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SUMMARY
Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind

genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing

sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the locali-

zation of the contractile protein a-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these

metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived

cardiomyocytes.
INTRODUCTION

Several efforts have been reported in the emerging field of

structural phenotyping for the integration of image acqui-

sition, processing, and analysis to assess the response of

cells and tissues to various challenges (Eliceiri et al.,

2012). All of these methodologies are predicated on the

assumption that cell shape is an important indicator of

the cell pathophysiological state and rely on (1) image-pro-

cessing algorithms for the extraction of morphological fea-

tures and (2) machine-learning strategies to mine the cell

morphology data (Crane et al., 2012; Jones et al., 2009; Tre-

iser et al., 2010).

Many intracellular structures, such as the contractile

cytoskeleton in striated muscles, are also predictors of cell

function (Feinberg et al., 2007). Additionally, while a cell

specifies along the myocyte lineage (Mummery et al.,

2012; Qian and Srivastava, 2013), it also progresses through

myofibrillogenesis as force-generating units, known as sar-

comeres, self-assemble along the actin cytoskeleton (Gros-

berg et al., 2011; Parker et al., 2008). Moreover, the contrac-

tile proteins of mature myocytes are continuously turned

over and their spatial organization remodeled to adapt to

pathophysiological stimuli (McCain et al., 2013; Sun

et al., 2012; Wang et al., 2014). Therefore, while the pres-

ence of contractile proteins is necessary for myocytes func-

tion (Cahan et al. 2014; Mummery et al., 2012), it is not

sufficient to define the developmental stage (Sheehy et al.,

2014), the health status (Wang et al., 2014), or the func-

tional capabilities of these cells (Feinberg et al., 2012).

Here, we designed a set of 11 metrics (Figure S1; Table 1)

that intrinsically score myocyte structural phenotypes by

the increasing degree of organization and alignment that

sarcomeres acquire during myofibrillogenesis. We utilized
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these metrics to score the phenotypic maturity of primary

and stem cell-derived cardiomyocytes based on the degree

of sarcomeric structural organization observed in a-actinin

images.
RESULTS

Quantitative Analysis of the Contractile Cytoskeleton

in Striated Muscle Cells

Sarcomeres are �2 mm long ultrastructures delimited by

Z-disks that are rich in the contractile protein a-actinin

(red in Figure 1A). The localization of this protein can be

taken to indicate the maturity of cardiac myocytes (Gros-

berg et al., 2011): in differentiating cells, a-actinin is

diffuse in the cytoplasm (Figure 1Aii); in immature myo-

cytes, it appears as a fibrous structure or as aperiodically

spaced puncta known as Z-bodies (Figure 1Aiii); and in

mature myocytes, a-actinin localizes into the regular lat-

tice of Z-disks (Figure 1Aiv). Therefore, we focused our

analysis (Figure 1B) on identifying how regularly spaced

and well-aligned sarcomeric a-actinin-positive structures

were in the images. We first associated each sarcomeric

a-actinin-positive pixel with the orientation (color coded

in Figure 1Ci) of its local neighborhood and then fitted a

bimodal distribution to the resulting orientation histo-

gram (red and black curves in Figure 1Cii). This enabled

the extraction of several metrics: the global orientational

order parameter (Grosberg et al., 2011) (OOP) a value

that ranges from 0 to 1 as contractile elements become

more aligned and separate OOPs for the two fitted modal

distributions, representing Z-disks and Z-bodies, as well

as their relative presence. Further, we radially integrated

the image power spectrum (Figure 1Ciii), yielding a 1D
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Table 1. List of Metrics of Sarcomere Organization Developed, Integrated, or Updated for This Study

Metric Number Metric Name Metric Description

1 sarcomere length (SL) The average distance between Z-disks in the entire field of view.

2 total energy The total amount of spatially varying immunosignal.

3 sarcomeric energy The amount of immunosignal with a spatial periodicity given by SL.

4 sarcomeric packing density (SPD) The fraction of immunosignal that localized in a regular lattice at a distance SL.

5 orientational order parameter (OOP) The degree of alignment of all foreground elements in the field of view.

6 sarcomeric OOP (OOP1) The degree of alignment of foreground elements that are oriented orthogonally to the

actin bundles (Z-disks).

7 nonsarcomeric OOP (OOP2) The degree of alignment of foreground elements that are oriented parallel to the actin

bundles (Z-bodies).

