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Materials and Methods 

CHD Case Control Study  

We designed a CHD case-control study with CHD cases and controls matched based on age and statin use 
from Framingham Heart Study (FHS) participants. Peripheral whole blood samples were collected and 
RNA was isolated for mRNA and miRNA profiling as described previously1, 2. 

In two recent reports1, 2, we explored differential mRNA expression and derived gene networks associated 
with CHD in 188 case-control pairs. Among the 188 pairs, 186 pairs had successful miRNA profiling and 
these 186 pairs were used to investigate miRNA-mRNA associations in subsequent analyses. Of these, 
176 cases and 185 controls had genome-wide genotype data3 and data from these individuals were used in 
the SNP-miRNA association or expression quantitative trait loci (eQTL) analyses. This study was 
approved under Boston University Medical Center’s Institutional Review Board protocol H-27984. 
Informed consent was obtained from each participant.  

miRNA expression profiling 

We used quantitative polymerase chain reaction (qRT-PCR) based TaqMan miRNA assays to conduct 
miRNA expression profiling of 754 miRNAs. TaqMan miRNA assays have been previously 
demonstrated with sufficient specificity, reproducibility and sensitivity 4-9. Fasting peripheral whole blood 
samples (2.5ml) were collected in PAXgene Blood RNA™ tubes (Qiagen, Valencia, CA) and frozen at –
80oC during FHS offspring cohort examination 8 (2005-2008). Total RNA was isolated from the frozen 
PAXgene Blood RNA tubes (Asuragen, Inc. Austin, TX) and a 2100 Bioanalyzer Instrument (Agilent, 
Santa Clara, CA) was used for RNA quality assessment. Isolated RNA samples were converted to 
complementary DNA (cDNA) using TaqMan miRNA Reverse Transcription Kit and MegaPlex Human 
RT Primer Pool Av2.1 and Pool Bv3.0. (Life Technologies, Foster City, CA) using TaqMan assays in 2 
panels for a total of 754 miRNAs attempted. The cDNA samples were pre-amplified using TaqMan 
PreAmp Master Mix and PreAmp Primers, Human Pool A v2.1 and Pool B v3.0 (Life Technologies, 
Foster City, CA). We routinely ran blank spaces and, as in prior experiments showing excellent 
reproducibility using the Biomark dynamic array platform in conjunction with multiplexed reverse 
transcriptase reactions for miRNA profiling, we did not encounter cross-contamination with this platform. 
The BioMark system is quantitative for low abundance miRNAs 9.   

Measurements were completed using quantitative RT-PCR and, as such, threshold cycle (Ct) values were 
used to evaluate the miRNA expression by counting the number of amplification cycles required for the 
fluorescent signal to exceed the background level. Lower Ct values indicated higher expression levels of 
miRNA. As PCR cycle over 30 is commonly considered over the linear range which may cause saturation 
of PCR product of normal expression levels of miRNA and make it not accurate for quantitative 
comparison, miRNAs with Ct a value greater than 30 were considered to show no expression in our 
experiment. All data used herein are available online in dbGaP (http://www.ncbi.nlm.nih.gov/gap, 
accession number phs000007). 

miRNA expression data normalization 

We considered different models for miRNA data normalization through variance analysis of general 
linear models with miRNA raw Ct as response variable.  First, in Model 1, we ran general linear model on 
miRNA raw Ct values using mean Ct values of the top 50 ubiquitously expressed miRNAs as 
independent variable (Supplementary Figure 3A). Then we ran Model 2, by adjusting for 4 technical 
variables, namely isolation batch, RNA concentration, RNA quality (defined as RNA integrity number 
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[RIN]), and 260/280 ratio (defined as the ratio of the absorbance at 260 and 280nm; measured using a 
spectrophotometer).  Supplementary Figure 3A and 3B show the distribution of the R-squares for every 
miRNA from Model 1 and Model 2, respectively. Our results indicated that adjusting for technical 
variables (Model 2) gave rise to more stable model R-squares (indicating the variance proportion of 
measured miRNA expression values that explained by tested variables): ~80% miRNAs have R-squares 
between 0.2-0.6 in Model 2, giving a reasonable amount of adjustment for most miRNAs, whereas Model 
1 showed a dichotomized normalization pattern with 25% and 50% miRNAs having R-squares <0.052 
and 0.6-0.8, respectively. Therefore, we used Model 2 for miRNA data normalization and kept residuals 
for further analysis. 

