gradient 
within the source region. 
 

Outside the source region, , a single analytical solution exists under the 

condition of  as   
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where .  Supplementary Eq. 37 shows that, under the condition of = 0 (i.e., γ is not 

scaled with L), the critical position is insensitive to the source region and remains at .  If  is 

a positive value suggesting a degree of scaling of γ with L, we have , indicting a shift of 

the critical position away from the source (note that  is a positive value for realistic systems 
under the TEM3S framework).  Supplementary Eq. 37 also shows that, as γ approaches 0, the 
term  approaches 0 and, thus,  approaches .  This is the critical position of a 

point-source system.   
 
4.3. Source size and precision of morphogen-provided positional information 

Since source size can affect  (Supplementary Eq. 37) and, additionally, since  can 

affect the precision of morphogen-provided positional information at a given location 
(Supplementary Eq. 13), a relationship between source size and morphogen-derived positional 
error (with regard to scaling) can be established by combining these two equations.  For two 
otherwise-identical systems that differ only in source size properties, morphogen-derived 
positional errors at a given location ξ can be compared with one another, 
.  Applying Supplementary Eq. 13, we obtain 

,  (38) 

where  denotes the critical position of the first morphogen system, and  

denotes the shift of critical position in the second morphogen system relative to the first.  
Supplementary Fig. 4 plots  as a function of ξ and  using = 0.5 and = 5%.  The 

results reveal a band of locations (on either side to ) that is “buffered” or robust against  

in terms of precision of morphogen-derived positional information, as illustrated by a zone that is 
colored in blue.  Within this “buffered” zone,  is small or could even be negative (a negative 

 simply indicates that the positional error derived from the second gradient is smaller at or 
near  than that derived from the first gradient at these locations).  Outside this “buffered” 

zone, i.e., at locations further away from ,  caused by  becomes larger, as illustrated 

by the increasing warmth of the color.  An anterior shift of  (relative to ) impacts 

negatively on precision more preferentially at locations toward the posterior end, and vice versa 
(see the dark red regions in Supplementary Fig. 4). 
  

Are there examples of a potential connection between source size and patterning 
precision?  Here we consider two sets of experimental data 1,4 where the positions of hb 
expression boundary (as protein or mRNA) and Bcd gradient profiles had each been obtained on 
a side-by-side basis to permit limited comparisons.  These two sets of data are used for our 
considerations here because each of them has a “mutant” situation leading to an enlarged bcd 
mRNA distribution in the anterior of the embryo, i.e., a larger source size.   In both cases, the hb 
boundary position becomes more variable ( = 1.4% for stau mutant relative to w1118 in one 

case, and = 1% for a selected “mutant” inbred line relative to its counterpart in the other 

case).  We found that in each of the “mutant” situations, both γ and are increased [γ = 0.81 ± 
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0.35 and 0.83 ± 0.12; = 2.70 ± 2.08 and 1.95 ± 0.38; γ was inferred from the AP position at 

which maximal Bcd concentration was found (stau embryos) or estimated by bcd mRNA 
distribution (the “mutant” inbred line)].  These new calculations made under our current 
framework would forecast posterior shifts of the critical position  = 0.10 and 0.07, 

respectively.  Such  shifts would predict an increase in morphogen-derived positional error (at 

the observed hb boundary location) by = 0.5% and 0.4%, respectively, which can account 

for ~40% of the observed increases in boundary variation in each case.  Thus these results are 
consistent with, but they do not prove directly, our theoretical prediction that source size can 
have a negative impact on patterning precision. 
 
4.4. Scaling power of a power-law gradient 

A power-law morphogen gradient has been shown to possess a property of reducing the 
impact of fluctuations in morphogen production rate 17,18.  Here we perform a limited analysis to 
evaluate properties of such a gradient specifically in relation to our TEM3S framework.  A 
power-law morphogen gradient can be expressed as 

.     (39) 

Assuming the parameters A and , but not the exponent , as a function of L, the critical 
position solution for this gradient can be found as  

,   (40) 

where  and  are the scaling powers of the quantities A and , respectively.   

 
 A power-law gradient can be expected if the degradation of the morphogen molecules is 
nonlinear as 

,  (41) 

where . When and , a steady-state solution can be found as Supplementary Eq. 
39 such that  

,  and .  (42) 

Thus, the scaling power  for this power-law gradient is 

.   (43) 

To evaluate a power-law gradient under the TEM3S framework, we will make assumptions 
similar to those made for the exponential gradient.  In particular, we assume that diffusion and 
degradation are species-specific properties that are independent of tissue length within a species  
( ), and that the morphogen production rate is volumetric ( ) under temporal 

logic c.  We obtain   

.     (44) 
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We can see that in terms of scaling power, the linear degradation ( ) can be unified into 
Supplementary Eqs. 43-44.  When , the solution cannot be unified into Supplementary Eqs. 
42-44, because A and  are not separable in integration.  Under conditions of and , 

we find ,  and , leading to the scaling power  

.    (45) 

For  and , we find  = 1.5. 

 
To summarize for this part, we obtain the following scaling power  for a power-law 

morphogen gradient under consideration  

    (46) 

Thus, under our framework, non-linear degradation is expected to decrease the scaling power  
when .  A power-law gradient of Bcd was found in embryos lacking the Bcd-interacting 
co-factor dCBP (Drosophila CREB-binding protein) 19.  The reported estimate of = 1.74 in 
such embryos would be expected to provide the morphogen gradient with a very weak scaling 
power of = 0.65 based on Supplementary Eq. 44, a values that is within the range of measured 

= 0.01 ± 0.96 (R2 = 0.001).  According to Supplementary Eq. 40, such a weak scaling power 
predicts a critical position very close to the anterior of the embryo.  Based on experimentally 
measured parameters, we find = 0.0002, suggesting a nearly complete loss of scaling for the 

Bcd gradient in the mutant embryos.   
 
 We can calculate the positional error (specific to scaling) derived from a power-law 
gradient under the framework of a critical position, 

.    (47) 

If ,  and , Supplementary Eq. 47 becomes 

,     (48) 

where .  Supplementary Eq. 48 suggests that, when nonlinear degradation of morphogen 
molecules has a power between 1 and 3 such as Bcd in embryos lacking dCBP, the scaling-
specific positional error derived from the morphogen gradient increases progressively toward the 
posterior with the mid-embryo being no longer the most precise region with regard to scaling.  
This could be a contributing factor to the increased variation in hb expression boundary in 
embryos lacking dCBP 19.  In particular, Supplementary Eq. 48 predicts that = 8.6% at the 
observed hb boundary position of = 0.43.  The experimentally observed hb boundary position 

in the mutant embryos is indeed more variable than in w1118 embryos ( = 2.3% and 1.6%, 
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respectively) although not quite reaching the extreme predicted by our current model.  These 
results suggest that, although further studies are needed, the TEM3S framework and the concept 
of a critical position can produce potentially useful conceptual forecasts against which 
experimentally observed biological properties can be evaluated.  
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