8 Z-disks relative presence (g) The fraction of foreground elements that are recognized as Z-bodies.

9 weighted OOP Calculated by multiplying the sarcomeric OOP (OOP1) and the weight g. In this sense, it

represents both the abundance and relative alignment of the Z-disks in the imag.

10 coverage quality control Calculated as the percentage of the image pixels that have an intensity value higher

than user-specified threshold. It estimates the a-actinin coverage.

11 coherency quality control Calculated as the percentage of a-actinin-positive pixels that have a value of the

coherency higher than a user-selected threshold. It is useful for artifact removal and for

image quality control.

See Figure S1 for a schematic representation of the role of each parameter.
representation (Figure 1Civ) that highlights the relative

importance of each spatial frequency. In particular, the

peaks (red curve) represent a-actinin-positive elements ar-

ranged at a distance on the order of the sarcomere length

(SL) and therefore become more prominent as sarcomero-

genesis progresses. Through nonlinear fitting, we sepa-

rated this component from the aperiodic contribution of

Z-bodies and other image artifacts (black curve). Relevant

metrics in this case included the area (shaded in red) under

the periodic component, the total area under the data

curve, and their ratio, a quantity we termed sarcomere

packing density (SPD). Taken together, this set of metrics

has a direct biophysical interpretation: substantially

more mature myofibrillar architectures exhibit a regular

lattice of well-oriented Z-disks, resulting in elevated values

of SPD and OOP. Additionally, this analysis is robust to

common imaging artifacts such as out-of-focus blurriness,

salt-and-pepper noise, or poor contrast (Figure S2).

Quantitative Analysis of the Contractile Cytoskeleton

in Murine Primary and Stem Cell-Derived Single

Cardiomyocytes

To test our analysis tool, we asked whether we could quan-

tify the ability of human and murine-induced pluripotent

stem cell-derived cardiomyocytes (hiCMs and miCMs,

respectively) to replicate the contractile cytoskeletal archi-
Stem C
tecture observed in murine primary cardiomyocytes

(mpCMs) in vitro (Parker et al., 2008). Qualitatively, we

observed that mpCMs (Figure 1Di) and miCMs (Fig-

ure 1Dii) 3 days after seeding on square fibronectin islands

showed mature myofibrillar architecture, characterized by

uniformly distributed sarcomeric a-actinin-rich striations.

Conversely, hiCMs (Figure 1Diii) exhibited sparse Z-disks

solely in the perinuclear region and arranged in ring-like

myofibrils (red arrow in Figure 1Diii). In addition, close

to the hiCMmembrane, the actin and sarcomeric a-actinin

signals were diffuse (yellow arrows) and resembled the

cortical architecture observed in immature and/or migra-

tory cells (Parker et al., 2008; Sheehy et al., 2012). Quanti-

tatively, while local regions of aligned Z-disks could be de-

tected (color-coded insets below the panels in Figure 1D),

the Fourier analysis clearly demonstrated a globally

reduced periodicity in the sarcomere distribution of hiCMs

than observed in miCMs and mpCMs (insets on the right

of the panels in Figure 1D). Consistently, the SPDs

measured in mpCMs and miCMs were two times higher

than in hiCMs (Figure S3). Notably, all myocytes consid-

ered in this study were positive for sarcomeric a-actinin,

suggesting that they would have been clustered in the

same group by traditional assays detecting the presence

of this protein or its transcript (Cahan et al. 2014; Mum-

mery et al., 2012).
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Figure 1. Metrics of Contractile Architecture to Characterize the Progression of Myofibrillogenesis
(A) Schematic representation of a sarcomere (i) and of the distribution of a-actinin (red) during myofibrillogenesis: in the cytoplasm (ii),
along the actin (green) filament in the form of Z-bodies (iii), and incorporated into the Z-disks (iv).
(B) Algorithmic detection of the orientation and periodic registration of a-actinin-positive structures using the image spatial (co-
ordinates x,y) and Fourier (coordinates u,v) domains.
(C) Color-coded orientations (i, from the inset of synthetic image Figure 1Bii) displayed into a histogram (ii) can be fitted to identify
orientations belonging to Z-disks (red) and Z-bodies (black). In parallel, the 2D Fourier power spectrum (iii) was integrated into a 1D curve
(iv) and fitted to identify the contribution of periodically spaced Z-disks (red) and aperiodic Z-bodies (black).
(D) a-actinin immunostains (white) of mononucleated (DAPI, blue) murine primary (mpCM, i) and murine (miCM, ii) or human (hiCM, iii)
induced pluripotent stem cell-derived cardiomyocytes. The color-coded representation of the a-actinin orientation in the inset is reported
below the image. The positive semiplane for the Fourier transform is reported on the right of each image.
Scale bar represent 20 mm. See also Figures S2 and S3.
Quantitative Analysis of the Maturity of the

