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Here we discuss the Turing stability analysis of our system [51, 53]. Let us first discuss
the general theory. We consider a chain composed of n-dimensional dynamical systems, each one
i = 1, . . . , n characterized by q̇i = f(qi). If we add diffusion along the chain, the behavior of cell i is
characterized by:

dqi
dτ

= f(qi) + D̃(qi+1 + qi−1 − 2qi), (1)

where D̃ is the diffusion tensor. Now we consider a (stable) fixed point, q0, of the dynamical system,
i.e. f(q0) = 0. It also constitutes a fixed point for the entire chain since diffusion terms cancel
(qi = qj for all i and j). We want to analyze the effect of a small perturbation, ∆, around the steady
state of the chain. Introducing the variables

qi = q0 + ∆i, (2)

into Equation 1, and expanding up to first order in ∆ one gets:

d∆i

dτ
= ∇f(q0) ·∆i + D̃(∆i+1 + ∆i−1 − 2∆i), (3)

where ∇f(q0) is the Jacobian matrix of the field evaluated in the point q0. Furthermore, we can
decompose the perturbation in terms of plane waves:

∆i(τ) =
∑
k

∆i,k,

∆i,k(τ) = Aeωkτ cos(ki).

(4)

The admissible values of the wavevector k depend on the length of the chain and on the boundary
conditions. For instance, k = nπ/L with n = 1, 2, 3, . . . , L for Von Neumann (zero flux) boundary
conditions. Introducing 4 into 3 we find:

ωkA = ∇f(q0)A + 2D̃A(cos k − 1), (5)

which has nontrivial solutions if

det(∇f(q0) + 2D̃(cos k − 1)− ωk) = 0. (6)

Therefore, the k mode is related to some possible frequencies ωk. If those frequencies satisfy
Re(ωk) < 0, it is expected that the perturbation ∆ will be damped (negative exponential) and the
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Figure 1: Results for ωmax extracted from Equation 6 for the cyanobacterial system with Ds = 0.1 and Dn = 0.2 (Blue). The
black dashed line indicates the value at equilibrium in the absence of diffusion

system will recover its initial equilibrium. Nevertheless, if Re(ωk) > 0 perturbations will be amplified
(positive exponential) and thus it is expected that structures of wavelength 2π/k will develop. The
important value that determines if the system is stable to perturbations of some wavevector k is the
largest real part of the ωk from 6.

We can now turn to our cyanobacteria chain characterized by Eq. (16) of the main text. We
analyze the effect of perturbations around the vegetative-like state for Ds = 0.1 and Dn = 0.2 (Figure
1). We find that the system is unstable against perturbations of intermediate wavevectors, with an
upper bound (representing a minimum length at which patterns can be formed) and a lower bound
(maximum length). The value of the minimum length (measured in cell number) lmin ≈ 8/7 > 1 so
that a single cell is unable to differentiate.
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