Imputing Cell Counts 

The cell count proportions of whole blood were only measured in 2,138 FHS individuals in the FHS third 
generation cohorts, but not in the samples used in this study. We found that cell counts could be 
accurately imputed using a Partial Least Squares regression method10. The estimated cell count proportion 
values imputed were highly consistent with the measured values in the FHS third generation cohorts with 
cross-validated estimates of prediction accuracy (r2) for white blood cell, red blood cell, platelet, 
lymphocyte percent, monocyte percent, eosinophil percent and basophil percent being 0.61, 0.41, 0.25, 
0.83, 0.81, 0.89, and 0.25, respectively.  We therefore estimated the cell count proportions in the 372 
samples in the current study using the same method. 

Identification of differentially expressed miRNA signatures in CHD 

Of the 754 miRNAs assayed, 271 were found to be expressed (Ct<30) in more than 50 samples and were 
used for further analysis. For these 271 miRNAs, we used relative miRNA expression (Cr) values defined 
as Cr=30-Ct. Differentially expressed individual miRNA signatures between CHD cases and controls 
were identified by a conditional logistic regression model by conditioning on matched pairs and 
accounting for diabetes and technical covariates, using the clogit() R package (http://cran.r-
project.org/web/packages/survival/). False discovery rate (FDR) was calculated using the Benjamini-
Hochberg (BH) method11. 

Identification of SNPs associated with miRNA expression  

Approximately 550,000 SNPs were genotyped using the Affymetrix 500K mapping array and Affymetrix 
50K gene-focused MIP array. Quality control procedures and genotype imputation to a set of 
approximately 2.5 million HapMap SNPs were described in detail previously3.  

Linear regression was used to determine the association between the age-, sex-, CHD status-, and 
technical covariate-adjusted miRNA expression values and the imputed SNP genotypes, yielding results 
for approximately 271 miRNAs x 2.5 million SNPs. SNPs were filtered at minor allele frequency (MAF) 
<0.05 based on the genotype data. Associated SNP-miRNA pairs that reside within 1Mb of each other 
(referred to as cis-miR-eSNPs) were identified. The significant threshold was chosen at BH11 corrected 
FDR<0.05 (corresponding p=8.7e-6). As there were missing values for miRNA, we further filtered out 
miR-eSNPs with MAF <0.05 in samples with both miRNA and genotype data available. 

miRNA and mRNA correlation analysis 

The Affymetrix Human Exon 1.0 ST array was used to quantify mRNA expression levels of about 18,000 
transcripts genome-wide in peripheral whole blood from CHD cases and controls, as described 
previously1, 2. miRNA-mRNA associations were assessed by Pearson correlation of miRNA and mRNA 
expression residuals, each adjusted for age-, sex-, and technical covariates. Technical covariates included 
isolation batch, RNA concentration, RNA quality (defined as RNA integrity number [RIN]), and 260/280 
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ratio (defined as the ratio of the absorbance at 260 and 280nm; measured using a spectrophotometer). As 
both mRNA and miRNA data were pre-adjusted for covariates, the correlations reported in the current 
study are partial correlations. The BH method11 was used to calculate FDR values and the threshold for 
significance was set to FDR<0.05. The miRNA-mRNA correlation analysis was conducted separately in 
cases, controls, and in all samples adjusting for CHD status.  

The co-expression patterns in cases and controls were replicated using separate sets of CHD cases (n=63) 
and controls (n=1000) in the FHS, whose miRNA and mRNA expression were measured using the same 
platforms and protocols as for the CHD case-control study.  

Identification of differential miRNA-mRNA co-expression pairs between CHD cases and 
controls  

The CHD-related differential miRNA-mRNA co-expression pairs were defined as the miRNA-mRNA 
pairs co-expressed in either CHD cases (defined as case-specific pairs) or in controls (control-specific 
pairs) but not in both at FDR <0.05 and that showed an interaction in relation to CHD status at FDR <0.2 
as described below.  