Contractile Cytoskeleton inHuman StemCell-Derived

Cardiomyocytes

We and others have previously shown that extending time

in culture (Lundy et al., 2013; McCain et al., 2014a) could

be beneficial for obtaining hiCMs with a more mature

phenotype than we observed here. However, evaluating

the quality of mass-produced stem cell-derived myocytes

requires an extensive structure-function characterization

and a direct comparison against myocytes exhibiting a

postnatal phenotype (Sheehy et al., 2014). We reasoned

that since the process of myofibrillogenesis is highly

conserved across species (Sissman, 1970) we could design

a prescreening tool that estimates the effectiveness of
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maturation strategies by integrating our metrics of myofi-

brillar architecture with machine-learning algorithms for

structural phenotyping. While available platforms require

a user-selected training set, a set of images that an ‘‘expert’’

assigns to all phenotypic classes (Eliceiri et al., 2012), we

took advantage of our ability to recapitulate myofibrillo-

genesis in vitro using primary cardiomyocytes from

neonate rats (rpCMs) (Agarwal et al., 2013; Parker et al.,

2008) to create such a training set. First, we cultured

rpCMs and hiCMs as engineered tissues that mimic the

native architecture of the myocardium (Sheehy et al.,

2014) (Figures 2A and S4). Second, we assigned the sets

of features (Figure S1; Table 1) extracted from images

collected at 6 (Figure 2Ai), 24 (Figure 2Aii), and 48 hr
ors



Figure 2. Structural Phenotyping of Stem
Cell-Derived Cardiomyocytes
(A) a-actinin (white) and chromatin (blue)
images of rpCMs at 6 (i), 24 (ii), and 48 hr
(iii) as well as hiCMs at 72 hr (iv) after
seeding with color-coded orientations and
Fourier representations. Scale bar repre-
sents 25 mm.
(B) Scatter plot showing how our metrics of
myofibrillar architecture quantitatively
captured the progression of myofibrillo-
genesis in rpCM tissues from differentiated
(6 hr, brown squares) to immature (24 hr,
red circles) and finally mature (48 hr, green
triangles) myocytes. In contrast, the hiCM
tissues (orange diamonds) exhibited a
relatively immature myofibrillar organiza-
tion.
(C) A dataset comprising �120 sarcomeric
a-actinin images per conditions (insets in
Ai–Aiv) was acquired, and the features ex-
tracted from this dataset were utilized to
train several classifiers to distinguish the
classes of differentiated (D), immature (I),
and mature (M) myocytes. The classifiers
assigned only �29% of the 118 hiCM im-
ages to the class of myocytes with a mature
structural phenotype, with the rest showing
differentiated or immature contractile ar-
chitectures.
Results are shown as mean ± SEM. See also
Figure S4.
(Figure 2Aiii) after seeding to the classes of differentiated,

immature, and mature myocytes, respectively. We

collected digital images from more than 100 cells (insets

in Figure 2A and Figure S4A–B) in each condition. Third,

we utilized the automatically annotated dataset to train a

simple naive Bayes classifier as well as two more advanced

supervised learning strategies based on neural networks

and tree bagging (Figure S4C). We selected three ma-

chine-learning strategies that operate under various as-

sumptions (Table 2) to demonstrate that our classification

was not biased (Eliceiri et al., 2012) by the choice of one

specific algorithm. Finally, we asked the three classifiers

to confirm whether or not hiCMs (Figure 2Aiv) possess a

mature structural architecture.

At the tissue level, as rpCMs in culture underwent my-

ofibrillogenesis, we observed that weighted OOP (wOOP)

and SPD increased as expected (Figure 2B). In compari-

son, hiCMs scored values consistent with their immature
Stem C
myofibrillar organization. Further, all classifiers trained

on the rpCMs dataset failed to recognize a mature myofi-

brillar architecture in the majority of hiCMs images

(Figure S4D). Specifically, �70% of the 118 hiCM images

were not classified as mature by the naive Bayes classifier,

�71% by the neural network classifier, and �77% by

the tree bagging classifier. For example, the neural

network classified �40% of hiCMs as differentiated

myocytes and �31% as immature myocytes (Figure 2C).

Interestingly, 29% of the cells embedded in anisotropic

hiCM tissues did display mature myofibrillar architec-

tures, suggesting a pool of hiCM with enhanced

myogenic potential may exist (Hartjes et al., 2014).

