Table A. Showing the locations, source, number of sample amplified for mitochondrial Dloop (n^{mt}) , with microsatellites (n^n) , and grid reference (Latitude, Longitude) of all new samples used in this study.

Map ID	Location	Source	n ^{mt}	n ⁿ	Grid Ref.				
IRL	Belfast, Northern Ireland	Wing punch	11	8	54.579089 5.916139				
	Tollymore, Northern Ireland	Wing punch	5	17	54.221081 5.924617				
	Dungannon, Northern Ireland	Wing punch	5	4	54.498611 6.755636				
	Coalisland, Northern Ireland	Wing punch	1	1	54.536694 6.703625				
	Jordanstown, Northern Ireland	Wing punch	5	13	54.688333 5.898439				
	Downpatrick, Northern Ireland	Wing punch	5	8	54.367744 5.580544				
	Kesh, Northern Ireland	Wing punch	5	9	54.521247 7.724792				
	Crom Estate, Northern Ireland	Wing punch	5	16	54.186394 7.562217				
	Askeaton, Ireland	Wing punch	3		52.601031 8.977186				
	Oughtergard, Ireland	Wing punch	5	18	53.431653 9.319042				
	Baldwinstown, Ireland	Wing punch	5	17	52.238356 6.579333				
	Timoleague, Ireland	Wing punch	7	15	51.643436 8.567794				
	Crosshaven, Ireland	Wing punch	5	14	51.803319 8.298853				
	Ardpatrick, Ireland	Wing punch	8		52.340297 8.522353				
IOM	Union Mills, Isle of Man	Faecal sample	7		54.168656 4.522597				
GBR	Bristol, England	Wing punch	10		51.455314 2.591903				
	Essex, England	Faecal sample	3		51.685033 0.433931				
	London, England	Faecal sample	4		51.581664 0.145525				
	Notts, England	Faecal sample	1		53.224717 1.076947				
	Newton Stewart, Scotland	Faecal sample	1		55.064372 4.580525				
	Nairn, Scotland	Faecal sample	2		57.583522 3.875178				
FRA	Precy-sous-Thil, France	Wing punch	9	126	47.386567 4.309678				
	Saint-Brisson, France	Wing punch	4	19	47.272544 4.088256				
	Saint-Romans, France	Wing punch	2		45.118117 5.325744				
	Sidiailles, France	Wing punch	4		46.507869 2.318269				
	Bourges, France	Wing punch	1		47.080992 2.398778				
	Troncias, France	Wing punch	1		46.640508 2.719722				
	Orleans, France	Wing punch	1		47.174108 2.379514				
	Champniers, France	Wing punch	2		45.714889 0.205214				
	Guénin, France	Wing punch	1		47.514692 2.399394				
	Saint Genis les Ollières, France	Wing punch	1		45.757283 4.726022				
	Fontenay, France	Wing punch	1		48.845594 2.480367				
PRT	Tondela, Portugal	Wing punch	8		40.516544 8.080647				
CHE	Burgistein, Switzerland	Wing punch	1		46.78635 7.499681				
	Interlaken, Switzerland	Wing punch	1		46.685989 7.867303				
DEU	Wiebelsdorf, Germany	Wing punch	2		50.715267 11.950478				
HUN	Felsötorkany, Hungary	DNA	2		47.962008 20.432575				
GRC	Kaepension, Greece	DNA	2		38.917244 21.794369				
	Prusos, Greece	DNA	1		38.742497 21.653433				
	Agia Anastasia, Greece	DNA	1		39.561781 20.736408				

Table B. Distribution and numbers (including totals) for Leisler's bat's haplotypes present in each location. See Table 1 and Figure 1 for location code (Ir - Ireland; En – Great Britain; Fr - France; Po - Portugal; Sw - Switzerland; Hu - Hungary; Gr - Greece; Sp - Spain; Tu - Turkey; Cz - Czech Republic; Mo - Morocco; Ma - Madeira; Az - Azores).