To capture potential miRNA-mRNA interactions that were associated with CHD status, we used the 
following logistic regression model: 

CHD!"#"$! = µμ + β!   miRNA!"#$% + β! mRNA!"#$% + β!   miRNA!"#$%×mRNA!"#$% + ε 

where miRNA!"#$% and mRNA!"#$%  denote the residuals of each miRNA and mRNA after adjustment for 
age, sex and technical covariates; µμ was the overall trait mean; β!  and β!  were the regression coefficients 
of miRNA!"#$% and mRNA!"#$%, respectively; β!   was the regression coefficients of the miRNA!"#$% and 
mRNA!"#$% interaction; ε was the residual error. The p-value of β!  determines whether the miRNA and 
mRNA interaction is associated with CHD status. An FDR<0.2 for the β!  p-values for the miRNA-
mRNA interaction pairs was considered significant. 

Testing the putatively causal relationship between CHD-related gene sets and CHD 

We used SNP set enrichment analysis 12 to test if any of the CHD gene sets are putatively causal for CHD 
by showing enrichment with low p value CHD SNPs from the CARDIoGRAM GWAS13. For the CHD 
miRNA differential expression signatures, we linked the miRNAs with CHD GWAS results via miR-
eSNPs. For the CHD case-specific (or control-specific) miRNA-mRNA co-expression pairs, we linked 
the findings to CHD GWAS results using both miR-eSNPs and mRNA eSNPs14-17. We used Fisher’s 
exact test and the Kolmogorov-Smirnov (KS) test to evaluate if these CHD gene sets were enriched for 
either miR-eSNPs or mRNA eSNPs, displaying low p-value CHD associations in the CHD GWAS13. If a 
gene set was significant at p<0.017 (Bonferroni correction for three gene sets) by either Fisher’s exact or 
the KS tests, and p<0.05 by the other test, we considered the gene set to be putatively causal for CHD.  

Additional blood miR-eSNPs  

Our group currently is conducting a miRNA eSNP project from whole blood of 5,329 individuals. Linear 
mixed regression model was used to determine the association between the age-, sex-, technical covariate- 
and familiar relatedness- adjusted miRNA expression values and the imputed SNP genotypes from the 
1000-genome resource, yielding results for approximately 271 miRNAs x 10 million SNPs. This ongoing 
project (unpublished) generated 5269 cis-miR-eSNPs and 270 trans-miR-eSNPs at FDR<0.1, with all of 
the cis-miR-eSNPs from the CHD case-control study replicated, supporting the reliability of the cis-miR-
eSNPs. The cis-miR-eSNPs from this ongoing larger miRNA study were used to complement the miR-
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eSNPs identified in the CHD case-control study to validate the results of the SNP set enrichment analysis 
(see details in “Testing the causal relationship between CHD-related gene sets and CHD”) of the CHD-
related miRNA sets.  

Comparison of miRNA-mRNA co-expression pairs with miRNA target databases 

We used known or predicted miRNA-mRNA target pairs collected from six publicly available databases 
18-23. Among these six databases, miRTarBase 18, TarBase 19, miRecords 20 and miR2Disease 21 annotated 
experimentally validated miRNA-mRNA pairs, whereas miRecords 20, miRDB 22 and MicroRNA.org 23 
reported computationally predicted miRNA-mRNA pairs by utilizing more than 10 miRNA target 
predicting algorithms. The predicted miRNA-mRNA target pairs based on these databases were compared 
with the miRNA-mRNA co-expression pairs identified from the current study for overlaps. 

Pathway and gene ontology enrichment analysis 

Each CHD gene set identified in this study was classified using Gene Ontology (GO) 24 databases to 
identify biological processes potentially involved in CHD. Fisher’s exact test was used to calculate 
enrichment p values and results were corrected by the 825 unique GO biological process terms, yielding a 
p value significance threshold of 0.05/825=6.0e-5.  
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