Thus, we (1) provided quantitative metrics for the organi-

zation of the contractile cytoskeleton of primary and

stem cell-derived cardiomyocytes and (2) utilized this

information to unbiasedly and robustly quantify their

maturation.
ell Reports j Vol. 4 j 340–347 j March 10, 2015 j ª2015 The Authors 343



Table 2. Machine Learning Algorithms Adopted for the Analysis of the Myofibrillogenesis Dataset

Classifier Number Classifier Name Pros Cons

1 naive Bayes One of the simplest classifiers, based on

intuitive probability models, and it is

computationally very treatable.

It simplistically assumes that all the features are

statistically independent, which may not be true

for sarcomeres whose structure, during

myofibrillogenesis, becomes more periodic and

well-aligned.

2 neural network (NN) A popular machine learning algorithm for

structural phenotyping. Extensive literature

shows how a NN classifier can always be

constructed, providing that one has a good

enough dataset.

The data model is not intuitive. The neural

network optimization is not trivial and requires

considerations for the dataset size as well as the

stochastic initialization.

3 tree bagging A popular machine-learning algorithm for

structural phenotyping. The data model is

more intuitive than NN.

Optimization of the tree bagging algorithm is not

trivial and requires careful consideration of the

sample and tree sizes.

See Figure S4.
DISCUSSION

Quantitative methods to characterize the contractile cyto-

skeleton of striated muscle cells have been previously pro-

posed. For example, the analysis of the orientation of

intracellular elements has been conducted adopting

mean orientations (Rao et al., 2013). Unfortunately, the

specific circular statistics tests (Berens, 2009) required to

compare and contrast these mean orientations are only

rarely adopted. By using the OOP values in the range of

0–1, we were able to employ classical statistical tools,

such as ANOVA (Figure S3). Additionally, approaches

based on nonlinear fitting of multiple Von Mises distribu-

tions have been proposed (Rezakhaniha et al., 2012); in

the context of fluorescence bioimaging though, these

methods may suffer from overfitting issues, given the large

numbers of parameters that are needed to identify multi-

ple distributions. Here we restricted ourselves to only

two distributions, centered on the two biophysically rele-

vant principal directions of Z-disks and Z-bodies that are

orthogonal to one another. We were thus able to limit

the number of fitting parameters, largely reducing the

risk of overfitting. Fourier analysis has also been previously

considered in the estimation of sarcomere length (Lundy

et al., 2013; Wei et al., 2010). Our automatic approach of-

fers significant advantages in that the contractile cytoskel-

eton within the entire cell is considered, reducing the user

bias (Eliceiri et al., 2012) introduced by manual selections

in the spatial (Lundy et al., 2013) or Fourier (Wei et al.,

2010) domains. Moreover, our algorithm not only yields

an estimate of the sarcomere length across the entire

spatial extension of the cell/tissue, but also reveals the

relative presence of well-formed sarcomeres irrespectively

from the direction of their alignment. When the myofi-
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brils are highly aligned (Figure 2Aiii), the Fourier spectrum

exhibits peaks along one principal direction; conversely,

when sarcomeres are well organized along many direc-

tions (Figure 1Di), the Fourier spectrum shows a circular

pattern. By integrating across all directions in the Fourier

domain, we are able to quantify the sarcomeres transla-

tional periodicity across all directions in the spatial

domain.

Finally, the method proposed here for the calculation of

the SPD significantly improves our previous efforts

(McCain et al., 2014b; Wang et al., 2014). By normalizing

the energy of the periodic component to the total energy

of the sarcomeric a-actinin image, we estimate a signal-

to-noise ratio that is bound in the unit interval, a desirable

property for many machine-learning algorithms (Shamir

et al., 2010).

In conclusion, we have developed 11 metrics to charac-

terize the structural phenotype of primary and stem cell-

derived cardiomyocytes in a way that is biophysically

related to their functional proficiency (Feinberg et al.,

2012). Moreover, by engineering myocyte shape and tissue

architecture, we were able to generate a myofibrillogenesis

dataset that allows structural phenotyping of stem cell-

derived cardiomyocytes in an unbiased fashion and that

is largely robust to the choice of a specific machine-

learning strategy. Finally, while assessing the quality of

human pluripotent stem cell-derived myocytes remains

critical, to date, their maturation has been suboptimally

estimated (Mummery et al., 2012; Sheehy et al., 2014), as

healthy human myocytes are not readily available. Since

myofibrillogenesis is an extremely well-conserved physio-

logical process (Sissman, 1970), our method allows for a

quantitative characterization of myocytes maturation

that naturally overcomes this limitation.
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EXPERIMENTAL PROCEDURES