	-												
lr1	31	1	3										35
lr3	9	2											11
lr4	1												1
lr5	1												1
lr6	1												1
lr7	1												1
lr8	7												7
lr9	1												1
lr10	1												1
lr11	1												1
En1			1	1									2
En2			2										2
Fr1			1	2									3
Fr2				8									8
Fr3				1									1
Fr4				1									1
Fr5				1									1
Fr6				1									1
Fr7				1									1
Fr8				1									1
Fr9				1									1
Fr10				1									1
Po1	14	1	8	3	10	1	1		2	1	1	1	43
Po2					20			1	1				22
Po3					3								3
Po4					1								1
Po5					1								1
Sw1							1						1
Sw2							1						1
Sw3							1						1
Sw4				_			2						2
Sw5				5			1						6

Haplotypes IRL IOM GBR FRA PRT ESP CHE DEU HUN GRC TUR CZE MNE MAR Mad Is. Can Is. Az Is. Total / samples

/samples _																		Total
Ge1								1										1
Ge2								1										1
Gr1										1								1
Gr2										1								1
Gr3										1								1
Gr4										1								1
Hu1									1									1
Mad															2			2
Mar1														2				2
Mar2														1				1
Mn													1					1
Can																1		1
A1																	9	9
A2																	4	4
A3																	3	3
A4																	25	25
A5																	14	14
A6																	4	4
A7	7	3	6														54	70
A8																	12	12
A9																	6	6
A10																	22	22
A11																	2	2
A12																	1	1
A13																	1	1
A14																	1	1
A15																	1	1
A16																	6	6
Grand Total	75	7	21	27	35	1	7	2	2	7	1	1	1	4	2	1	165	359

Haplotypes IRL IOM GBR FRA PRT ESP CHE DEU HUN GRC TUR CZE MNE MAR Mad Is. Can Is. Az Is. Total

Table B. continuation

Fig. A. Postglacial colonisation scenarios for the *N. leisleri* tested using the ABC phylogeographical approach as implemented in DIYABC. Times of lineage origins are indicated back in time by td and ta, while 0 represent contemporary samples. Four colonization scenarios were considered. For scenario 1, the samples representing the western, the eastern groups and those in Britain & Ireland were considered to have diverged from a common ancestor at time td. For scenario 2, the western and the eastern lineages were considered to have initially diverged from the common ancestor at time td, while the group in Britain & Ireland diverged more recently (time ta) from the western lineage. Scenario 3 is similar to scenario 2, with the difference that the group in Britain & Ireland would have diverged more recently from the eastern lineage. For scenario 4, the western and the eastern lineages were considered to have initially diverged from the common ancestor at time td. At time ta, there has been an admixture event between these two lineages giving origin to the group in Britain & Ireland. For microsatellites, given that no equivalent data was available for the Azores, simulations were run with the caveat that terminal sampling was carried out only for the eastern group and Britain & Ireland. Prior distributions of demographic parameters were as follows: Uniform [10; 10000] for effective population sizes (similar for all lineages), Uniform [1; 10000] for td, Uniform [1; 10000] for ta (with ta < td), and Uniform [0.001; 0.999] for ra (admixture rate). The time parameter was considered as the number of generations (2 years for *N. leisleri*). The mtDNA sequences were considered to follow the two parameter model of Kimura (1980) with a fraction of constant sites fixed to 10% and the shape parameter of the Gamma distribution of mutations among sites equal to 2. The priors for mutation rate (per site per generation) followed a uniform distribution ranging from 6.7% to 25.2% with an average of 20% Myr-1. For each one of the four tested competing scenarios, 500 data sets were simulated. For model comparison, the posterior probabilities for each scenario were estimated using logistic regression (Cornuet et al. 2008). The posterior probabilities were used to estimate type I and II errors in the choice of each scenario (Excoffier *et al.* 2005).

Additional References:

Excoffier L., Estoup A., Cornuet JM. 2005. Bayesian analysis of an admixture model with mutations and arbitrarily linked markers. *Genetics* **169**, 1727–1738.