Substrate Engineering
Photolithographic masks bearing desired features were drawn in

AUTOCAD (Autodesk). UV light was shone through the mask

into a silicon wafer (Wafer World), previously spin coated with

SU-8 3005 photoresist (MicroChem). The wafer was then devel-

oped in propylene glycol methyl ether acetate (Sigma) and utilized

to cast polydimethylsiloxane (PDMS, Sylgard 184; Dow Corning;

10:1 ratio) stamps. Glass coverslips were also coated with PDMS

and treated for 8 min in the UV ozone cleaner before coming

into contact with PDMS stamps inked with fibronectin

(50 mg/ml; BD Biosciences).

Alternatively, coverslipswere coatedwith polyacrylamide hydro-

gels (streptavidin-acrylamide/bis ratio 7.5/0.3%). To transfer fibro-

nectin islands, the hydrogelwas dried (37�C, 10min), brought into

contact with stamps inked with biotinylated fibronectin (Pierce),

and finally sterilized with UV exposure (15 min).
Primary Harvest
Ventricularmyocyteswere isolated fromday 2neonate Balb/cmice

and Sprague Dawley rats according to procedures approved by the

Harvard University institutional animal care and use committees.

Isolated ventricles were incubated in cold (4�C) 0.1% (w/v) trypsin

(USB) solution for approximately 12 hr. Ventricular tissue was

further exposed to serial treatments (2 min each) of 0.1% (w/v)

warm (37�C) collagenase type II (Worthington Biochemical) solu-

tion. Isolated rat and mouse cardiomyocytes were seeded onto en-

gineered substrates at a density of 10,000 and 20,000 cells/cm2,

respectively. Culture medium consisted of Medium 199 (Invitro-

gen) supplemented with 10% (v/v) heat-inactivated fetal bovine

serum (FBS), 10 mM HEPES, 20 mM glucose, 2 mM L-glutamine,

1.5 ml vitamin B12, and 50 U/ml penicillin for the first 48 hr. The

FBS concentration was then reduced to 2%.
Stem Cell Culture
hiCM andmiCMs were kindly provided by Cellular Dynamics and

Axiogenesis (CorAt-iPS), respectively. Cells were cultured as per

manufacturers’ recommendations: hiCMs were seeded in the pres-

ence of vendor-provided plating medium; miCMs were positively

selected after plating onto 10 mg/ml fibronectin coated flasks. Af-

ter 72 hr, both cell typeswere dissociatedwith 0.05% trypsin-EDTA

solution (Invitrogen, 25200-072) and seeded onto the engineered

substrates at a density of 10,000 cells/cm2.
Immunocytochemistry and Imaging
At room temperature (RT), cells were treated with 4% paraformal-

dehyde and 0.05% Triton X-100 in PBS (v/v) for 10 min and

incubated with anti-sarcomeric a-actinin (A7811; Sigma) and

anti-fibronectin antibodies (F3648; Sigma) for 1 hr (1:200 dilu-

tion). Samples were further treated with DAPI (Invitrogen), Alexa

Fluor 633-conjugated phalloidin (A22284, Invitrogen), and Alexa

Fluor 488-conjugated goat anti-mouse IgG and Alexa Fluor 546-

conjugated goat anti-rabbit IgG secondary antibodies (Invitrogen)

for 2 hr at RT. Samples were imaged with a Zeiss LSM confocal

microscope (Carl Zeiss Microscopy) equipped with the EC Plan-
Stem C
Neofluar 403/1.30 oil DIC M27 objective; 1024 3 1024 pixels

per image were acquired for a final pixel size of 160 nm.
Image Processing and Future Extraction
Preprocessing was performed with ImageJ/FIJI (Schindelin et al.,

2012). The tubeness (Sato et al., 1998) and OrientationJ (Rezakha-

niha et al., 2012) plugins were used to highlight the filamentous

structure and calculate the orientations of foreground pixels,

respectively. MATLAB (Mathworks) was adopted for feature

extraction.
Orientational Order Parameter
The structure tensor method generated orientations {w1,w2,.,wN}

whose frequency of occurrence we plotted in a histogram, such

as in Figures 1Ci, 1Cii, and S3. The OOP was calculated using the

mean resultant vector from circular statistics (Berens, 2009)

OOP =
1

N

���XN

j=1
eiwj

���; (Equation 1)

where i=
ffiffiffiffiffiffiffi�1

p
is the complex unit, e is Euler’s number (�2.71), and

wj is the jth orientation in {w1,w2,.,wN}. The sum of unit vectors in

Equation 1 is bound by 0 (for a set of randomly oriented vectors)

and 1 (for a set of perfectly aligned vectors). Further, we fitted

the orientation histogram with the following linear mix of Von

Mises Distributions

f ðq;m1; d1;m2; d2;gÞ=g
exp½d1 cosðw� m1Þ�

2pI0ðd1Þ + ð1� gÞ exp½d2 cosðw� m2Þ�
2pI0ðd2Þ ;

(Equation 2)

where m1,2 and d1,2 represent the localization and spread parame-

ters for the Z-disks and Z-bodies peak, respectively, g indicates

the fraction of orientations allocated into the Z-disk peak, and I0
is the modified Bessel function of order 0. We then sampled

1,000 orientations from the two fitted Von Mises probability den-

sity distributions and calculated OOP1 andOOP2 for the Z-disk and

Z-body peaks, respectively. In addition, we introduced a weighted

version of theOOP:wOOP = g *OOP1 that quantifies both the pres-

ence (g) and the alignment (OOP1) of the Z-disks in the image.
Sarcomeric Packing Density
To calculate the degree of spatial organization of sarcomeres, we

first considered the Fourier power spectrum P(u,v) of the prepro-

cessed sarcomeric a-actinin image I(x,y)8<: Pðu; vÞ= jFðu; vÞj2

Fðu; vÞ=
ZZ

R2

Iðx; yÞexp½i 2pðxu+ yvÞ�dxdy : (Equation 3)

Equation 3 uses the Fast Fourier Transform algorithm to establish

a correspondence between the spatial domain of the image I(x,y)

and the Fourier domain where the power spectrum P(u,v) is

defined. The signal energy (ETOT) was sampled and integrated

along 1,024 directions to obtain a 1D representation (G(u)) that ex-

hibits periodic peaks (subscript p), in correspondence of spatial fre-

quencies that are integermultiple ofu0,modulated by an aperiodic

noise term (subscript ap).
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ETOT =

ZZ
R2

Pðu; vÞdudv =
Z N

0

"
u

Z 90

�90

Pðu;wÞdw
#
du=

Z N

0

½GðuÞ�du:

(Equation 4)

Equation 4 states that the total energy in the image can be ex-

pressed integrating the 2D power spectrum P(u,v) or, alternatively,

through the integration of its 1D representation G(u). To approxi-

mate this 1D function, we chose the relationships in Equation 5,

where bGap is a decaying exponential and bGp is the sum of three

Gaussian peaks.8>><>>:
bGðu; xÞ= bGp

�
u; xp

�
+ bGap

�
u; xap

�
bGap

�
u; xap

�
= a expð�u=bÞ; xap = fa; bgbGp

�
u; xp

�
=
X3

k=1
ak exp

h
� ðu� k u0Þ2

.
bk
i
; xp = fak; bk;u0gk=1;2;3

:

(Equation 5)

We fitted the function to the data usingMatlab ‘‘lsqnonlin’’ func-

tion that uses the Trust Region Reflective algorithm (Coleman and

Li, 1996). With this approach, we were able to calculate (see

Equation 6) the sarcomere length the area under the periodic

component Ep (or sarcomeric energy), as well as its ratio with the

total area (total energy), a quantity we named sarcomeric packing

density (SPD): 8>><>>:
Ep =

Z
D

bGp

�
u; xp

�
du

SPD=Ep

�
ETOT

SL=u�1
0

: (Equation 6)

Machine Learning
The naive Bayes, neural network, and tree bagging classifiers were

implemented using Matlab built-in functions (see also Supple-

mental Information). Ten random iterations were seeded to ensure

that the results were stochastically robust. For the naive Bayes and

tree bagging classifiers, training was performed with a 10-fold

cross-validation test. For the neural network, we used 70%, 15%,

and 15% of the rpCMs dataset for the training, validation, and

testing phases, respectively.

Downloadable Content
Themyofibrillogenesis dataset and the ImageJ code utilized in this

paper can be downloaded from the Disease Biophysics Group web-

site: http://diseasebiophysics.seas.harvard.edu/.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and four figures and can be found with this article on-

line at http://dx.doi.org/10.1016/j.stemcr.2015.01.020.
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Supplemental Figures 

 

Figure S1 related to Table 1: Schematic representation of the metrics adopted in this paper. 
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Figure S2 related to Figure 1: Effect of common imaging artifacts on feature extraction. Digital images, 

specifically those acquired through automatic means (Bakal et al., 2007; Collinet et al., 2010; Jones et al., 

2009; Whitehurst et al., 2007), can be affected by several different types of noise and artifacts. Here we 

demonstrate, on the synthetic images from Fig 1, the effect of out-of-focus blurriness (A-i), salt-and-

pepper noise (A-ii) or poor contrast (A-iii). Our metrics were robust to the effect of such noise sources, as 

demonstrated by the orientational order parameter (OOP) and sarcomeric energy scores. While the exact 

numerical values were different (B-i), the sarcomeric energy could statistically distinguish mature (M) 

myocytes from the others (B-ii). Furthermore, the OOP values were significantly different between 

mature (M), differentiated (D) and immature (I) cardiomyocytes (B-iii). Results are presented as mean ± 

SEM and analyzed with the ANOVA test (p-value<0.05, n=5 independent experiments). Moreover, we 

analyzed the pCM image in Fig 1 using default settings (C-i), as well as after the application of moderate 

(C-ii) and severe (C-iii) down-sampling; salt-and-pepper noise (C-iv); and moderate (C-v), acute (C-vi) 

and severe (C-vii) blurring. We then compared the performances of OOP, sarcomeric packing density 

(SPD) and sarcomere length (SL) (C-viii) and showed that only severe down-sampling and salt-and-

pepper noise induced a greater than 20% change in the numerical score assigned to the image. 
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Figure S3 related to Figure 1: Metrics of myofibrillar organization were used to characterize the 

maturation of primary and stem cell derived cardiomyocytes. Digital images showing chromatin (blue) 

and sarcomeric -actinin (white) in murine primary cardiomyocytes (mpCM, A-i) and murine (miCM, B-

i) or human (hiCM, C-i) induced pluripotent stem cell derived cardiomyocytes were processed to detect 

and color-code the principal orientations of aSA positive structures (panels A-ii, B-ii and C-ii respectively 

for mpCMs, miCMs and hiCMs). Note that the HSV digital image representation was employed here, 

where Hue and Saturation channels encode orientation and coherency (Rezakhaniha et al., 2011) 

respectively, while the Value channel encodes the preprocessed (Sato et al., 1998) sarcomeric -actinin 

image. (x,y) indicates a Cartesian system of coordinates for the spatial domain. Scalebar: 20 m. The 

normalized Fourier spectra of the Value channel were reported for mpCMs (A-iii), miCM (B-iii) and 

hiCM (C-iii). (u,v) and (𝜔, 𝜗) respectively indicate a Cartesian and polar system of coordinates for the 

Fourier domain. Radial integration of A-iii lead to the 1D representation in D (green dashed line) that we 

further fitted to identify the periodic (red) and aperiodic (black) components needed to derive the 

sarcomere packing density (SPD). (E) Note that SPD could discriminate  the maturation of the cell 

contractile cytoskeleton in this dataset where the nuclear eccentricity (Bray et al., 2010) (e) and the 

traditional orientational order parameter (Sheehy et al., 2012) (OOP) fell short due to the central 

symmetry in the cell geometry (Grosberg et al., 2011; Sheehy et al., 2012). Results are mean ± SEM, and 

were analyzed with ANOVA (p<0.05, n=3 independent experiments) 



 

Figure S4 related to Figure 2 and Table 2: Myofibrillogenesis dataset. A) Representative images from 

the dataset used in this study: columns from left to right represent sarcomeric -actinin images collected 

at 6 hr, 24 hr and 48 hrs after seeding of rat primary cardiomyocytes (rpCMs) as well as commercially 

available human induced pluripotent stem cell derived myocytes (hiCMs). Scale bar is 20 um. The set of 

image in the red inset were color-coded to highlight the orientation of each -sarcomeric positive pixel in 

the image, demonstrating how more mature myocytes have aligned sarcomeres sharing the same color. B) 

2D Fourier power spectra for the same set of image in the red inset in panel A. Note how increasingly 

more mature myocytes display more intense periodic signal in the Fourier domain. C) Schematic 

representations of the classifiers used to analyze this dataset: naïve Bayes (NB, i), neural network (NN, ii) 

and tree bagging (TB, iii). D) Error rates for training (black) and classification (gray) as measured in ten 

randomly seeded and optimized iterations for each classifier. Results are presented as mean ± SEM. 
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Supplemental Experimental Procedures 

Machine Learning 

The machine learning problem we wanted to solve could be divided in 2 parts. In the training phase we 

were interested in solving the following direct problem: given a set of classes 𝐶 = {𝐷, 𝐼, 𝑀} (respectively 

differentiated, immature and mature myocytes) and a set of features F= {𝐹1, 𝐹2, … , 𝐹𝑀} (related to the 

myofibrillar architecture of cells pertaining to those classes, such that e.g. 𝐹1 = 𝑆𝑃𝐷, 𝐹2 = 𝑂𝑂𝑃, … ) we 

wanted to find an algorithm that mapped a given combination of features 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑀} to a single 

class 𝐶 = 𝑐. In the classification phase, we wanted to solve the inverse problem: given a new set of 

features, that was not used during training, we asked the algorithm to assign it to one of the available 

classes.  

We collected a dataset comprising sarcomeric -actinin digital images from rpCMs obtained at 6, 24 and 

48 hrs after seeding: based on a-priori knowledge (Dabiri et al., 1997; Parker et al., 2008; Sheehy et al., 

2014) we took these time points to represent the classes of differentiated, immature and mature myocytes, 

respectively. We then implemented and trained several classifiers (see Table 2) on this dataset and 

utilized them to classify features measured on independently acquired sarcomeric -actinin images from 

hiCMs samples. In particular we counted the number of times the myofibrillar architecture of hiCMs was 

not classified as mature. 

Since different classifiers are based on different assumptions and rely on different stochastic algorithms 

(Sun et al., 2012), we tested three different frameworks and ten different randomly seeded iterations, to 

ensure the classification was robust to the choice of a specific machine learning strategy and particular 

initialization. 
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Classifier 1: Naïve Bayes 

In the framework of Bayesian classification, a classifier is based on a conditional model for the 

probability that a certain set of features belongs to a given class (Fig S4C-i). Under the naïve hypothesis 

of conditional independence between features and once a suitable prior is selected, all model parameters 

can be derived applying the maximum likelihood estimation algorithm on the training dataset. We chose 

kernel distributions as priors, since they only require the random variables to be continued and not 

normally distributed, and randomly seeded ten different iterations of the Naïve Bayes classifier. A 10-fold 

cross-validation test was adopted to determine the performance of the classifier.  

Classifier 2: Neural Network 

In the framework of neural network a classifier is a network that possesses: i) an input layer, with as many 

neurons as there are features; ii) at least one hidden layer, with a number of neurons that can be 

optimized; and iii) an output layer, with as many neurons as there are classes. The neurons 𝑛𝑖 and 𝑛𝑗 are 

connected through a weight 𝑤𝑖,𝑗 and training the network is equivalent to assign the weights 𝑤𝑖,𝑗 such that 

when the input layer receives the set of features {𝐹1, 𝐹2, … , 𝐹𝑀} pertaining to the class 𝐶, the output node 

associated with 𝐶 exhibits the highest value (Fig S4C-ii). We utilized Matlab Neural Network toolbox to 

design a perceptron network and we optimized the number of hidden neurons (from 1 to 20) for 10 

random iterations. We also trained the network using the back-propagation algorithm adopting 70% of the 

dataset for Training, 15% for Validation and 15% for final Testing.  

Classifier 3: Tree Bagging 

Tree bagging stands for bootstrap aggregation of decision trees. Bootstrap aggregation is an ensemble 

meta-algorithm that optimally subdivides the entire dataset and uses each part to train a simpler classifier 

(in this case a binary decision tree). The final classification is obtained by voting: that is, if the majority of 

trees has assigned the set of features {𝐹1, 𝐹2, … , 𝐹𝑀} to the class 𝐶 = 𝑐 than 𝐶 = 𝑐 will be the result of the 
6 

 

 



global classification. The number of decision trees to be used is thus the parameter optimized in our 

implementation.  

Binary decision trees are simple yet powerful machine learning algorithms. For each feature {𝐹1, , … , 𝐹𝑀} 

the algorithm chooses thresholds {𝑡1, , … , 𝑡𝑀} and an ordering scheme, such that the set of features can be 

traveled from “the root to the leaves” coherently. The value of a given feature 𝐹𝑘 is considered, compared 

with the relative threshold and a decision is made: either to examine the next feature in the tree 𝐹𝑘+1, or to 

assign a specific class to that combination (Fig S4C-iii).. 

We performed 10 random initialization of the algorithm, selected the optimal number of trees (in the 

range 5-100) and then trained each decision tree using the Gini's diversity index. A 10-fold cross-

validation test was adopted to determine the performance of the classifier.  
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